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Abstract

This paper considers a hunting game in the “playing the field” model, in which

an individual within a group has to choose from two survival strategies: the

group hunting strategy or the individual hunting strategy. The group hunting

strategy aims at hunting more dangerous, larger prey, that are far beyond a

single individual’s capture ability, where the return is greater but the risk is

higher. While the individual hunting strategy aims at hunting small prey that

can be easily captured by an independent individual, where the return is less

but the risk is lower. Evolutionary game theory is used to investigate the se-

lection dynamics of a two-strategy game with a finite population. This reveals

the existences of the stable/unstable equilibrium points and evolutionarily sta-

ble strategies when there is the frequency-dependent strategy selection in the

hunting game. The evolutionarily stable state is found to be not always unique

because the system of the hunting game can have multiple equilibrium points.

It is shown that a stable equilibrium point will always act as an evolutionarily

stable strategy, while an unstable equilibrium point cannot resist invasion from

a mutation. The population fitness cannot always reach the optimum level when

applying the evolutionary process with the fitness difference function.
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the field, hunting game

1. Introduction

Understanding selection dynamics is a fundamental problem in evolutionary

biology [1]. Evolutionary game theory [2, 3] has become a powerful framework to

study the two-player, two-strategy game, including the Hawk-Dove game (also

known as Snowdrift or Chicken game) [4, 5], which describes competition be-

tween aggressive and passive behavioral strategies, and the Prisoner’s Dilemma

game [6], which describes competition between cooperative and defective be-

havioral strategies. These games represent different social dilemmas and have

been extensively studied for understanding the evolution of cooperation from

the weighted complex networks [7, 8, 9]. The payoff matrix for a game with two

strategies A and B is


A B

A a b

B c d

 (1)

The concept of an evolutionarily stable strategy (ESS) [2, 3, 10] is widely

used to analyze the equilibrium states in evolutionary games. An ESS is a

strategy which, if the majority of individuals adopt it, then there is no “mutant”

strategy that could achieve a higher fitness and hence it resists invasion by a5

rare mutation. Most prior work has assumed that the population is infinite and

the individuals are randomly matched, in pairs, to play a symmetric two-player

game [11, 12, 13, 14, 15, 16, 17, 18]. This “pairwise random matching” model

has four selection scenarios, describing evolutionary game dynamics among two

strategies [10, 12].10

(1) A-dominant. If a > c and b > d, then A is a strict Nash equilibrium,

and therefore an ESS.

(2) Bi-stable. If a > c and b < d, the equilibrium point in the interior

where xA = d−b
a+d−b−c is unstable (xA is the frequency of individuals playing
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strategy A), and there are two absorbing states: the pure strategy A and the15

pure strategy B. Both A and B are strict Nash equilibria.

(3) Polymorphic. If a < c and b > d, the equilibrium point in the interior

where xA = d−b
a+d−b−c is stable. Neither A nor B is a Nash equilibrium. A mixed

strategy is an ESS.

(4) Neutral case. If a = c and b = d, the two strategies are equally good and20

the selection dynamics are inconsequential.

The classical Prisoner’s Dilemma game and the Hawk-Dove game are both

inadequate for describing social interactions between animals. One key issue is

that both of these games assume that the individuals are randomly matched, in

pairs, or play a symmetric two-player game in each round. It is worth noting25

that the individuals may also regard nature or environment as a potential op-

ponent [19], in which an individual’s expected rate of reproduction, or fitness,

is not determined by another player’s strategy, but jointly determined by its

own strategy and what other strategies are present in the population and on

their frequencies [2, 3, 20]. In this case, it is no longer a two-player game, but30

a multi-player game with the playing the field model designed for such applica-

tions [3, 21]. It generalizes the “pairwise random matching model” by assuming

the individual’s fitness depends linearly on the population or the strategy fre-

quency, allowing the analysis of a wide range of situations where individuals

interact simultaneously in groups larger than pairs [20, 22, 23].35

A typical playing the field problem is seen in the “tragedy of commons”, in

which there are always too many free riders, who do not contribute but enjoy

the benefits of other members’ contributions [24]. This issue is widely studied

by the public goods game where each member’s benefit is jointly determined

by the whole group [25, 26, 27, 28]. For example, the strike is such a “playing40

the field” problem, where the opponent of a worker is the employer or the envi-

ronment rather than other workmates. However, the worker’s payoff is jointly

determined by its own strategy and the frequency distribution of other indi-

viduals’ strategies. Other examples can be observed in sex ratios [29], habitat

distribution in birds [30] and stock market [31].45
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Another issue with the classical two-player games is that the payoff matrix

of the classical two-player game is a constant matrix, as shown in Eq. (1). The

constant model is not suitable for the playing the field problem, as the payoff or

fitness may not be constant if it is population or frequency dependent.

