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ABSTRACT
Relevance is an essential concept in Information Retrieval (IR). Re-
cent studies using brain imaging have significantly contributed
towards the understanding of this concept, but only as a binary
notion, i.e. a document being judged as relevant or non-relevant.
While such a binary division is prevalent in IR, seminal theories
have proposed relevance as a graded variable; i.e. having differ-
ent degrees. In this paper, we aim to investigate the brain activity
associated with relevance when it is treated as a graded concept.
Twenty-five participants provided graded relevance judgements in
the context of a Question Answering (Q/A) Task, during assessment
with an electroencephalogram (EEG). Our findings show that signif-
icant differences in event-related potentials (ERPs) were observed
in response to information segments processed in the context of
high-relevance, low-relevance and no-relevance, supporting the
concept of graded relevance. We speculate that differences in atten-
tional engagement, semantic mismatch (between the question and
answer) and memory processing underpin the electrophysiological
responses to the graded relevance judgements. We believe our con-
clusions constitute an important step in unravelling the nature of
graded relevance and knowledge of the electrophysiological modu-
lation to each grade of relevance will help to improve the design
and evaluation of IR systems.
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1 INTRODUCTION
Relevance is a key concept in Information Science and Retrieval [45,
57, 59, 66]. While relevance is considered to be multidimensional
[12, 45, 57], dynamic and complex [11, 20, 46, 60], there are still
debates around the granularity level of relevance judgements that
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should be collected [44]. To answer this question, it is crucial to
understand what each grade of relevance actually means. The value
of evaluating information based on graded relevance has begun to
receive attention in recent years both from system [40, 55] and user
[2, 15, 48] point of views. This is particularly important since the
granularity of relevance judgements in previous studies have been
based on investigating this phenomenon indirectly, via some sort
of mediator [29, 71]. This, therefore, limits the understanding of
how searchers perceive different degrees of information relevance
[55]. This paper aims to investigate the neural underpinnings of
graded relevance directly.

Relevance is also known to be subjective and difficult to quantify
[48] since it depends on a searcher’s perception of information re-
lating to a specific Information Need (IN) at a certain point in time
[8, 57]. However, given the semantic gap between a searcher’s IN
and their formulated queries [7, 27, 52], IR systems have employed
various techniques to capture the subjective aspect of relevance [2]
to improve the effectiveness of retrieved results. Examples of such
techniques are explicit [38], implicit (e.g.[24, 36]) and physiological
[47] feedback. More recently, researchers have shown the possi-
bility of capturing the neural processes associated with relevance,
using brain imaging techniques [2, 15, 16, 22, 25, 28, 33, 37, 48, 65].
These studies have either investigated relevance in the context of
word associations (i.e. relevance of a word with respect to another)
[15, 16, 65] without subjects experiencing any IN; or investigated
relevance in the context of Information Retrieval (IR) when IN has
been introduced to subjects. In the latter scenario, relevance was
investigated only as a binary notion [2, 19, 22, 24, 25, 28, 37, 48, 49]
leaving the graded nature of it unexplored. In this paper, we aim to
investigate three fundamental research questions:

• RQ1: “Is there a clear, detectable, physical manifestation of
graded relevance in human brains?”;

• RQ2: “Do such manifestations differ when a user perceives
different degrees of relevance? i.e., when searchers judge a
document as highly relevant, low relevant or non-relevant.”.

• RQ3: “What is the nature of graded relevance from a cogni-
tive neuroscience perspective?”;

Answers to these questions will undoubtedly further our under-
standing of the concept of relevance and will provide the evidence
needed to strengthen the theoretical foundations. This study is the
first to incorporate relevance theory and a cognitive neuroscience
approach to investigate the neural correlates of graded relevance
judgements. Here we utilise an experimental design that enables
the investigation of graded relevance within the context of IR and
in real-time. In this study, participants will perform a Question An-
swering (Q/A) retrieval task, while their brain activity is monitored
using EEG. Our central aims are to identify: (i) the brain activity as-
sociated with distinct graded relevance judgement across time from
stimulus onset (ii) test whether there are neural manifestations of
cognitive activity underlying each grade of relevance judgement
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and (iii) test whether processing distinct grades of relevance is
associated with significantly different neural signatures. We are
focusing on a range of ERP components - the P300, N400 and P600.
Being able to capture brain activity associated with graded rele-
vance could provide better inputs to information systems, which
in turn could lead to improved retrieval effectiveness and greater
searcher’s satisfaction.

2 RELATEDWORK
Relevance. Relevance is the fundamental concept in IR [45, 57–
59]. It plays a crucial role in the user-system interaction since it
is a substantial indicator of system retrieval performance [8, 57].
Despite significant attention dedicated to examining this concept,
relevance is still not fully understood, and it is a subject of many
ongoing scientific debates. Past research has investigated the con-
cept of relevance at different granularity levels from both the user
[29, 71] and system [35, 40] perspective. Within the system side,
graded relevance (in comparison to the binary one) has been shown
to improve ranking functions [34, 55]. Within the user side, recent
research supports the idea of categorical thinking [71], suggesting
that users divide retrieved results into 3-5 categories based on rele-
vance [41]. However, levels of granularity were decided based on
a self-report mechanism, without clear evidence that those levels
have different physical manifestations in the brain. In this paper,
we aim to provide evidence for different grades of relevance from a
neuroscience perspective.

