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Abstract

Outdoor air pollution remains a major environmental threat to the public, especially those
who reside in highly urbanised areas. Recent studies have revealed the effectiveness of early-
warning mechanisms that enable the public reduce their exposure to air pollutants. This
highlights the need for accurate air quality forecasts. However, the air quality of many areas
in developing and highly urbanised countries remains unmonitored. Hence, a novel spatiotem-
poral interpolation modelling approach based on deep learning and wavelet pre-processing
technique was proposed in this paper. In more detail, Long Short-term Memory (LSTM)
models and Discrete Wavelet Transformation (DWT) were utilised to model the spatial vari-
ability of hourly NO2 levels at six urban sites in Central London, the United Kingdom. The
models were trained using only the NO2 concentration data from the neighbouring sites.
Benchmark models such as plain LSTM and feed-forward neural network models were also
developed to evaluate the effectiveness of the proposed model. The proposed wavelet-based
models were found to provide superior forecasting results, explaining 77% to 93% of the
variability of the actual NO2 concentrations at most sites. The overall results reveal the very
promising potential of the proposed models for the spatial characterisation of air pollution.

Keywords: Air pollution forecasting, Artificial neural networks, Wavelet Decomposition,
Long short-term memory Units, Deep learning, Spatial interpolation

1. Introduction

Outdoor air pollution is considered as a major environmental concern attracting spe-
cial attention from both scientific and decision-making communities. Poor air quality has
been linked to several respiratory and cardiovascular illnesses and premature deaths (WHO,
2016), as well as major economic consequences due to health expenditures and productivity
losses (OECD, 2016). As such, the problem of poor air quality clearly needs to be addressed
to mitigate its adverse impacts.

One way to manage outdoor air pollution is through legislative standards imposed at
local and national levels. For instance, the Ambient Air Quality Directive (2008/50/EC)
which is established by the European Union (EU) sets up legal limits and target levels for
several outdoor air pollutants (European Environmental Agency, 2018). Furthermore, air
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quality forecasts can assist environmental and urban city planners in making well-informed
decisions in managing air pollution (Baklanov et al., 2007; Gers et al., 2001). Forecasting
tools are also used as early-warning mechanisms to aid the vulnerable members of the public
to reduce their exposure to pollutants especially during peak pollution episodes (McLaren
and Williams, 2015; Chen et al., 2018). As such, the development of air pollution forecasting
tools remains an active topic of research (Cabaneros et al., 2019; Conti et al., 2017).

Air pollution modelling approaches are usually classified as either deterministic or data-
driven. Deterministic approaches such as the Urban Airshed Model (UAM) (Chang and
Cardelino, 2000) and Weather Research and Forecasting Model with Chemistry (WRF/Chem)
(Chuang et al., 2011) apply physics-based principles to describe the formation, generation
and dispersion of air pollutants in the ambient environment (Jacobson, 1997). However, de-
terministic models rely on default parameters and demand large computational resources
limiting their use to many case studies (Dutot et al., 2007; National Research Council,
2007). Alternatively, data-driven approaches apply statistical techniques to estimate the
input-output dynamics between air pollution levels and known explanatory variables only
through past data. Popular methods employed in recent years include the Multiple Linear
Regression (MLR) (Ng and Awang, 2018), Artificial Neural Network (ANN) (Dotse et al.,
2018), Support Vector Machine (SVM) (Liu et al., 2017), and hybrid models (Franceschi
et al., 2018).

ANN models have recently become popular in air pollution modelling applications be-
cause of their ability to approximate non-linear relationships (Cabaneros et al., 2019; Gardner
and Dorling, 1998; Shahraiyni and Sodoudi, 2016). Since the interaction between meteoro-
logical parameters and most air pollutant species is complex and highly nonlinear (Colls,
2001), ANN models have been shown to outperform traditional linear statistical meth-
ods (Shahraiyni and Sodoudi, 2016; Alam and McNabola, 2015).

However, the use of ANN models in areas with a lack or absence of monitoring stations
may be challenging. In such cases, spatial interpolation and extrapolation techniques in
which available measurements from neighbouring stations can be employed to estimate the air
pollutant concentration levels in unmonitored stations. For instance, Alimissis et al. (2018)
spatially estimated several roadside pollution levels at several locations using feed-forward
ANN and MLR models. A similar methodology was employed by Tzanis et al. (2019) to
spatially estimate fine particle levels at several sites. However, the use of plain architectures
may limit the performance of ANN models given the extremely complex dynamics between
meteorological and air pollutant variables (Gardner and Dorling, 1998). Plain ANN models
also display difficulties when estimating air pollution levels with high variables at a local
scale (Siwek and Osowski, 2012).