In this paper, we introduce a two-strategy game with finite players in playing50

the field model which is termed as the hunting game, in which an individual in a

group has to choose a survival strategy. The choice is between the group hunt-

ing strategy and the individual hunting strategy, with the individual’s payoff

jointly determined by its own strategy and the frequency distribution of other

individuals’ strategies. We focus our attention on the evolutionary dynamics,55

the stable/unstable equilibrium points and the Evolutionarily Stable Strategies

(ESSs) in the hunting game with frequency-dependent strategy selection.

The paper is organized as follows. In Section 2, the paper opens with a sim-

ple strike example, which presents a trivial case where the individual’s payoff is

jointly determined by its own strategy and the frequency distribution of other60

individuals’ strategies. Section 3 then provides a general two-strategy game in

the playing the field model, in which the selection dynamics of the game are

formulated as a Moran process with frequency-dependent fitness. Section 4 pro-

vides the formulation of the hunting game, where two specific types of hunting

game are analyzed in terms of strategy selection dynamics, stable/unstable e-65

quilibrium points and ESSs. Section 5 illustrates the examples of the hunting

game before a conclusion is presented.

2. A simple model

Before introducing the hunting game, we analyze the strike example that is

a simple model of playing the field. This simple game provides an insight on70

how an individual’s payoff is jointly determined by their own strategy and the

frequency distribution of other individuals’ strategies.

Consider a multi-player game in which the workers decide to start a strike

for more pay. The benefit after the strike has positive correlation with the
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population of participants and the price they paid. However, the workers can75

also select non-participation in which they do not need to pay the price but

obtain the same benefit as the participants. Let C and D denote the strategy of

participation and non-participation respectively. The payoff matrix of the strike

example is similar to that of the public goods game [22, 23, 28] and detailed in

Tab. 1, where {c : c > 0} is the cost each worker paid for the strike, {k : k > 0}80

is the enhancement factor denoting the production efficiency or synergy effects

of cooperation, {n : 0 ≤ n ≤ N} is the number of workers using participation

strategy and {N : N > 2} is the group size of workers.

Table 1: Payoff matrix of the strike example

Strategy Payoff

C EC = knc
N − c (n ̸= 0)

D ED = knc
N (n ̸= N)

It is easy to see that the individual’s payoff is jointly determined by their

own strategy and the frequency of other strategies within the population. Note85

that the payoff of strategy D is always non-negative.

It is possible to determine the number of workers required to choose strategy

C so that all strategy C players receive a positive payoff. The solution can be

obtained as

Ec =
knc

N
− c > 0 (2)

then we have

n >
N

k
. (3)

Since 0 ≤ n ≤ N , we also note that

k > 1. (4)

It is also possible to locate the stable point in this game and its corresponding

constraint conditions. First assume that the pure strategy C is a stable point

and all workers choose strategy C, then the payoff of each individual is

EC = (k − 1)c. (5)
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If there is only one worker choosing strategy D, and the others choose strat-

egy C, then we have

EC =
k(N − 1)c

N
− c

ED =
k(N − 1)c

N
.

(6)

The pure strategy C is a stable point if it can resist invasion from a mutation,

i.e. the following condition is met

(k − 1)c >
k(N − 1)c

N
(7)

from which we have

k > N. (8)

By assuming that the pure strategy D is a stable point, where all workers

choose strategy D, the payoff for each individual is zero. If there is only one

worker choosing strategy C and the others choosing strategy D, then we have

EC =
kc

N
− c

ED =
kc

N

(9)

Therefore, the pure strategy D is a stable point if the following condition is

met
kc

N
− c < 0 (10)

from which we have

k < N (11)

Moreover, there is no mix strategy that can be a stable point because of

EC < ED for any 0 < n < N .