Capturing Relevance Judgement. Given the importance of
the user side of relevance, IR systems have been employing mecha-
nisms and techniques to capture this phenomenon, namely explicit
and implicit feedback. Explicit feedback is easy to use, however,
difficult to obtain due to the cognitive burden associated with it [47],
as the user is required to explicitly state whether presented content
is subjectively perceived as relevant or not [67]. Implicit feedback
is an unobtrusive data collection method. Popular techniques used
to measure implicit relevance feedback are, for example, dwell time
(i.e.[36]), eye-tracking and pupillometry [24], and/or the measure-
ments of affective [4, 47] and physiological signals [47]. However,
implicit feedback is often found to be noisy, which decreases its
accuracy [2]. The findings of novel studies employing neuroscience
have shown that brain imaging is an effective method to capture
relevance judgement in-real time.

Neuroscience & IR. Recent research has begun to apply brain
imaging methods to study aspects of the IR process from a neu-
roscience perspective. One particular area of emphasis for this
research has been to examine the IN process [50, 51]. In addition,
it has been found that prediction of the IN state experienced by
a user is possible using brain signals [50]. Apart from IN, recent
studies have employed brain imaging techniques to gain a better
understanding of other parts of the information seeking and re-
trieval process, such as query formulation [28], search [49, 70] and
relevance (e.g. [33]).

Neuroscientific Approach to Relevance. Recent research us-
ing a neuroscience approach to investigate relevance might be
categorised in two ways based on the context within which the rel-
evance was measured. The first line of brain-imaging research has
position relevance within the IR task. For instance, Moshfeghi and
colleagues [48] employed functional magnetic resonance imaging

(fMRI), to localise differences in brain activity in cortical regions dur-
ing the processing of relevant vs non-relevant images. The research
was able to identify regions engaged in the relevance judgement
processing and the increased activation of these regions for relevant
items was related to visuospatial working memory [49, 51].

Additionally, examining the neural activity underlying post-
relevance judgement revealed that there were differences in the
processing of non-relevant and relevant words, that persisted for
approximately 260 to 320 ms for relevant words and 500 to 530ms
for an irrelevant word [19].

Relevance has been inferred using EEG [25] or in combination
with pupillometry or/and eye-tracking devices [22] within the con-
text of the IR task, not only for textual stimuli but also for videos
[37] and images [2]. For instance, Allegreti et al. (2015) examined
the processing of relevant vs non-relevant images, finding the most
significant differences to occur between 500 – 800ms [2]. Kim and
Kim (2019) explored the ERPs associated with topical relevance of
video skims and classified the data based on two specific ERP com-
ponents (N400 and P600), which have been shown to be indicators
of relevant and non-relevant judgements [37]. Moreover, recent
findings have shown that relevance can be predicted in real-time
from EEG brain signals and eye movements while the user engages
with the system and IR task [28].

Another line of research has examined relevance in the context
of word associations, employing EEG in isolation, or in combination
with eye gaze [15, 16, 65]. In these scenarios, participants did not
experience IN, but they engaged in judging word association to the
topic. The findings of these studies have shown that brain signals
differ when subjects process relevant vs. non-relevant words across
time [16]. Later, Eugster and colleagues (2016) introduced a brain-
relevance paradigm enabling recommendation of information to
users without any explicit user interaction, based on EEG signals
alone evoked by users’ engagement with the textual content [15].

Despite valuable insight provided through past neuroimaging
studies examining the complex relevance process, it is important to
note that relevance has been investigated in binary terms. Hence,
it is not clear whether graded relevance judgements are associated
with significantly different cognitive processes and whether using
more than two relevance categories would be associated with sig-
nificantly different neural activity. This work takes an essential
step to understanding the neural processes involved with graded
relevance judgements.

3 METHODOLOGY
Participants. Using opportunistic sampling, data were collected
from 25 participants. From these, two were excluded due to exces-
sive movement induced artefacts. Within the 23 remaining partici-
pants, there were 14 females and 9 males, the mean age was 25.39,
the SD1 5.00 years, and the range 19 to 39 years. All participants
had normal or corrected-to-normal vision. Overall, nine partici-
pants reported to be native English speakers, and the rest had high
English proficiency. On average, participants had the experience
of 17.65 (±3.46) years of formal education. Only one participant
reported being left-handed. Most of the participants were either
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undergraduate or postgraduate students (60.87%), and the rest were
either employed in skilled jobs (30.43%) or unemployed (8.67%).

Design. Weused a within-subject experimental design, in which
participants performed a Q/A task. The independent variable was
graded relevance judgement (with three levels: “No-Relevance”
(NONR), “Low Relevance” (LOWR) and “High Relevance” (HIGHR).
We controlled the number of relevant vs non-relevant sentences (i.e.
answers) presented to the user, but we did not control the number of
words presented to each participant. This allowed us to simulate an
information search and retrieval, as we did not enforce participants
to go through the whole answer, once the relevance judgement has
been made. The dependent variables were the EEG signals of the
brain, gathered from the users during the Q/A task.