To address the variability issue, the use of pre-processing techniques have been suggested
in the past (Cabaneros et al., 2019). For instance, works dealing with the integration of
wavelets and ANN models are well documented in the literature: wavelet-based ANN mod-
els (Feng et al., 2015; Bai et al., 2016), wavelet-based SVM models (Osowski and Garanty,
2007), an ensemble of plain and wavelet-based predictors (Siwek and Osowski, 2012). How-
ever, the said works did not extend the hybrid models for the spatial interpolation of air
pollution levels. Moreover, most works do not take into account the long-term temporal de-
pendencies of air pollution data. That is, the previous models do not capture the sequential
temporal features of the input data limiting their performance (Freeman et al., 2018).
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Deep learning models are recent additions to the family of ANN models which are capable
of revealing temporal pattern from past information. Approaches based on deep learning have
been shown to exhibit superior performance over standard ANN types (Cabaneros et al.,
2019; Freeman et al., 2018; Li et al., 2017). For example, Wu and Lin (2019) proposed
an approach comprising of a two-stage decomposition stage and the use of Long Short-term
Memory (LSTM) models to forecast several pollutant levels at several sites. Li and Zhu (2018)
developed a hybrid approach based on Extreme Learning Machine (ELM) and Imperialist
Competitive Algorithm (ICA) to forecast pollutant concentrations at several sites. However,
the said works do not extend their models in the forecasting of pollutant levels in unmonitored
locations.

Limited studies have applied deep learning approaches to the spatiotemporal forecasting
of air pollution levels. For instance, Zhao et al. (2019) employed a fully-connected LSTM
model estimated the spatiotemporal variability of PM2.5 levels a single site. Ma et al. (2019)
combined Inverse Distance Weighting (IDW) technique and bi-directional LSTM model for
the spatiotemporal forecasting of PM2.5 levels over several locations. Wang and Song (2018)
developed a deep spatiotemporal ensemble model based on LSTM at several locations. How-
ever, the said works do not incorporate any pre-processing techniques that can improve the
performance of their models.

To address the limitations of previous works, this paper presents a novel approach in
modelling the spatiotemporal variations of hourly NO2 levels in Central London 1 hour in
advance. The main contributions of this paper are two-fold. Firstly, this paper tests the
ability of wavelet-based LSTM models in forecasting air pollution levels. This is significant
as the use of wavelet decomposition with sophisticated forms of ANN models in the context
of spatial interpolation of air pollution concentration has been very limited (Cabaneros et al.,
2019). The results of this work also provide new insights regarding the modelling of NO2

levels in other locations sharing characteristics with the monitoring sites in Central London.
Secondly, the proposed modelling approach only utilises the NO2 levels from neighbouring
sites to estimate the NO2 levels OF a given target site. Most of the aforementioned works
utilise other explanatory variables that can mask the influence and effectiveness of their
proposed technique on the overall model results.

The remainder of the paper is organised as follows: Section 2 presents the collected data
and site locations. Section 3 describes the methods used and proposed modelling approach.
Section 4 provides the details of the settings of the experiments carried out in this paper.
Section 5 presents and discusses the results. Finally, Section 6 concludes the paper.

2. Data and Case Study Locations

2.1. Site Locations

The proposed models were built using hourly NO2 concentration data collected at sev-
eral locations in Central London. In more detail, the monitoring sites surrounding London
Marylebone Road were chosen as the said road has breached the legal limits of NO2 levels
multiple times in recent years (King’s College London, 2019). The number of sites considered
in this study was limited to five, representing those closest to London Marylebone Road site.
The following sites were selected: (1) London Marylebone Road (MAR), (2) North Kens-
ington (KEN), (3) Camden Kerbside (CAM), (4) London Bloomsbury (BLM), (5) London
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Westminster (WST), and (6) Tower Hamlets Roadside (HAM) (see Figure 1). The sites are
part of the Automatic Urban and Rural Network (AURN) that has been monitoring concen-
tration levels of ambient air pollutants such as ozone, oxides of nitrogen, carbon monoxide,
sulphur dioxide and fine particles since 1997 (DEFRA, 2004).
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Figure 1: Area of study and selected air quality monitoring sites.