In this simple model, either a pure strategy C or D can produce a stable

state, with an ESS if k > N or k < N respectively, where there is no stable90

mix strategy. The strike example is a special case of playing the field, as it is

not always true that choosing cooperation can obtain the maximum return. In

most cases, the maximum payoff is not clear as the players cannot predict at

which point the maximum return can be obtained. In Section 3, a similar but

more complex and general model of playing the field is given.95
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3. A general model of playing the field

Consider games in which there are two subtypes or morphs of one species

with two strategies. The strategy using team work to achieve a goal is regarded

as a cooperation strategy, denoted by C, while the strategy that the individual

achieves a goal independently is regarded as a defection strategy, denoted by100

D. The payoff of each strategy is jointly determined by its own strategy and

the frequency distribution of other individuals’ strategies. Let x represent the

frequency of strategy C in the population, then the frequency of strategy D is

1−x. Let EC(x) and ED(x) denote the payoff of an individual playing C and D

respectively when the frequency of strategy C is given by x. The payoff matrix105

of the general model for playing the field is give in Tab. 2.

Table 2: Payoff matrix of the general model for playing the field

Strategy Payoff

C EC(x)

D ED(x)

Most models of evolutionary biology use “fitness” to assess a specific strategy

in the population [2, 3, 32]. The fitness of strategy C, D and the average fitness

of the population (ϕ) are given by

fC(x) = f0 + xEC(x)

fD(x) = f0 + (1− x)ED(x)

ϕ = xfC(x) + (1− x)fD(x)

(12)

where {f0 : f0 > 0} is the baseline fitness of the individual with the same values

for all group members, which represents the basic benefit for the population

from the environment. For a single, infinite, population of players, the standard

model of evolutionary selection dynamics is the replicator equations [1, 10, 12].

The basic idea of the replicator equations is that the more fit a strategy is,

at any moment, the more likely it is to be adopted in the future. This can be
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regarded as a diffusion mechanism where individuals tend to switch to strategies

that are doing better, or where the fitter individuals have a greater number of

offspring [10]. The growth of each strategy is given by the difference between

its fitness and the average fitness of the population

x′ = x(fC − ϕ). (13)

Since ϕ = xfC + (1− x)fD, then Eq. 13 can be written as

x′ = x(1− x)(fC − fD) (14)

where f0 has no effect on this replicator equation. Another replicator equation

proposed by [10] can provide similar evolutionary selection dynamics

x(t+ 1) = x(t)
fC
ϕ
. (15)

where f0 can be a control parameter to adjust the convergence speed of the

evolutionary process.

The dynamics of the frequency distribution of the two strategies represents

the evolutionary game dynamics. The system goes to a stable state when the110

frequency distribution of the two strategies no longer change.

4. The hunting game

We now use the general model of playing the field to investigate a hunting

game, in which an individual in a group has to choose either the group hunt-

ing strategy or the individual hunting strategy. The group hunting strategy115

describes a cooperative behavior, denoted by C, while the individual hunting

strategy describes an isolated behaviour, denoted by D. The group hunting

strategy C aims to hunt more dangerous, larger prey, which are far beyond a

single individual’s capture ability, where the risk is higher but the return is

greater. The individual hunting strategy D aims to hunt small prey which can120

be captured by a single individual, where the return is less but the risk is low-

er. The model of the hunting game may vary according to the payoff of each

strategy. We introduce two models of the hunting game: α hunting game and

β hunting game.
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4.1. α hunting game125

Consider a hunting game with only two pure strategies: the group hunting

strategy C and the individual hunting strategy D. The payoff of using the

group hunting strategy C increases with the population and the frequency of the

strategy but has an upper limit b. The price of using the group hunting strategy

C decreases with the population and the frequency of the strategy. The payoff130

of using the individual hunting strategy D is independent of the population

and the frequency of the strategy. Suppose that the individuals select the group

hunting strategy C with strategy frequency x, the payoff matrix of the α hunting

game is give in Tab. 3, where {N : N > 2} is the group size, {c : c > 0} is the

cost coefficient, {b : b > 0} is the maximum utility when an individual plays135

strategy C, and {b0 : b0 > 0} is a constant that represents the utility when an

individual plays strategy D. For practical purpose, we have c > b > b0 > 0.