ERP Components. To capture the brain response associated
with relevance, we measured small voltage fluctuations across the
scalp, that are time-locked to a specific event or stimulus. These
are known as ERPs. In this study we focused on the main ERP
components associated with relevance (i.e. P300, N400, P600) (e.g.
[15, 37] ). The P300 component is a positive-going voltage deflection
that peaks around 300ms post-stimulus [43]. This time-locked ERP
component has been included in the analysis as it is thought to
reflect the amount of cognitive resource employed for information
processing [53]. The N400 component is a negative-going potential,
reaching its peak at 400ms from the stimulus presentation [43].
This ERP component is usually elicited by irrelevant/incongruent
stimuli, and its amplitude is associated with semantic integration.
Words that can be integratedmore easily to the context elicit smaller
(more positive) amplitude and vice versa [43]. The P600 component
is characterised as a positive deflection, peaking around 600ms
from stimulus onset [43]. It is elicited during cognitive processing
involved in text comprehension [32].

Apparatus. The experiment was conducted in a neurophys-
iology laboratory at the University of Strathclyde. Stimuli were
presented with E-Prime 2.0, installed on a PC with 22" Mitsubishi
Diamond Pro 2040u NF CRT monitor with the resolution of 2048 x
1536 and a refresh rate of 75 Hz. The screen was positioned approx-
imately 60cm from the participant. A soft light was used to avoid
distractions. Participants were able to interact with the PC using
the keyboard. EEG recordings were obtained using a 128-channel
geodesic sensor net (Electrical Geodesics Inc) using Net station 4.3.1
software. We aimed to keep electrode-scalp impedance below 50
kΩ for all participants. The sampling rate was set at 1000 Hz. To
set the system for recording, we followed Electrical Geodesics Inc
guidelines. The EEG sensor net was soaked in the potassium chlo-
ride (KCl) solution for conductivity. Each participant’s head was
measured to determine the correct EEG net size, and the net was
positioned using standardised procedures, ensuring that the vertex
is halfway between the inion and nasion and halfway between both
bilateral preauricular points. The EEG net VREF electrode was posi-
tioned at the marked vertex. A NetAmps 200 amplifier was used for
synchronisation between the behavioural responses of participants
and their brain signals. Finally, we used entry, Post-task and Exit
Questionnaires for each participant.

Questionnaires. At the beginning of the experiment, an Entry
Questionnaire was introduced to gather background and demo-
graphic information about the participant and participants were
screened to assess whether they are eligible to take part in the study.

Any participants who had existing conditions (i.e. neurological or
psychiatric disorder) that might impact the EEG signal recordings
were excluded. Once participants completed the task, they were
asked to fill in a Post-task Questionnaire asking them to rate how
they perceived the encountered task. Finally, all participants com-
pleted an Exit Questionnaire, which examined the perception of
their overall performance.

3.1 Procedure
The user study was carried out in the following manner. Ethical
permission for the study was obtained from the Department of
Computer and Information Sciences Ethics Committee at the Uni-
versity of Strathclyde. The formal meeting with the participants
took place in the laboratory setting. At the beginning of the session,
all the participants were briefed as to the procedure and the purpose
of the experiment through the information sheet. Then, they were
asked to provide informed consent. All participants were notified
about their right to withdraw at any time during the study, without
giving a reason and without any consequences. After that, partici-
pants were instructed to fill in an Entry Questionnaire. Prior to the
main experimental trials, participants underwent training, which
resembled the main experimental task. This ensured that all the
participants have a good general understanding of the procedure.
The training was not limited by time and participants were able to
repeat it if required. In total, each participant completed 64 trials.
To avoid fatigue, the stimuli were presented to the participants
in two blocks of 32 trials each, separated by a break. The average
duration of the main experimental task was approximately 53.57
minutes and each participant was presented on average with 799.61
words (±161.11).

3.1.1 Procedure of the Main Experimental Task. A schematic repre-
sentation of the main experimental task is illustrated in Figure 1.
At the beginning of the trial, participants were presented with the
task instructions. Next, they viewed a question randomly selected
from the data set. Once participants read and fully understood
the question, they were presented with the fixation cross, to indi-
cate the location of the answer presentation. The answer was then
presented word by word in the middle of the screen to control free-
viewing and to minimise saccade-related measurement artefacts.
This approach has traditionally been applied in the ERP studies
examining neurological correlates of reading [14]. As a result, the
ERPs were time-locked to the word presentation. Each word was
presented for 950ms. This reading pace was appropriate to model
fluent reading as much as possible and to avoid the presence of
the overlapping effect of two consecutive words on the ERPs [15].
Participants were instructed to read individual words, that formed
sentences representing either a relevant or non-relevant answer.
They had an option of terminating the presentation of the words
and continuing to the next step. As brain activity was recorded
throughout the task, to avoid the possibility of confounding hemi-
spheric effects, the hand used for button responses during the task
was counter-balanced across participants (each participant used
only the left hand or right hand, as instructed).

