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Immunological protection, acquired

from either natural infection or vaccina-

tion, varies among hosts, reflecting under-

lying biological variation and affecting

population-level protection. Owing to the

nature of resistance mechanisms, distribu-

tions of susceptibility and protection en-

tangle with pathogen dose in a way that

can be decoupled by adequately repre-

senting the dose dimension. Any infectious

processes must depend in some fashion on

dose, and empirical evidence exists for an

effect of exposure dose on the probability

of transmission to mumps-vaccinated hosts

[1], the case-fatality ratio of measles [2],

and the probability of infection and, given

infection, of symptoms in cholera [3].

Extreme distributions of vaccine protec-

tion have been termed leaky (partially

protects all hosts) and all-or-nothing (to-

tally protects a proportion of hosts) [4].

These distributions can be distinguished in

vaccine field trials from the time depen-

dence of infections [5]. Frailty mixing

models have also been proposed to

estimate the distribution of protection

from time to event data [6,7], although

the results are not comparable across

regions unless there is explicit control for

baseline transmission [8]. Distributions of

host susceptibility and acquired protection

can be estimated from dose-response data

generated under controlled experimental

conditions [9–11] and natural settings

[12,13]. These distributions can guide

research on mechanisms of protection, as

well as enable model validity across the

entire range of transmission intensities. We

argue for a shift to a dose-dimension

paradigm in infectious disease science

and community health.

Natural Transmission

We consider a minimal susceptible (S)

and infected (I) model [14] of pathogen

transmission in a host population to

explore population effects of protection

conferred by a vaccine (or other preven-

tive measure, such as symbionts) against

infection, under different assumptions

about how this is distributed among

individuals. We consider that infection is

lifelong, and that there is no naturally

acquired immunity.

Vaccines that provide leaky protection

against infection act by reducing suscepti-

bility to a factor s that is distributed

among individuals according to a proba-

bility density function q(x), where

0vxv1. Denoting by iv(x) the densities

of hosts who are vaccinated and have

susceptibility factor x, the integral

Iv~
Ð 1

0
iv(x) dx represents the proportion

of hosts who are infected despite being

vaccinated. Assuming no effect on infec-

tiousness, the per capita rate of infection

among totally susceptible individuals is

given by l~b IzIvð Þ, where b is the

effective contact rate.

Figure 1A shows, for the distributions

q(x) represented on the right, equilibrium

curves describing prevalence of infection

versus transmission intensity measured by

R0, the basic reproduction number. The

curves for extreme cases of vaccines that

confer equal protection to all or total

protection to some and none to others are

depicted by the higher (red) and lower (blue)

curves, respectively. Intermediate curves

represent scenarios in which susceptibility

follows a beta distribution with fixed mean

and increasing variance from top to bottom.

Prevalence curves become shallower with

heterogeneity and converge to the same

level as transmission increases, except in the

all-or-nothing extreme, in which the

prevalence cannot surpass the susceptible

fraction, irrespective of transmission inten-

sity. Although the impact of protection

appears to increase with polarization of

effects, the endemic curves do not converge

uniformly to their all-or-nothing homo-

logue. In the absence of unequivocal

empirical evidence for the idealized all-or-

nothing mode of action, we suggest modi-

fying the terminology to include polarized

distributions more generally.

This illustration indicates that the distri-

bution of vaccine effects among individuals

is a major determinant of population-level

impact and should be considered in

evaluation. Specifically, the more homoge-

neously a vaccine acts, the lower its impact

on disease transmission. Measures based on

multipopulation study designs, spanning a

range of transmission intensities, enable the

inference of such distributions.

Experimental Challenge

Infection in a controlled experimental

setting is modeled by describing infected

proportions in terms of challenge dose.

Adopting standard formulations [15–17],

the mean number of infecting pathogens

is , where d is the number of pathogens

challenging the host, and p is the proba-

bility of infection for each pathogen; the

number of infecting pathogens per host

has a Poisson distribution with mean pd.

In the homogeneous case, the probability
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of a host remaining uninfected after

pathogen challenge is the zero term of

the distribution, leading to a probability of

infectionM~1{e{pd , represented by the

black curve in Figure 1B.

This model fails to fit many experimen-

tal data sets in which groups of hosts are

exposed to varying doses of the pathogen,

and the proportion infected in each group

is calculated. In particular, the slope of the

curve implied by this model is steeper than

what is often observed. However, if indi-

vidual hosts vary in their susceptibility to

infection, a reduced slope arises. A simple

model [11] assumes that the probability of

each particle causing infection varies

among hosts according to a beta distribu-

tion q(x), akin to the vaccine protection

factor above, resulting in the modified dose-

response M~1{
Ð 1

0
e{xpd q(x) dx.

Figure 1B illustrates dose-infectivity

curves expected from an experiment in

which groups of naive and vaccinated hosts

are challenged with a range of pathogen

doses under the distributions of protection

described above, uncovering again a lack of

uniform convergence to the all-or-nothing

formulation.