The sites of urban type are chosen as they normally exhibit a wide range of air pollution
concentration values which is appropriate for testing the proposed ANN models (see Table 1).
Furthermore, sites with missing values of less than or equal to five percent of the total number
of data between 2013 and 2014 were selected.

Table 1: Air quality monitoring sites, coordinates, and site environment type.

Site name Site Latitude Longitude Altitude Distance Environment

Code (m) from type

road (m)

London Marylebone Road MAR 51.522530 -0.154611 35 1 Urban traffic

North Kensington KEN 51.521050 -0.213492 5 5 Urban background

Camden Kerbside CAM 51.544210 -0.175269 50 3 Urban traffic

London Bloomsbury BLM 51.522290 -0.125889 20 25 Urban background

London Westminster WST 51.494670 -0.131931 5 17 Urban background

Tower Hamlets Roadside HAM 51.522530 -0.042155 20 6 Urban traffic

Figure 2 shows the maps describing the selected sites and their vicinity. The key charac-
teristics of the said sites are described as follows:

1) MAR is a kerbside site located within one meter of the edge of a busy six-lane road,
A501. Its surrounding area forms a canyon;
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2) KEN is a background site situated at a mainly residential area and is 5 meters away
from a quiet residential road, St. Charles Square. CAM is a kerbside site situated at the
southern end of a broad street canyon where the road is often busy;

3) BLM is a background site situated within the north-east corner of a central Lon-
don garden with all four sides surrounded by a two-lane one-way road system. The site is
surrounded by small buildings;

4) WST is a background site situated in the car park of a building, Westminster Coroner’s
Court, 17 meters away from an intersection between two-lane roads, B323 Horseferry Road
and Regency Street. The site is surrounded by a mix of commercial and residential areas;
and

5) HAM is a kerbside site situated within an existing building, part of Queen Mary and
Westfield College, on a busy dual carriageway road, A11 Mile End Road. Its surrounding
area consists of commercial and residential buildings.

(a) MAR (b) KEN

(c) CAM (d) BLM

(e) WST (f) HAM

Figure 2: Maps describing the selected sites and their vicinity (via Google Maps).

2.2. Collected data

Hourly NO2 concentration levels from January 2013 to December 2014 are obtained via
an online resource run by AURN. All gathered data have been quality-assured or ratified, i.e.
have undergone additional reviews so that faulty values are excluded (DEFRA, 2004). A
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total of 105,120 data points were collected in total, e.g. 17,520 data points from each chosen
site. Chemiluminescent analysers were utilised in the continuous measurements of NO2 con-
centrations.

Table 2 presents the measure of central tendency and dispersion of the collected NO2 con-
centration data from all chosen sites. It is evident that MAR, CAM and HAM sites suffer
from high NO2 concentrations with recorded mean values of 89.18 µg/m3, 68.10 µg/m3 and
61.29 µg/m3 during the period 2013-2014. In fact, breaches of the legal limit were observed
127 and 56 times at MAR and CAM sites, respectively, while a breach was recorded only twice
at HAM site. On the other hand, the annual mean NO2 concentration levels at KEN, BLM
and WST sites were significantly lower, e.g. 35.63 µg/m3, 51.46 µg/m3, and 45.40 µg/m3, re-
spectively, compared to those from the roadside sites. Finally, the missing NO2 concentration
data in this study ranged from approximately 0.5% to 2.0%

Table 2: Descriptive statistics of the collected hourly NO2 concentration data.

Sites

MAR KEN CAM BLM WST HAM

Mean [µg/m3] 89.18 35.63 68.10 51.46 45.40 61.29

Median [µg/m3] 82.99 31.03 62.46 50.27 43.62 59.36

Maximum [µg/m3] 280.74 173.73 368.86 192.43 174.72 237.79

Minimum [µg/m3] 7.25 0 5.56 1.14 0.29 0.92

Standard deviation [µg/m3] 40.30 21.32 35.58 22.47 22.57 28.63

Missing data [%] 1.32 1.63 0.47 1.26 1.03 1.79

The observations above are consistent with the plots of the hourly variations and fre-
quency distribution of the collected NO2 concentration data shown in Figures 3 and 4, re-
spectively.
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Figure 3: Hourly variations of the collected NO2 concentrations at (a) MAR, (b) KEN, (c) CAM, (d) BLM,
(e) WST, and (f) HAM sites from January 2013 to December 2014, where the dashed lines denote the limit
value of 200 µg/m3 set by the EU Air Quality Standards (DEFRA, 2004).
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Figure 4: Frequency distributions of hourly NO2 concentrations at (a) MAR, (b) KEN, (c) CAM, (d) BLM,
(e) WST, and (f) HAM sites collected from January 2013 to December 2014 (DEFRA, 2004).