After that, participants were again presented with the same
answer appearing on the screen in the same order (up to the point
of presentation abandonment). In this stage of the trial, the answers



Figure 1: The figure shows the structure of a task. From the left
(START), the question is presented in a randomised order. Once
ready, the participant presses a button on the keyboard to start.
Firstly, a fixation cross was presented for 950 ms. Then, an answer
is presented word by word. Each word is shown for 950ms. The par-
ticipant is able to stop the word presentation once enough infor-
mation is gathered. Next, participants proceed with the graded rele-
vance judgement (HIGHR, LOWR,NONR),withno time restrictions.
Within this step, the participant judges relevance based on the
subjectively perceived information accumulation process. Hence,
while the answers were presentedword-by-word again, participants
were asked to submit a subjective graded relevance judgement for
the information segment presented to them from the first stimulus
(i.e. word) up to and including the current stimulus. The process is
repeated for all 64 questions (END).

were presented word by word as continuous text. Participants were
instructed to assign a (subjectively perceived) graded relevance
judgement (NONR, LOWR, and HIGHR) for each word segment of
the answer while taking into account information accumulation,
rather than judging words in isolation with relationship to the
question. The graded relevance judgements were then assigned
retrospectively, enabling this detailed information to be applied to
the corresponding EEG segments of interest. The interpretation
of each graded relevance category depended on each participant’s
subjective understanding, which enabled capturing the subjective
nature of relevance judgement [57].

All text events were presented in Arial font, size 16. After com-
pletion of the main experimental task, participants were instructed
to fill out a Post-Task Questionnaire and an Exit Questionnaire. All
participants were debriefed after the experiment.

Question/Answering Dataset. For our experiment, we adopt-
ed the Question Answering dataset developed and used by Mosh-
feghi et al. [51]. We chose this dataset since it has been widely in
previous studies investigating IR phenomena from a neuroscience
perspective [49, 51]. The adopted dataset was further expanded
through the selection of additional questions and answers from
TREC-8 and TREC-2001. We chose these two Tracks since they
(i) provide the correct answer to the question, and (ii) they are
independent of one another. We ensured that selected questions
were not ambiguous or time-dependent, making sure the answers

provided in the Track were still appropriate by manually validating
each answer using a search engine.

The created data set was then split into two parts (Data Set A and
Data Set B)2, each containing 64 questions, answers and relevance
assessments in total. The decision of splitting the dataset in two
was made during the pilot study after observing the length of the
experiment and to reduce the fatigue level of the participants. We
made sure that Data Set A and B had similar characteristics (as
shown in Table 1) to avoid introducing any bias in our results.
For example, we ensured that both data sets were balanced to be
apriori 50% relevant and 50% no-relevant. In addition, we balanced
the answer length (long vs short), and question difficulty (easy vs
difficult)3. This was done to reduce any potential bias that might
occur from the emphasis of one particular question/answer type.

An example of an easy question presented to the participants
was “Who was Galileo?”, which was followed by the short, relevant
answer “In 1642, astronomer Galileo died in Arcetri, Italy.”. The
order of the questions was randomised for each participant. This
randomisation ensured that the recorded signals and effects were
related to the users’ subjective relevance judgement of the presented
stimuli, and not related to the stimulus presentation frequency,
potentially causing an oddball effect [15]. We ensured that answers
from both data sets were approximately the same lengths, based on
the mean number of characters per answer category. Participants
were then randomly assigned to one of the two data sets.

Table 1: The Mean length and SD of the answers based on category
for Data Set A and Data Set B

Data Sets
A B

Answer Length Mean A SDA Mean B SD B
Total 14.88 6.24 15.02 6.31

Relevant 15.00 6.24 14.97 6.34
No-Relevant 14.75 6.33 15.06 6.38
Difficult 15.19 6.42 14.69 6.02
Easy 14.56 6.13 15.34 6.67
Long 20.84 2.17 21.09 1.99
Short 8.91 0.89 8.94 0.80

Pilot Studies. Prior to running the main study, a pilot study
was performed employing 4 participants, whose data were not in-
cluded in the analysis. Detailed feedback obtained from participants
involved in the pilot study was used to adjust the study presentation
and design. After the final pilot study, it was determined that the
participants were able to complete the user study without problems
and that the system was capturing all necessary data.

Pre-processing steps. The brain activity was recorded from
participants as the answer was unfolding to them. The obtained
signals were then matched with the graded relevance judgement
up to the point where the participant stopped the answer presen-
tation. All collected data were first visually inspected. Then we

2The Question Answering Data Set A and the Data Set B are available upon request.
3To assess the difficulty level, two annotators separately judged the difficulty of the
questions (i.e. hard or easy) and then selected a subset of 128 questions where both
annotators agreed upon their difficulties, i.e. 64 of them were hard, and 64 were easy
questions.