We have adopted the same notation,

q(x), for susceptibility distributions in both

natural transmission and experimental

challenge settings to indicate the linkage

between two arms of a unified study, as

advocated here.

Classification of Intervention
Effects

Experimental dose-infectivity curves

provide information to infer the mode of

action of interventions, such as vaccines.

Given the lack of uniform convergence to

all-or-nothing as the leaky mode becomes

increasingly polarized, we have classified

beta distribution shapes according to

polarization (Figure 2). The dashed line

along the diagonal indicates the location of

the symmetric distributions used in

Figure 1, and the circles indicate the

location of the extreme homogeneous

(red) and all-or-nothing (blue) distribu-

tions. The power to identify polarized

distributions is analyzed in Figure S1,

focusing on a vicinity of the uniform shape

(gray square), showing good discriminato-

ry power in the region of parameter space

where uncertainty is greatest. This analysis

suggests a promising approach for classi-

fying intervention effects in controlled

experimental settings and using this as

Figure 1. Decreasing infection with heterogeneity in host protection. (A) Equilibrium prevalence of infection under a pathogen transmission
model in which an intervention (vaccine or symbiont) reduces host susceptibility to a factor that is distributed as specified. The model is formally
represented by the rates of change in the proportions of the population that are susceptible and infected: dS=dt~ 1{vð Þm{lS{mS,
dI=dt~lS{mI , dsv(x)=dt~vq(x)m{xlsv(x){msv(x), and div(x)=dt~xlsv(x){miv(x), where S and I are nonintervention, while sv(x) and iv(x) are
intervention groups with susceptibility x distributed as q(x) (right panels). Colored lines assume total intervention coverage (v~1), while the black
line represents the scenario without intervention (v~0). (B) Dose-response curves expected from an experiment in which groups of naive (black) and
intervention (colored) hosts are challenged with a range of pathogen doses, under a model in which the intervention reduces susceptibility to a
factor that is distributed as in panels on the right. Models for infected proportions in nonintervention and intervention groups are formalized in a

dose-response manner by M~1{e{pd and M~1{
Ð 1

0 e{xpd q(x) dx, respectively, where d is the number of pathogens the host is challenged by
and p is the probability of infection for each pathogen. Colored lines assume susceptibility factors distributed with mean 0.5 in all cases and variance
0 (red), 0.05 (orange), 0.1 (green), 0.2 (cyan), and 0.25 (blue). Red and blue at the extremes are discrete, while the intermediate cases are continuous

beta distributions, with shape parameters a and b such that the mean is fixed,E s½ �~a=(azb)~0:5, and the variance, var s½ �~ab
�

(azb)2 azbz1ð Þ,
spans the range, 0vvar s½ �v0:25. Transmission models assume m~0:014, and controlled infection models assume p~10{6 .
doi:10.1371/journal.ppat.1003849.g001
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prior information for further study in

natural settings [18].

Supporting Information

Figure S1 Power analysis to identify

polarized intervention effects. Simulated

sets of dose-infectivity data were generated

and used to estimate model parameters

(Figure S2), assuming the host susceptibility

of the intervention group described by a

beta distribution, q(x), with shape param-

eters positioned as a grid in a square

neighborhood of the uniform distribution,

0:1ƒa,bƒ10. The procedure was applied

100 times to each of 1,600 grip points, and

the number of correct shape classifications

into polarized (a,bv1) versus non-polar-

ized (aw1 or bw1) is represented. With 50

hosts per dose, the shape was identified with

95% accuracy in 57% of the simulated

parameter space.

(TIFF)

Figure S2 Simulation and estimation

experiment. A simulated set of dose-

infectivity data was generated using

models M~1{e{pd and M~

1{
Ð 1

0
e{xpd q(x) dx for nonintervention

and intervention groups, respectively,

where d is the dose (simulated at 104,

105, 106, 107, 108, 109, and 1010) and p is

the probability of infection for each

pathogen (simulated at 1026). The host

susceptibility of the intervention group is

described by a beta distribution, q(x), with

shape parameters a~b~0:5. By fitting

the models to the simulated data by a least

squares procedure, we have estimated

p~0:86|10{6, a~0:42, and b~0:18.

(A) The nonintervention arm of the

experiment in black and the intervention

arm in green. (B) Intervention effects’

assumed distribution, shown as a dashed

line, and the estimated distribution, rep-

resented as an unbroken line. This is an

example in which a polarized intervention

effect was estimated correctly.

(TIFF)
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Figure 2. Shape classification in the terms of parameters a and b. Beta distributions are
classified as: polarized if a,bv1; symmetric if a~b (gray dashed line), as in Figure 1; homogeneous
in the limit a,b?? (red circle), as red in Figure 1; all-or-nothing in the limit a,b?0 (blue circle), as
blue in Figure 1; and uniform if a~b~1 (gray square). The power to identify polarized distributions
is analyzed in a neighborhood of the uniform distribution (Figure S1).
doi:10.1371/journal.ppat.1003849.g002
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