Table 3: Payoff matrix of the α hunting game

Strategy Payoff

C b− c
xN+1

D b0

In the α hunting game, the payoff of an individual using the group hunting

strategy C is dependent on the population size and the frequency of strate-

gy selection. Fig. 1 displays the variation for a population of 100 where the140

frequency of strategy C selection is varied.

The fitness of the strategy C, D and the average fitness (ϕ) of the population

are given by

fC(x) = f0 + x(b− c

xN + 1
)

fD(x) = f0 + (1− x)b0

ϕ = xfC(x) + (1− x)fD(x).

(16)

Let f0 = N and take Eq. (15) as the replicator equation, then the selection

dynamics can be formulated as a Moran process with frequency-dependent fit-
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Figure 1: The payoff of the strategy C in the α hunting game. N = 100, b = 10, c = 20.

ness [33, 34, 35]. At each time step, replace each individual with offspring whose

fitness are dependant on their predecessor. Thus N is strictly constant [36].145

Let f(x) = fC(x)− fD(x), then we have the fitness difference equation

f(x) = (Nb+Nb0)x
2 + (b− c−Nb0 + b0)x− b0 = 0. (17)

The fitness difference function is a parabola function. The coefficients of the

parabola function can be represented as

k1 = Nb+Nb0

k2 = b− c−Nb0 + b0

k3 = −b0.

(18)

Then Eq. (17) can be simplified as

f(x) = k1x
2 + k2x+ k3 = 0. (19)

For c > b > b0 > 0 and N > 2, the fitness difference function has the

following features

k1 = Nb+Nb0 > 0

∆ = k22 − 4k1k3 = (b− c−Nb0 + b0)
2 + 4b0(Nb+Nb0) > 0

f(0) = −b0 < 0.

(20)
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With the features of the fitness difference function, the graph of the fitness

difference function falls into two types according to the values of f(1), as shown

in Fig. 2.

x x0b 0b

0 01

1

(1) 0f(1) 0f

2

1 2 3 1( ) ( 0)f x k x k x k k

Figure 2: Two graphs of the fitness difference function in the α hunting game

Let {(x1, x2) : x1 < x2} be the solutions of the fitness difference equation

(Eq. (17)), then for f(1) > 0, i.e. N > c−b
b , we have

f(x2) = 0

f ′(x2) > 0

0 < x2 =
−k2 +

√
k22 − 4k1k3
2k1

< 1.

(21)

The frequency-dependent strategy selection in this case is shown in Fig. 3.

The red curve denotes the fitness difference function f(x) = fC(x) − fD(x). If150

f(x) > 0, the frequency of strategy C increases; If f(x) < 0, the frequency of s-

trategy C decreases, the blue arrows indicate the selection direction; If f(x) = 0,

the frequency of strategy C no longer changes, the selection dynamics converges

to an equilibrium state. In this case, x = x2 is an unstable equilibrium point,

and there are two evolutionarily stable strategies (ESSs), the pure group hunting155

strategy C and the pure individual hunting strategy D. The initial frequency

distribution of the two strategies determines which specific strategy can be the

ESS of the system. If x0 < x2 (x0 is the initial frequency of the strategy C),

11



then the pure individual hunting strategy (x = 0) is the ESS with the evolu-

tionary process; If x0 > x2, then the pure group hunting strategy (x = 1) is the160

ESS with the evolutionary process; A mixed hunting strategy x = x2 cannot be

the ESS because it cannot resist invasion from a mutation.

x0 1

(
)

(
)

C
D

f
x

f
x

xx x

x

x

Figure 3: The frequency-dependent strategy selection in the α hunting game when f(1) > 0.

• denotes an ESS, ◦ denotes an unstable equilibrium point, → denotes the selection direction

and ⌢ presents the fitness difference function.

For f(1) < 0, i.e. N < c−b
b , we have

f(x2) = 0

f ′(x2) > 0

x2 > 1

f(x) < 0 x ∈ [0, 1].

(22)

The frequency-dependent strategy selection in this case is shown in Fig. 4.

The fitness difference function is negative for any 0 ≤ x ≤ 1, making the pure

individual hunting strategy D the only ESS.165

For f(1) = 0, i.e. N = c−b
b , then x = 1 is an unstable equilibrium point and

it can be only obtained by x0 = 1.