applied a low-pass filter of 30Hz. By attenuating the higher fre-
quencies, the anti-aliasing is reduced, which is an important step
before data down-sampling. We have then down-sampled the data
from 1000Hz to 250Hz, and then a high pass filter of 0.3Hz was
applied. Filtering is a common pre-processing procedure, used to
attentuate frequencies commonly associated with noise rather than
signal of interest. Downsampling, another commonly applied pro-
cedure, is used to reduce file size for easier manipulation (a level
was chosen to maintain the signal quality). We then automatically
rejected bad channels (EEG data-streams/sensors that were not
functioning properly during the data acquisition and that were
high in noise throughout the task). On average, we removed 13.08
bad channels (±7.43). The CleanLine EEGLAB plugin was used to
filter line noise. The vertex (Cz) sensor was initially used as the
reference electrode, but re-referencing to average (across all elec-
trodes) was subsequently performed (to provide an approximation
of zero microvolts for the reference at each timepoint). All epochs
(the time-windows of interest) were then extracted from 200ms
before stimulus presentation to 950ms afterwards. To detect and
remove components associated with ocular, cardiac and muscu-
lar artefacts based on their power spectrum and time-course, we
performed Independent Component Analysis (ICA). ADJUST was
then used to remove artefacts. A mean number of 14.91 (±8.26)
components were identified and removed. Bad channels were in-
terpolated (reconstructed) using a spherical interpolation method.
Next, we removed the outermost belt of electrodes of the sensor net
(19 peripheral channels: E43, E48, E49, E56, E63, E68, E73, E81, E88,
E94, E99, E107, E113, E119, E120, E125, E126, E127, E128)[9]. Epochs
were then extracted again from 100ms before stimulus presentation
to 950ms afterwards based on the stimulus label (’NONR’, ’LOWR’
and ’HIGHR’). All epochs were baseline-corrected and bad epochs
were then automatically identified and removed using the epoch
rejection plugin. On average, we rejected 35.91 (±12.26) of NONR
epochs, 27.83 (±13.86) HIGHR epochs and 23.89 (±12.38) LOWR
epochs.

3.2 ERP - Components of Interest
To analyse our three components of interest (P300, N400, and P600),
we selected three electrode configurations (that partially overlap)
and three time-windows (that do not overlap), based on the findings
of previous studies as well as a visual inspection of the grand aver-
age waveforms. For the P300 component, we chose a time-window
of 220–440 ms from stimulus onset [3, 53] and the representative
subset of 22 centro-parietal channels over the midline (E55, E62),
left (LH: E30, E36, E37, E42, E52, E53, E54, E60, E61, E67) and right
hemispheres (RH: E77, E78, E79, E85, E86, E87, E92, E93, E104, E105)
as shown in Figure 2a. The electrode selection was based on the
previous literature examining the P300 component through the cal-
culation of mean amplitudes [54]. The mean amplitudes for N400
component were measured between 400 – 600 ms [18]. We iden-
tified 14 electrodes, covering parietal-temporal regions bilaterally
(LH: E31, E37, E42 E53, E54, E61 and RH: E79 E78, E86, E87, E80,
E93), including mid-line channels (E55, E62) [26] as shown in Figure
2b. To analyse the P600 component, we again selected the electrodes
and the time-window that the component is typically measured
most strongly. We selected the time window between 550 – 750 ms

[6] and a bilateral group of electrodes covering central, parietal and
temporal regions (E52, E53, E54, E59, E60, E61, E66, E67, E72, E77,
E78, E79, E80, E85, E86, E87, E92, E93) [21] as shown in Figure 2c.

(a) (b) (c)

Figure 2: Hydrocel Geodesic Sensor Net-128 channel map. The dif-
ferent colours indicate the selection of electrodes for each compo-
nent of interest (a) P300, (b) N400, (c) P600

4 RESULTS
Questionnaire Analysis. Before analysing the results we inves-
tigated participants’ perception of the task. In the Post-task Ques-
tionnaire, we asked participants how they found the task, questions
presented to them, familiarity with questions and whether they
felt comfortable throughout the task (answers: 1: ”Strongly Agree”,
2: ”Agree”, 3:”Somewhat Agree”, 4:”Neither Agree or Disagree”,
5:”Somewhat Disagree”, 6: ”Disagree”, 7: ”Strongly Disagree”). The
results shown in Figure 3 indicate that participants found the task
(M = 1.96, SD = 1.26) and questions (M = 1.91, SD = .75) rather
interesting. Perceived difficulty of the task (M = 3.74, SD = 1.84) and
questions (M = 4.13, SD = 1.58) was rated as moderate. Presented
questions (M = 1.96, SD = 1.33) and task in general (M = 2.00, SD =
1.21) were considered as readable. Additionally, both, questions (M
= 2.17, SD = 1.50) and task (M = 2.13, SD = 1.18) were also considered
as understandable. On average, participants felt moderate physical
comfort (M = 2.74, SD = 1.57) and task was not rated as stressful
(M = 4.57, SD = 1.85). Questions selected for the experiment were
perceived by participants as moderately familiar (M = 3.26, SD =
1.48) and relevant to them (M = 2.48, SD = 1.53).

Using the Exit Questionnaire, we examined participants’ per-
ception of their overall performance during the task (answers: 1:
”Strongly Agree”, 2: ”Agree”, 3:”Somewhat Agree”, 4:”Neither Agree
or Disagree”, 5:”Somewhat Disagree”, 6: ”Disagree”, 7: ”Strongly
Disagree”). Overall, the results indicate that participants felt that
they had enough time to press a button to terminate the answer
presentation (M = 1.61, SD = .84). Additionally, they found the speed
of the word presentation (M = 1.36, SD = .58) to be appropriate for
reading. The font size (M = 1.30, SD = .70) and monitor luminance
(M = 1.87, SD = 1.14) were also rated to be task appropriate. Most
of the participants felt comfortable (M = 2.23, SD = 1.19) during the
task and the EEG cap was not causing them any discomfort (M =
1.65, SD = .98). Participants found following the procedure to be
easy (M = 1.70, SD = .88), with instructions being clear (M = 1.26,
SD = .45) and they were mostly satisfied with their performance
(M = 2.04, SD = .98).