The plots of the mean hourly NO2 concentration data during the study period are de-
picted in Figure 5. Consistent to the values presented in Table 1, the NO2 concentration
levels at the kerbside sites, e.g. MAR, CAM and HAM sites, are significantly higher than
those from the background sites, e.g. KEN, BLM and WST. The NO2 levels at all stations
also demonstrate a consistent pattern, which is characterised by one peak in the morning,
between 07:00 to 10:00, and another in the late afternoon, between 16:00 to 18:00, at the
kerbside sites. The same trend can be observed between 19:00 to 21:00 at the background
sites. On the other hand, stable low levels are observed at 04:00 at all sites. The observed
trends demonstrate the strong influence of road transportation especially from diesel vehicles
on roadside NO2 levels (Colls, 2001; DEFRA, 2004; WHO, 2003).
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Figure 5: Mean hourly average values of the NO2 levels at the six selected sites measured from January 2013
to December 2014 (DEFRA, 2004).

To further examine the variability of the collected data, the ratio of the standard deviation
and mean value of collected time series, e.g. SD/Mean, and the signal-to-noise ratio (SNR),
defined in decibels as SNR = 20 log (Mean/SD), were also calculated. As presented in
Table 3, the SD/mean ratios of the data from KEN and CAM sites for both 2013 and 2014 are
relatively higher than those calculated from other sites. This observation is also consistent
with the computed SNR values from the data collected at KEN and CAM sites. These
results indicate the potential difficulty in forecasting NO2 levels using the said datasets as
data variability directly contributes to the difficulty of a prediction task (Siwek and Osowski,
2012).

Table 3: Variability analysis of the collected NO2 concentration data at the six selected sites.

2013 2014

Sites SD/Mean SNR (dB) SD/Mean SNR (dB)

MAR 0.47 6.47 0.42 7.50

KEN 0.60 4.49 0.58 4.62

CAM 0.54 5.41 0.50 6.00

BLM 0.47 6.52 0.39 8.07

WST 0.49 6.18 0.50 6.07

HAM 0.43 7.29 0.49 6.15

3. Methodology

3.1. Discrete Wavelet Transformation

Discrete wavelet transformation (DWT) is a popular signal processing technique that
decomposes a given time series into several subseries of various scales (Mallat, 1989; Niev-
ergelt, 2013). The initial step of DWT is to map the elements of a given time series S to
its wavelet coefficients, and from these coefficients, two components are formed, namely a
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smooth version called approximation and a component corresponding to the deviations called
details of the signal. The said process is described by the following expression:

S (t) =
n∑
k=1

cj,kψj,k (t) +
J∑
j=1

n∑
k=1

dj,kψj,k (t) , (1)

where ψj,k (t) and ϕj,k (t) represent the mother wavelet and binary scale functions, respec-
tively, cj,k and dj,k denote the approximation and detailed coefficients, respectively, at scale j
and location k, n is the size of the original time series, and J is the decomposition level.

For instance, a decomposition of S (t) into a low frequency part A1 (t) and a high fre-
quency partD1 (t) is given by S (t) = D1 (t)+A1 (t). As shown in Figure 6, the same process is
carried out on A1 (t) in order to obtain decomposition in finer scales: A1 (t) = D2 (t)+A2 (t).
Hence, Eq. (1) can be simplified into

S (t) =
J∑
i=1

Di (t) + AJ (t) , (2)

where Di (t) =
∑n

k=1 dj,kψj,k (t) and AJ (t) =
∑n

k=1 cj,k. In other words, DWT represents S
in terms of the sum of subseries consisting of high frequency detail signals D1, D2, . . . , DJ

and a low frequency approximation signal AJ (Mallat, 1989).

A1(t)

D1(t)

Level 1

A2(t)

D2(t)

Level 2

AJ(t)

DJ(t)

Level J

S(t)

Figure 6: Decomposition of time series S into approximation AJ and detailed components Di i ∈ [1, J ].