In fact f(1) > 0 means that all individuals choosing the group hunting

strategy C can obtain a greater payoff than that of any mutational individual

choosing the individual hunting strategy D. This scenario leads to the results of170

frequency-dependent strategy selection, as indicated by Fig. 3. While f(1) < 0

means that all individuals choosing the group hunting strategy C cannot obtain

as much payoff as an individual choosing the individual hunting strategy D.
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C
D

f
x

f
x

Figure 4: The frequency-dependent strategy selection in the α hunting game when f(1) < 0.

• denotes an ESS, ◦ denotes an unstable equilibrium point, → denotes the selection direction

and ⌢ presents the fitness difference function.

Hence, the individual hunting strategy D becomes the only ESS as indicated by

Fig. 4.175

The selection dynamics also shows that the stable states are independent

of b0, which means that a constant payoff of the individual hunting strategy

C with c > b > b0 has no effect on the ESS in the α hunting game. Another

interesting result is that the worst time to play the group hunting strategy C is

at the point

x = − k2
2k1

(23)

because the fitness difference reaches a minimum.

4.2. β hunting game

Consider a more complicated hunting game with only two pure strategies:

the group hunting strategy C and the individual hunting strategy D. For the

group hunting strategy C, suppose that a few cooperators cannot obtain a180

positive utility in group hunting until there are enough participants. After

reaching this threshold, the payoff increases with the population, but it reverses

to negative when there are too many participants. The payoff of the individual

hunting strategy D is independent of the frequency and the population. Let x

be the frequency of individuals selecting the group hunting strategy C, then the185

payoff matrix of the β hunting game is give in Tab. 4, where 0 < h1 < h2 < 1,

a < 0, b0 > 0 and N > 2.
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Table 4: Payoff matrix of the β hunting game

Strategy Payoff

C a
N2 (x+ 1

N − h1)(x+ 1
N − h2)

D b0

The payoff of the group hunting strategy C has a general form of parabola

function, as shown in Fig. 5.

0 0.2 0.4 0.6 0.8 1

−2500

−2000

−1500

−1000

−500

0

500

x

E
C
(x
)

x2x1

Figure 5: The payoff of the strategy C in the β hunting game. N = 100, b = 10, c = 20,

b0 = 5.

The fitness of the strategy C, D and the average fitness (ϕ) of the population

are given by

fC(x) = f0 + x(
a

N2
(x+

1

N
− h1)(x+

1

N
− h2))

fD(x) = f0 + (1− x)b0

ϕ = xfC(x) + (1− x)fD(x).

(24)

Without loss of generality, let f0 = N2, take Eq. (15) to be the replicator

equation. Let f(x) = fC(x)−fD(x), then we have the fitness difference function

f(x) =aN2x3 + (2aN − ah1N
2 − ah2N

2)x2

+ (a− ah1N − ah2N + ah1h2N
2 + b0)x− b0.

(25)
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Let

k1 = aN2

k2 = 2aN − ah1N
2 − ah2N

2

k3 = a− ah1N − ah2N + ah1h2N
2 + b0

k4 = −b0.

(26)

Therefore, the fitness difference equation in the β hunting game can be given

by the standard form of the cubic equation.

f(x) = k1x
3 + k2x

2 + k3x+ k4 = 0. (27)

The discriminants of the cubic equation is given by [37] as

A = k22 − 3k1k3

B = k2k3 − 9k1k4

C = k3 − 3k2k4

∆ = B2 − 4AC.

(28)

Since k1 = aN2 < 0, the graph of the fitness difference function (Eq. (25))190

in the β hunting game falls into two types, as shown in Fig. 6.

xx

0A 0A

3 2

1 2 3 4 1( ) ( 0)f x k x k x k x k k

Figure 6: Two graphs of the fitness difference function in the β hunting game according to

the discriminants.
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Let x1, x2 and x3 be the solutions of the fitness difference equation (Eq. (27)).

(1) If ∆ = B2 − 4AC > 0, the fitness difference equation has a single real

solution

x1 = x2 = x3 =
−k2 − ( 3

√
Y1 +

3
√
Y2)

3k1
(29)

where Y1,2 = Ak2 + 3k1(
−B±

√
B2−4AC
2 ).