Graded Relevance Component Analysis. The ERP analysis
relied upon a participant’s graded relevance judgement assessment
(coded as NONR, LOWR, and HIGHR) to the presented information.



Figure 3: Post-task Questionnaire: Box plot of the participants’
perception of the encountered task. The asterisk (*) represents the
mean value, while cross (+) represents the outlier value.

Table 2 shows the statistics for the collected graded relevance judge-
ments across participants. Analyses focused on the P300, N400 and
P600 components during the graded relevance judgement process.
The electrode configurations and time-windows for each compo-
nent was based on the previous literature and adjusted by visual
inspection (see Section 3.2). The ERPs were obtained by averaging
across the selected electrode configurations. For this study, we cal-
culated the mean amplitude, which enabled us to factor out latency
jitter and to obtain more robust results [10, 42].

Table 2: The summary statistics of the relevance judgements made
by participants on the observed stimuli

Condition Avg SD MIN MAX
NONR 399.39 138.90 182 686
LOWR 162.52 71.34 57 310
HIGHR 228.96 106.70 42 496
Total 793.44 159.88 358 961

To avoid possible misinterpretations when comparing the three
conditions for peak amplitude of the components (e.g., when high
frequency fluctuations may influence the results), mean amplitudes
were instead used. These were determined by averaging the activ-
ity within each time window of interest for each of the electrode
groupings. To investigate the statistical significance of differences
between recorded neurological signal associated with graded rel-
evance judgements (NONR, LOWR, and HIGHR) for P300, N400,
and P600 components, we applied repeated measures ANOVAs.
To do so, we first investigated whether the assumptions that are
required for repeated measures ANOVA are met. The dependent
variables were approximately normally distributed. Mauchly’s Test
was used to investigate whether the assumption of sphericity was
met for each condition. Since this was not the case, we used the
Greenhouse-Geisser method, which enabled us to obtain F-ratios

with greater accuracy. The epsilon (𝜖), estimating the amount of
sphericity, is reported. For scenarios in which the ANOVA test in-
dicated statistically significant differences between the recorded
neurological signals, we conducted pairwise comparisons of the
conditions (i.e. HIGHR vs LOWR, HIGHR vs NONR, etc.) using
Bonferroni tests. Results were considered significant at 𝑝 < 0.01.

4.0.1 Main Findings. Our experimental results show that signifi-
cant differences exist in brain activity when judging information as
having high-relevance, low-relevance, or no-relevance. Differences
were present in all components of interest (the P300, N400, and P600
components), which suggests that a variety of distinct cognitive
processes are underpinning the graded relevance evaluations.

4.0.2 P300. The P300 component waveforms grand-averaged acr-
oss participants for the NONR, LOWR and HIGHR conditions are
shown in Figure 4a. Component latency considered for the analysis
is highlighted in grey. The P300 amplitude was highest for HIGHR
condition (M = .39 𝜇V, SD = .11), followed by the LOWR condition
(M = .35 𝜇V, SD = .10) and NONR condition (M = .26 𝜇V, SD = .11).
The results of repeated measures ANOVA with Greenouse-Geisser
correction showed that the brain activation associated with the
P300 component differed significantly across NONR, LOWR and
HIGHR conditions [F(1.16, 63.98) = 42.42, 𝑝 < 0.001, 𝜖 = .44]. Post-
Hoc tests using the Bonferroni correction revealed that the highest
mean difference was between HIGHR and NONR conditions (Mdiff
= .13 𝜇V , 𝑝 < .001), following the LOWR and NONR (Mdiff = .0.83
𝜇V, 𝑝 < .001) and LOWR and HIGHR conditions (Mdiff = .05 𝜇V,
𝑝 < .001).

Information judged as HIGHR was associated with significantly
greater P300 amplitudes across central and centro-parietal electrode
sites when compared to LOWR and NONR. Hence, during this early
stage of implicit relevance judgement, users’ selective attention
is allocated towards highly relevant stimuli, which are also easier
to process in terms of cognitive load [1, 53]. These findings are
consistent with the previous literature, showing that the degree of
subjectively perceived information relevance is proportional to the
P300 component amplitude [2, 23].

4.0.3 N400. Figure 4b presents the N400 component waveforms
for the NONR, LOWR and HIGHR conditions. The mean negativity
of the N400 component was the most prominent in NONR condition
(M = .00 𝜇V, SD = .11), following the LOWR (M = .10 𝜇V, SD = .13)
and HIGHR condition (M = .40 𝜇V, SD = .11). A repeated measures
ANOVA carried out with Greenouse-Geisser correction revealed
significant differences in the mean amplitude across the graded
relevance judgement conditions [F(1.64, 82.09) = 784.16, p < 0.001,
𝜖 = .94]. Post-Hoc comparisons using the Bonferroni correction
indicated that the highest mean amplitude differences for the N400
component were measured between the HIGHR and NONR condi-
tions (Mdiff = .40 𝜇V , 𝑝 < .001), followed by the LOWR and HIGHR
(Mdiff = .0.30 𝜇V, 𝑝 < .001) and LOWR and NONR conditions (Mdiff
= .10 𝜇V, p < .001).