The performance of a wavelet transformation technique generally relies on the choice
of the wavelet function, ψ, and the number of decomposition levels, J . In this study, the
Daubechies wavelets (Daubechies, 1988) was chosen to approximate the raw time series sig-
nal for various reasons. Firstly, Daubechies wavelets are a family sophisticated wavelets
capable of approximating continuous signals more accurately with fewer fixed scaling func-
tions (Nievergelt, 2013). Secondly, Daubechies wavelets have been found to perform well in
the past (Siwek and Osowski, 2012; Osowski and Garanty, 2007; Dunea et al., 2015). The
names of the Daubechies family wavelets are usually written as DbNv, where Nv is the num-
ber of vanishing moments which determine the ability a wavelet to approximate any given
signal (Nievergelt, 2013).

A sample 5-level decomposition of the first one thousand hourly NO2 observations at
MAR site is shown in Figure 7. It can be observed that the higher is level of the wavelet, the
lower is the variation of the detailed and approximation coefficients. As such, the wavelet
decomposition technique can improve the performance of an ANN approximator in estimating
the collected NO2 concentration time series.
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Figure 7: Wavelet decomposition of a subset of the collected NO2 time series data, s(t); D1 to D4 represent
the detailed coefficients, and A4 the coarse approximation of s(t) on the fifth level.

3.2. Feed-forward ANNs

ANNs are computational structures inspired by the architecture and information-processing
characteristics of a biological neural network (McCulloch and Pitts, 1943). ANNs perform a
non-linear parametrised mapping F from an input x to an output y,

y = F (x,w) , (3)

where w denotes the weights and biases of the network. ANNs usually consist of single input
and output layers, and one or more hidden layers, each of which has a varying number of
interconnected neurons. A sample diagram of an ANN with N input neurons, and single
hidden and output layers with M and K neurons, respectively, is shown in Figure 8.
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Figure 8: A feed-forward ANN with N input, M hidden, and K output neurons.

One popular form of ANNs in the field of air pollution modelling fall under the feed-
forward type (Cabaneros et al., 2019; Gardner and Dorling, 1998; Shahraiyni and Sodoudi,
2016). In feed-forward ANNs, the information moves from the input to the succeeding
layers in a single direction. Each node in the hidden layer is initially fed with the model
predictors x1, . . . , xN . Each input is scaled and shifted by the weights and bias parameters,
respectively. The resulting value is then mapped by a non-linear function to the nodes of the
succeeding layers. The main processes of a feed-forward ANN are mathematically described
in Eq. (4), adapting the notation by Bishop (1995):

aj = f

(
N∑
i=1

xiw
(1)
ji + b

(1)
j

)
, (4)

where j ∈ [1,M ], and M is the number of hidden nodes, w
(1)
ji and b

(1)
j are the weights and

bias parameters, respectively, f(·) is a continuous real mapping, or the transfer function, and
the superscript (1) denotes that the corresponding parameters are those in the first layer of
the network. Following Eq. (4), the final result of the output layer of an ANN with only one
hidden layer can be computed as follows:

yk =
N∑
j=1

ajw
(2)
kj + b

(2)
k , (5)

where k ∈ [1, K], and K is the number of output nodes.
ANNs are trained in a supervised manner where a series of input and desired output values

are fed to the model. During the process, the weights and bias parameters are calibrated
based on the network error, e.g. the difference between the input and target values. With the
objective to minimise the overall network error, the training process is performed repeatedly
according to a gradient descent algorithm until a stopping criterion is met. A more detailed
discussion on ANNs and their training algorithms can be found in Bishop (1995) and Hagan
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et al. (1995).

3.3. Long short-term memory neural network

LSTM neural networks are sophisticated ANN models that utilise several hidden lay-
ers with nodes that are self-connected allowing a cyclic flow of information (Hochreiter and
Schmidhuber, 1997). An LSTM network contains one input layer, one output layer, and a se-
ries of memory blocks. Each memory block is composed of one or more self-recurrent memory
cells and three multiplicative units, i.e. input, output and forget gates, that provide continu-
ous analogs of read, write and reset operations for the blocks. The blocks enable the network
to preserve enough information to update their training parameters. The said components
enable LSTM networks to overcome the vanishing gradient problem in which a network stops
learning from previous temporal patterns of a given data due to multiple gradient updates.
As such, LSTM networks are suitable for time series forecasting applications (Freeman et al.,
2018; Hochreiter and Schmidhuber, 1997).

An LSTM memory block with a single cell is illustrated in Figure 9.