For both A > 0 and A ≤ 0, Fig. 6 demonstrates f ′(x1,2,3) < 0 if Eq. (27) has

a single real solution (i.e., f(x) > 0 when x < x1,2,3; f(x) < 0 when x > x1,2,3).195

According to the range of x1,2,3, there are three frequency-dependent strategy

selection scenarios. Fig. 7 displays that x = x1,2,3 is a stable equilibrium point,

as well as an ESS if 0 < x1,2,3 < 1, because both selection direction arrows

point at this equilibrium point. Moreover, either x = 0 or x = 1 is a stable

equilibrium point (ESS) if x1,2,3 < 0 or x1,2,3 > 1 respectively.

x0 1

(
)

(
)

C
D

f
x

f
x

x0 1

(
)

(
)

C
D

f
x

f
x

x0 1

(
)

(
)

C
D

f
x

f
x

1,2,3(a) 0 1x 1,2,3(b) 0x

1,2,3(c) 1x

Figure 7: The frequency-dependent strategy selection in the β hunting game with ∆ > 0. •

denotes an ESS, ◦ denotes an unstable equilibrium point, → denotes the selection direction

and ⌢ presents the fitness difference function.

200

(2) If ∆ = B2 − 4AC = 0, the fitness difference equation has two different

real solutions

x1 =
−k2
k − 1

+M

x2 = x3 =
−M

2

(30)
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where M = B
A , (A ̸= 0).

As we can see from Fig. 6, the fitness difference function has two different

real solutions only when A > 0. The solutions have two different distributions:

x1 < x2 = x3 and x2 = x3 < x1. For x1 < x2 = x3, there are six frequency-

dependent strategy selection scenarios, see Fig. 8. For x2 = x3 < x1, there are205

another six frequency-dependent strategy selection scenarios, see Fig. 9.
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Figure 8: The frequency-dependent strategy selection in the β hunting game with ∆ = 0 and

x1 < x2 = x3. • denotes an ESS, ◦ denotes an unstable equilibrium point, → denotes the

selection direction and ⌢ presents the fitness difference function.

Note that, the system can have two equilibrium points as indicated in

Fig. 8(b), Fig. 8(d), Fig. 9(d) and Fig. 9(e). These results show that an e-

quilibrium point is unstable if the fitness function maintains the sign at both

sides of the equilibrium point.210

(3) If ∆ = B2 − 4AC < 0, the fitness difference equation has three different
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Figure 9: The frequency-dependent strategy selection in the β hunting game with ∆ = 0 and

x2 = x3 < x1. • denotes an ESS, ◦ denotes an unstable equilibrium point, → denotes the

selection direction and ⌢ presents the fitness difference function.

real solutions

x1 =
−k2 − 2

√
A cos θ

3

3k1

x2,3 =
−k2 +

√
A(cos θ

3 ±
√
3 sin θ

3 )

3k1

(31)

where

θ = arccos(T )

T =
2Ak2 − 3k1B

2
√

(A3)

(32)

and A > 0,−1 < T < 1.

There are eight frequency-dependent strategy selection scenarios in this case

according to the ranges of the three solutions, see Fig. 10.

Fig. 10 displays that the system may have one, two or three equilibrium

points which can be either stable or unstable equilibrium points. The pure215
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Figure 10: The frequency-dependent strategy selection in the β hunting game with ∆ < 0. •

denotes an ESS, ◦ denotes an unstable equilibrium point, → denotes the selection direction

and ⌢ presents the fitness difference function.

strategies (x = 0 or x = 1) are always equilibrium points where x = 0 is a

stable equilibrium point if f(0) < 0 and x = 1 is a stable equilibrium point if

f(1) > 0. An internal equilibrium point (0 < x1,2,3 < 1 and f(x1,2,3 = 0)) is a

stable equilibrium point if f ′(x1,2,3) < 0; It is an unstable equilibrium point if

f ′(x1,2,3) > 0. For example, when 0 < x1 < x2 < x3 < 1, the system has three220

equilibrium points, where x1 and x3 are stable equilibrium points, and x2 is an

unstable equilibrium point, as indicated in Fig. 10(d).

The next section is to present how to obtain the stable/unstable equilibrium

points and ESSs in the hunting game.

19



4.3. Equilibrium points and evolutionarily stable strategy225

Given a general playing the field model with two pure strategies, we can

always get the fitness difference equation, with which equilibrium points can be

solved. Let x be the frequency of one strategy, an internal equilibrium point x

is a stable equilibrium point if 
0 < x < 1

f(x) = 0

f ′(x) < 0.