The processing of NONR, LOWR and HIGHR information was
associated with negative-going deflection, which was the most
prominent for the NONR condition, which is consistent with pre-
vious literature [15, 37, 65]. Although highly relevant information
reduces the N400 amplitude [63], our results indicate that the N400



(a) The grand average ERP waveforms for the P300 electrode configuration, by condition type (HIGHR, LOWR and NONR), with the 220–440
ms (P300) time interval of interest highlighted in grey.

(b) The grand average ERP waveforms for the N400 electrode configuration, by condition type (HIGHR, LOWR and NONR), with the 400–600
ms (N400) time interval of interest highlighted in grey.

(c) The grand average ERP waveforms for the P600 electrode configuration, by condition type (HIGHR, LOWR and NONR), with the 460–680
ms (P600) time interval of interest highlighted in grey.

Figure 4: The grand average ERP waveforms from the selected electrode configurations. Time intervals of interest (in milliseconds) are
highlighted in grey for each component. Change in the amplitude of the ERP relative to the prestimulus baseline (-100ms to 0ms) is represented
on the y-axis (in microvolts), and time following stimulus onset (from 0ms onwards) is represented on the x-axis.

deflection was also salient for the LOWR condition. The observed
difference between the HIGHR and LOWR category for the N400
component might indicate that LOWR (and NONR) stimuli require
significantly greater cognitive effort to process and integrate within
the given context [13]. The context within this experiment has been
provided through the question, and hence it is possible to assume
that higher N400 amplitudes elicited during NONR condition sig-
nalise contextual violation [5] and a degree of uncertainty during
LOWR condition [64].

4.0.4 P600. The grand-averaged P600 waveforms are displayed
in Figure 4c for each condition (NONR, LOWR and HIGHR). The
mean amplitude of the P600 component was the highest in HIGHR
condition, (M = .40 𝜇V, SD = .13), following the LOWR (M = .33 𝜇V,
SD = .06) and NONR condition (M = .12 𝜇V, SD = .11).

The results of repeated measures ANOVA carried out using
Greenhouse-Geisser correction method revealed significant differ-
ences in the mean amplitude across the graded relevance judgement
conditions [F(1.34, 67.07) = 108.31, p < 0.001, 𝜖 = .68]. Post-Hoc tests



using Bonferroni correction revealed that the highest mean differ-
ence was between HIGHR and NONR conditions (Mdiff = .27 , p <
.001), following the LOWR and NONR (Mdiff = .21, p < .001) and
HIGHR and LOWR conditions (Mdiff = .07, p < .01) displayed in
Figure 4c over the centro-parietal areas. Our findings are in align-
ment with previous studies, suggesting that processing of NONR
information is associated with low P600 amplitudes [15, 37]. As the
P600 amplitude is highest for the HIGHR condition, this may reflect
that the amount of information carried by the processed term is
higher in comparison to the LOWR condition [32].

5 DISCUSSION
The paradigm developed for this study enabled judgements of rele-
vance to be assessed in a graded fashion, and for the corresponding
neural activity to be recorded. Specifically, participants reflected
on sentences that they had seen in response to a question and re-
ported after each word of the sentences what their perception of
relevance was at that time (HIGHR, LOWR or NONR). Participants
were, therefore, processing each word of the sentence within the
context of whether they subjectively perceived the information
segment at that time to be relevant to the question.

The key findings which emerged from the study are that levels
of neural activity across time are dependent on whether the person
perceived the sentence as of high relevance, low relevance or no-
relevance to the question (this finding addresses RQ1). Significant
differences were detected in the three late-stage ERPs of interest
(P300, N400 and P600), that followed words that were processed
in the context of whether the information segment was deemed
to be of high relevance, low relevance or no-relevance to the ques-
tion (this finding addresses RQ2). The differences in neural activity
suggest that during assessment of relevance, a variety of cognitive
processes are relied upon to different degrees: For example the
higher the relevance, it may be, the greater the attentional engage-
ment, the higher the perception of semantic relatedness (the lower
the semantic incongruency between context of the question and
the answer), and the greater the requirement for engagement of
memory (relevant information might be deemed more important
to encode and recall than irrelevant information) (this discussion
provides an early step towards answering RQ3).

High Relevance: The results suggest that greater attentional re-
sources are allocated to highly relevant stimuli, as indicated through
the differences observed within the P300 component. P300 ampli-
tude has been shown to be proportional to attentional engagement
[30]. Greater P300 amplitude has also been suggested to reflect the
quantity of information transmitted [56], the quantity of useful
information [31], relevance to the self [23], or relevance to the task
[17, 62], or to judgements of relevance specifically [2]. Eugster et
al. [15], when assessing term relevance, did not find a difference
in the P300 between relevant and irrelevant words. It is possible
that our P300 measure is influenced by the N400 deflections, but
the P300 and N400 may both be modulated during the assessment
of relevance. The underlying processes also might not be wholly
independent [5]. Future research will provide clarification.