Figure 9: A diagram of a single LSTM memory block

The input gate allows incoming information to modify the state of the nodes. The output
gate permits or impedes the cell state from affecting other neurons. The forget gates were
designed to learn and reset memory cells once their status is out of date, thereby preventing
the cell status from growing without bounds and causing saturation of the transfer functions.
The forward training process of an LSTM unit can be formulated as described in Eq. (6)
to (10):

Ft = σ

(
w(F )

N∑
k=1

ht−1 · xk,t + b(F )

)
(6)

It = σ

(
w(I)

N∑
k=1

ht−1 · xk,t + b(I)

)
(7)

ct = Ft · ct−1 + It · σ

(
w(C)

N∑
k=1

ht−1 · xk,t + b(C)

)
(8)

Ot = σ

(
w(O)

N∑
k=1

ht−1 · xk,t + b(O)

)
(9)
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ht = Ot · σ (ct) (10)

where It, Ot, and Ft are the outputs of the input, output and forget gates at time t, respec-
tively, ct and ht represent the activation vector for each cell and memory block, respectively,
σ denotes the transfer function, and w and b are the weighting and bias constants.

3.4. Framework of the proposed modelling approach

The overall schematic of the proposed modelling approach is presented in Figure 10.
The proposed modelling approach consists of four main components, each of which is briefly
described as follows:

(1) The approach implements the leave-one-out cross-validation methodology in which a
particular site is chosen as the target site and only the data from the remaining neighbouring
sites are utilised to spatially estimate the concentration levels of the target site.

(2) The DWT technique applied to decompose the raw NO2 concentration time series
into several (J + 1) sub-series as described by Eq. (2). The main idea of the approach is
to develop several models to estimate the said sub-series with lower variability instead of
employing a single model to estimate the original time series exhibiting higher variability.

(3) LSTM models are developed to extract the long-term temporal characteristics from
each of the (J + 1) decomposed sub-series.

(4) Given a total number of k monitoring sites, the individual LSTM model estimates are
then reconstructed using the following expression to calculate the final forecasting results:

Ŷ (t) = F1(D1(t− h)) + F2(D2(t− h)) + . . .+ FJ(DJ(t− h)) + FJ+1(AJ(t− h)), (11)

where Ŷ (t) is the estimated pollutant concentration at time t, F is the estimator represented
by the LSTM model, Dj and AJ , for j = 1, 2, . . . , J , represent the detailed and approximation
coefficients of the pollutant concentration from the (k − 1) neighbouring sites, respectively,
and h is the forecasting horizon.
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Figure 10: The framework of the proposed spatio-temporal forecasting model.

4. Model Development

Building ANN models generally has seven main processes, namely: (1) selection of pre-
dictors, (2) pre-processing of data, (3) splitting of data, (4) selection of model architecture,
(5) optimisation of model structure, (6) calibration of model parameters, and (7) evaluation
of model results (Cabaneros et al., 2019). The implementation of the said processes in this
study is briefly described as follows.

4.1. Predictor selection

Hourly NO2 concentration data collected from the (k− 1) neighbouring sites are utilised
to estimate the NO2 concentration data of a given target site. Furthermore, the significant
neighbouring sites are determined by calculating the correlation between the data from the
target and neighbouring sites. Finally, the number of predictor lags for each reference site was
then determined after computing the effect of various lags on the autocorrelation function
values of the collected NO2 levels from each site.

4.2. Data pre-processing

The problem of missing data was addressed using the Data Augmentation (DA) algo-
rithm (Tanner and Wong, 1987). DA algorithm alternatively replaces the missing data with
randomly assumed values of the parameters. It then makes inferences about the unknown pa-
rameters from a Bayesian posterior distribution based on the observed and imputed data. A
more detailed discussion about the DA algorithm can be found in Tanner and Wong (1987).
It is also a common practice to normalise the collected raw data to be normalised before
utilising them for model development. As such, the data were max-min normalised to ensure
that all values fall between zero to one (Hagan et al., 1995).
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4.3. Data splitting

The available dataset from each site is then split into three subsets, namely, the training,
validation and testing subsets to avoid model overfitting. The hourly data measured from
1 January 2013 to 26 May 2014 (12,264 points) were utilised for the calibration of the net-
work weights and bias parameters, while those measured from 27 May 2014 to 31 December
2014 (5,256 points) were used for both network validation and testing purposes. It is worth
noting that the number of samples depends on the prediction horizon, h. That is, the farther
out the prediction, the fewer samples will become available due to the effects of time-shifting.
Hence, the total amount of remaining samples is equal to 17,520–h. In this study, the hourly
NO2 concentration was estimated 1 hour ahead.