(33)

It is an unstable equilibrium point if
0 < x < 1

f(x) = 0

f ′(x) ≥ 0.

(34)

The concept of ESS was introduced by [2, 3] to describe the long-run effects

of selection for more successful strategies where the ESS resists invasion from a

mutation. This idea motivates the following definition:

Definition 1. A state x is called an ESS (evolutionarily stable strategy) in the

hunting game if for every state y ̸= x, if let y = x + ε and let y = x − ε230

(the perturbed state), then fC(y) < fD(y) and fC(y) > fD(y) respectively for

sufficiently small ε > 0.

The Definition 1 presents that if a state x is an ESS, then both strategy C

player and strategy D player have no motivation to shift their strategies.

Take f(x) = fC(x)− fD(x), the Definition 1 can be simplified as follows:235

Definition 2. A state x is called an ESS in the hunting game if the following

condition for sufficiently small ε > 0 is met:

x =


x : 0 < x < 1, f(x) = 0, f ′(x) < 0

0 : f(0 + ε) < 0

1 : f(1− ε) > 0.

(35)
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The Definition 2 presents that a stable equilibrium point will alwyas act as

an ESS, while an unstable equilibrium point cannot act as an ESS.

5. Examples

The conclusions of stable/unstable equilibrium points, ESSs and the selec-

tion dynamics in the α and β hunting games are verified in this section through240

numerical simulations.

5.1. α hunting game

Let N = 100, f0 = N, b = 10, c = 20, thus N = 100 > c−b
b = 1. As we can

see from Fig. 11, x = x2 is an unstable equilibrium point. If x0 < x2, the α

hunting game evolves into the pure individual hunting strategy D (x = 0); If245

x0 > x2, the α hunting game evolves into the pure group hunting strategy C

(x = 1). The frequency-dependent strategy selection is consistent with Fig. 3

because of N > c−b
b .

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

x

iterations

Pure strategy C

Pure strategy D

x = x2

Figure 11: The evolutionary history of strategy frequency in the α hunting game with N >

c−b
b

.

Here we have

x2 =
−k2 +

√
k22 − 4k1k3
2k1

= 0.3463. (36)
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Let N = 100, f0 = N, b = 1, c = 200, thus N = 100 < c−b
b = 199. Fig. 12

shows that the α hunting game evolves into the pure individual hunting strategy250

D (x = 0) only. The frequency-dependent strategy selection is consistent with

Fig. 4 because of N < c−b
b .
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0.2

0.4

0.6

0.8

1

iterations

x

Pure strategy D

Figure 12: The evolutionary history of strategy frequency in the α hunting game with N <

c−b
b

.

Since b0 describes the payoff of an individual using the individual hunting

strategy D, a larger value of b0 can speed up the evolutionary strategy D selec-

tion, but slow down the evolutionary strategy C selection. However, it has no255

effect on the final stable states as we mentioned in Section 4.1. f0 is not a crit-

ical parameter to the evolutionary dynamics, especially when Eq. (14) is used

as the replicator equation. It just affects the convergence speed of ESS when

Eq. (15) is used as the replicator equation. This is not always negative to the

evolutionary game. For example, by introducing and adjusting the parameter260

f0, the diffusion speed of one strategy among the population can be controlled.

These conclusions about f0 are also shown to be valid for the β hunting game,

in the following section.

5.2. β hunting game

Let N = 100, f0 = N2, a = −1, b = 10, c = 20, b0 = 5, h1 = 0.2, h2 = 0.7.

The specific fitness difference function of the β hunting game is shown in Fig.
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13. In this case, we have

∆ = B2 − 4AC = −1.3× 1014 < 0. (37)

According to Eq. (31), the β hunting game has three different real solutions and

x1 < 0 < x2 < x3 < 1, as indicated in Fig. 13. This is one of eight selection

scenarios when ∆ < 0, as shown in Fig. 10(c). Consistent with the previous

analysis in Section 4.3, x2 is an unstable equilibrium point while x3 is a stable

equilibrium point. We have

x2 =
−k2 +

√
A(cos θ

3 −
√
3 sin θ

3 )

3k1
= 0.1942

x3 =
−k2 − 2

√
A cos θ

3

3k1
= 0.6895.