There was a clear reduction of the N400 within the time-interval
of 400 – 600 ms. Typically, in studies of language, the N400 provides

an index of semantic relatedness; it is larger when there is a se-
mantic mismatch than semantic congruency (see e.g., [61]). Given
the task requirements of the current study and the differences we
observed in the N400 in response to graded relevance, it seems that
in this case the component is modulated not necessarily in response
to the meaning of the word, but to the relatedness of the sentence
to the question. Words processed in the context of high relevance
are semantically aligned to the question, which likely explains the
attenuated N400 response. The N400 results fit closely with the
study by Eugster and colleagues [15], who found a reduced N400
for relevant words, compared to irrelevant words.

In our study, words linked to sentences of high relevance were
associated with the highest P600 amplitudes. Similarly, Eugster et
al. [15] found that their relevant words elicited larger P600 compo-
nents than irrelevant words. The link between higher relevance and
P600 amplitude is not completely clear. The P600 has often been
associated with syntactic processing, and later research has flagged
a semantic-thematic role (however, larger P600s are found due to
violations – see e.g., [39]). A more likely reason, or at least a partial
explanation, may be that the late stage positivity is instead linked
to memory processing (e.g., through a process such as recognising
that the answer is relevant and is linked to the question). A late
positive complex has been observed during memory recognition, it
is higher for old versus new stimuli, occurs at around 600ms after
a stimulus and also has a central posterior topography [69].

It should be noted that the task requirements of our study differed
from that of Eugster and colleagues, due to our assessment of graded
relevance (high, low, no), as opposed to a binary judgement. A
further key difference was in the way the relevance judgements
were made - participants in our study did not evaluate individual
words for relevance, but rather, in response to pre-established IN,
they repeatedly assessed the relevance of the entire information
segment each time a new word was presented.

No-Relevance: Words processed without any perceived rele-
vance to the question had the lowest mean P300 values, the greatest
N400, and the lowest P600. Conversely to the words processed in the
high relevance context, the words processed that are not relevant
to the question may have a low P300 due to cognitive factors such
as low attentional engagement, a large N400 due to a mismatch
between the semantic material offered in the answer given the
context of the question (larger semantic incongruity), and a lower
P600 due to reduced memory processing given that the answer is
not relevant to the question (e.g., information to be retained results
in larger P600 amplitudes than information to be forgotten - see
e.g.[68].

Low Relevance: A crucial question relates to the manner in
which words are processed in the low relevance context. Specifi-
cally, is the processing of these words more similar to words viewed
in the high relevant context or the non-relevant context? The ERP
component amplitudes for the words processed in the context of
low relevance fell somewhere in between those processed in the
context of high relevance and those processed in the context of
low relevance (significant differences were seen for all three com-
ponents across the three conditions). A key difference appears to
be in the N400. Although the N400 to the word segments deemed
of low relevance differed significantly from those deemed of high
and of no-relevance, the waveform pattern more closely resembled



the waveform for no-relevance, suggesting that low relevance seg-
ments may be perceived more like non-relevant segments, until
a critical threshold is reached. On the other hand, although low
relevant segments differed significantly from the high relevance
and no-relevance segments for the P600 component, the low rel-
evance segment waveform more closely resembled the high rel-
evance waveform. This may reflect a dual nature of the stimuli
evaluated as having low relevance. When words are processed in
the context of low relevance, the sentences semantically have not
crossed any critical threshold for relevance (there is still semantic
incongruency), whereas there is still the potential for relevance to
increase in these stimuli, so they must be processed adequately in
memory and matched to the question (in a similar fashion as words
in the context of high relevance).

6 CONCLUSION AND FUTURE DIRECTIONS
In conclusion, our findings provide support for the concept of
graded relevance, given the clear differences in neural activity when
information segments are perceived as having high relevance, low
relevance or no-relevance. The P300, N400 and P600 all differed
due to the perceived relevance of the answer. Despite a number of
ERP components being identified that relate in different ways to
the level of relevance perceived, it will be important to understand
how robust/reliable these differences are and how alterations in the
questions (e.g., the difficulty level) or in the answer (e.g., the length
of the response) may interact with these features. Future competing
hypotheses may be whether there may be a dual nature to relevance
processing, wherein cases of ambiguity (e.g., low relevance - where
the person reserves judgement while seeking more information)
some neural features may be more like non-relevant features (e.g.,
as seen in pattern of the N400 waveforms in the current study),
and others are more like high relevance features (e.g., the pattern
of P600 waveforms), or alternatively perhaps whether more fine-
grained distinctions may be reflected in the neural signal. More
fine-grained distinctions could be tested with relevance scales that
offer more options for evaluation than we did in the current study
(e.g., no, low, moderate and high relevance; or a judgement scale
with even more options could be used). These results further our
understanding of the concept of relevance and provide evidence
needed to strengthen its theoretical foundations. Finally, we believe
our conclusions constitute an important step in unravelling the na-
ture of graded relevance and knowledge of the electrophysiological
modulation to each grade of relevance.
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