4.4. Model architecture selection

As described in Section 3.4, a data-intensive hybrid model based on DWT and a deep
learning LSTM model was developed in this study. A popular feed-forward ANN model, the
Multilayer Perceptron (MLP), was also developed to serve as a benchmark of the proposed
hybrid model. Furthermore, the logistic sigmoid and linear functions were used as activation
functions in the hidden and output layers, respectively. The former was selected because it is
nonlinear and continuous, attributes that enable ANNs to be capable of approximating any
smooth and measurable function (Hornik et al., 1989). On the other hand, the latter was
selected because it yields continuous and unbounded values, attributes that are considered
as appropriate for approximation and regression tasks (Hagan et al., 1995).

4.5. Model structure optimisation

One hidden layer was employed in the proposed model as it is found to be sufficient
in approximating any smooth measurable mapping between the predictor and target vari-
ables (Hornik et al., 1989). Additionally, the optimal number of nodes in the hidden layer
was determined by a trial-and-error method. In detail, several models with various hidden
layer configurations were run 100 times. This is carried out to account for the sensitivity
of the training to the initial values of synaptic weights and biases. The configuration that
yielded the least average model error, e.g. in terms of the mean absolute error (MAE), was
considered optimal and selected for further model testing.

4.6. Model training

The model weights and bias parameters of the LSTM models are calibrated using the
Adam algorithm (Kingma and Ba, 2014). On the other hand, the Levenberg-Marquardt (LM)
algorithm (Levenberg, 1944; Marquardt, 1963) was utilised to train the MLP models. For a
more comprehensive discussion on said algorithms, the reader is advised to see Bishop (1995)
and Kingma and Ba (2014). In this paper, the training of the models with random initial
weights and bias factors was repeated (100 repetitions) to account for the sensitivity of the
algorithms to initial synaptic weights.
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Table 4: Model performance metrics.

Abbreviation Definition Equation

RMSE Root mean squared error RMSE =
√

1
N

∑N
i=1 (Pi −Oi)

2

MAE Mean absolute error MAE = 1
N

∑N
i=1 |Pi −Oi|

R2 Correlation of dependence R2 =
∑N

i=1(Pi−Ô)2∑N
i=1(Oi−Ô)2

FB Fractional bias FB = 2
(

Ō−P̄
Ō+P̄

)

4.7. Performance evaluation

This study utilises the statistical indices listed in Table 4 for evaluating the performance
of the models. Note that Pi and Oi are the predicted and observed values of NO2 concentra-
tion, respectively, and P̄ and Ō are the mean value of the predicted and observed values of
NO2 concentration, respectively.

The quality of the forecasting results is further assessed by the contingency table shown
in Table 5. The columns are the forecast values and the rows are the actual values. In
the matrix, TN is the number of non-episode days correctly identified, FP is the number
of non-episode days incorrectly identified as an episode, e.g. false alarm, FN is the number
of episode days incorrectly identified as non-episode days, and TP is the number of episode
days correctly identified. The NO2 level of 100 µg/m3 was selected as it is found that levels
beyond it are considered unhealthy for sensitive groups, including those with lung disease,
children and older adults (USEPA, 2016).

Table 5: Contingency table for a two-category forecast.

Forecast

< 100 µg/m3 ≥ 100 µ g/m3

Actual < 100 µg/m3 TN FP

≥ 100 µg/m3 FN TP

Based on Table 5, several metrics can be calculated: the probability of detection (POD)
and false alarm rate (FAR). POD represents the fraction of correctly forecast NO2 episode
days, ranging between 0 to 1 and with the best value of 1. FAR is the fraction of false alarms
over the total forecast positive events, ranging between 0 to 1 and with the best value of 0.
Ideally, the POD score should be reasonably high while the FAR score should be reasonably
low to maintain public confidence in the NO2 level early warnings.The said ratios are given
by Eqs. (12),and (13), respectively:

POD =
TP

FN + TP
, (12)

FAR =
FP

FP + TP
. (13)

All computations described in this study are written and implemented in MATLAB R2018a
software (The MathWorks, 2019).