(38)

0 0.2 0.4 0.6 0.8 1

−2000

−1500

−1000

−500
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f
(x
)
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x3x2 xm

Figure 13: The fitness difference function in the β hunting game

Fig. 14 shows the evolutionary history of the strategy frequency in the β265

hunting game. The results show that if x0 < x2, the β hunting game evolves

into the pure individual hunting strategy D. If x2 < x0 < x3 or x0 > x3, the β

hunting game evolves into the mixed strategies, where the stable frequency of

the strategy C is x = x3. x = x2 is an unstable equilibrium point, which is to

appear only when x0 = x2.270
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Figure 14: The evolutionary history of strategy frequency in the β hunting game with ∆ < 0.

5.3. Conflict between frequency-dependent selection and population fitness

From the perspective of population interests, it is best to obtain the opti-

mum state when the system evolves into the evolutionarily stable state. The

evolutionary mechanism given by Eq. (14) and Eq. (15) can make the hunting

game evolve into evolutionarily stable states. However, the stable states are not275

always the optimum states for the whole group in terms of population fitness.

For example, in the α hunting game, the stable state x = 0 is not beneficial

to the whole group, while x = 1 is a stable state that can lead to the best

population fitness. In the β hunting game, both stable states x = 0 and x = x3

are not optimal to the whole group with regards to population fitness. A case280

of fitness evolution in the β hunting game is shown in Fig. 15. It indicates that

the best frequency distribution of strategies, in terms of population fitness, is

obtained before the system reaches the stable state.

The stable strategies emerging in the frequency-dependent strategy selec-

tion, using Eq. (14) and Eq. (15), are not always the optimal strategies for the285

whole group. This is mainly because the diffusion mechanism of one strategy is

implemented by considering the fitness difference between strategies. The pop-

ulation fitness may be indirectly considered from the individuals’ standpoint,

which is out of the scope of this paper.

24



0 100 200 300 400 500
1

1.005

1.01

1.015

1.02

1.025

1.03
x 10

4

iterations

fit
ne

ss

 

 

fC(x)

fD(x)

φ

Figure 15: A case of fitness evolution in the β hunting game with x0 = 0.2, N = 100, f0 =

N2, a = −1, b = 10, c = 20, b0 = 5, h1 = 0.2, h2 = 0.7.

6. Conclusion290

This paper proposed a new game termed the hunting game in the playing the

field model, where there are two subtypes of one species with two strategies: the

group hunting strategy and the individual hunting strategy. The evolutionary

dynamics of this hunting game are investigated by considering the Moran pro-

cess. Various selection scenarios are considered where each generates different295

stable and unstable equilibrium points.

The evolutionarily stable strategies (ESSs) for each hunting game are studied

by using the deterministic replicator equations and fitness difference functions.

The results from the hunting games reveal that choosing a strategy that has a

higher benefit, in the playing the field model at each iteration, will always lead300

to an evolutionarily stable state.

The evolutionarily stable state is found to be not always unique because

the system can have multiple equilibrium points. It is shown that a stable

equilibrium point will always act as an ESS, while an unstable equilibrium point

cannot act as an ESS because the system cannot resist invasion from a mutation.305

It is seen that if the slope of the fitness difference function at the equilibrium

point is negative, the equilibrium point will act as a a stable equilibrium point.
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The pure strategies (x = 0 or x = 1) are always equilibrium points where x = 0

is a stable equilibrium point if f(0 + ε) < 0 and x = 1 is a stable equilibrium

point if f(1− ε) > 0.310

The results also present that an individual cannot predict when its payoff has

reached an optimum. Moreover, the population fitness cannot always reach an

optimum level when applying the evolutionary process with the fitness difference

function, and the ESS is not favoured by group selection, which was also found

by [2, 32, 38].315

The hunting game in the playing the field model is generally existed. It is

practically significant to understand the frequency-dependent strategy selection

as well as the evolutionarily stable strategies in this multi-player game. With

stable/unstable equilibrium points and ESSs, one can predict the selection dy-

namics of an extended playing the field system as long as the better strategy is320

allowed to be diffused in the group.

Future work will investigate how to implicitly guide as few individuals as

possible, so that they choose a strategy that optimizes the population fitness as

the system evolves.
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