17



5. Results and Discussion

5.1. Correlation and lag analysis

As shown in Figure 11, there is a high mutual correlation (> 60%) between the NO2 data
collected from all sites but MAR site. The data from BLM and WST sites exhibit the
highest mutual correlation index (85.2%). With the exception of MAR site, CAM and KEN
sites obtained the lowest mutual correlation index (58.4%) despite their close proximity,
e.g. approximately 2.55 km apart. It also appears that the data exhibiting the highest
variability levels, e.g. data taken from MAR site, is least correlated with data collected from
the remaining sites. Conversely, the dataset with the least variability level, e.g. data taken
from KEN site, is highly correlated with the rest of the collected data.
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Figure 11: The correlation scores between the collected NO2 concentration data from between a target site
and neighbouring sites.

Ideally, the dataset that is least correlated with the rest of the datasets should be dis-
carded. However, one of the objectives of the study is to test the spatial estimation ability
of the proposed model at locations with a limited or poor quality of data. As such, variants
of the wavelet-based and plain LSTM and MLP models are also built based on the predic-
tors. Given the results provided in Figure 11, the top two neighbouring sites with data that
are highly correlated to a given target site are chosen. Several benchmarks of the proposed
model such as the plain and wavelet-based feed-forward ANN-models were developed. In this
paper, a Multilayer Perceptron (MLP) model which is popular in the context of air pollution
forecasting was chosen to represent the feed-forward benchmark model (Cabaneros et al.,
2019; Gardner and Dorling, 1998; Shahraiyni and Sodoudi, 2016). Table 6 lists all models
that were developed in this paper (note that CA denotes correlation analysis).
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Table 6: Specification of the proposed and benchmark models.

Model code Model description

W-LSTM-CA Wavelet-based LSTM with predictors selected via CA

W-LSTM Wavelet-based LSTM with all predictors

LSTM-CA Plain LSTM with predictors selected via CA

LSTM Plain LSTM with all predictors

W-MLP-CA Wavelet-based MLP with predictors selected via CA

W-MLP Wavelet-based MLP with all predictors

MLP-CA Plain MLP with predictors selected via CA

MLP Plain MLP with all predictors

For the lag analysis of the model predictors, the number of lags for each predictor was
determined using the autocorrelation function. The computed optimum number of lagged in-
puts varies from 1 to 2. That is, for a specific target site j, the predictors utilised are xi (t− h),
xi (t− h− 1), and xi (t− h− 2), where i ∈ [1, 6] and i 6= j.

5.2. Daubechies wavelet selection

In the case of the wavelet-based models, several types and levels of the Daubechies
wavelet (Daubechies, 1988) were tested and selected based on the ratio std (Aj) /std (S). That
is, the standard deviation of Aj must be substantially smaller than that of the original time
series S. However, choosing a larger value of J increases the number of terms in Eq. (2), thus
accumulating more approximation errors when Eq. (11) is computed (Osowski and Garanty,
2007). As such, the levels of the tested Db wavelets were limited from 3 to 5. On the
other hand, the number of vanishing moments, Nv, was limited from 4 to 6. Considering
the above-mentioned conditions, various configurations of Daubechies wavelets were selected.
The results are shown in Figure 12. For models with target sites MAR through HAM, 5-
level Db5, Db4, Db4, Db6, Db6, and Db5 wavelets provided the least std (Aj) /std (S) ratios,
respectively. As such, the following wavelet configurations were used. This also means that
six ANN models should be trained: five for the detailed coefficients, Di, (j = 1, 2, . . . , 5) and
one for the residual signal, A5.
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Figure 12: Daubechies type and level optimisation results.

20



5.3. Model structure optimisation

Finally, the hidden layer configurations determined using the procedure described in
Section 4 are summarised in Table 7. The optimal number of hidden nodes for the proposed
LSTM models ranges from 100 to 150. More nodes tend to be needed to estimate the
pollutant values at the kerbside target sites, e.g. MAR, CAM and HAM sites. Furthermore,
a lesser number of hidden nodes is needed as the decomposition level using Daubechies
wavelets increases, indicating that the variability of a given time series directly influences
the complexity of the model needed to estimate the time series. On the other hand, the
computed number of hidden nodes for the benchmark MLP models varies from 20 to 35 for
the standalone MLP models and 20 to 50 for the wavelet-based MLP models. Similar to the
results for the LSTM models, more hidden nodes are required to estimate the data collected
from the kerbside urban sites. Lastly, the number of hidden nodes in most cases is less in
models that use less number of predictors.

Table 7: Optimal hidden layer configurations of the both plain and wavelet-based MLP models.

Target Predictors Plain W-MLP W-LSTM

Site MLP LSTM D1 D2 D3 D4 D5 A5 D1 D2 D3 D4 D5 A5

MAR All 35 150 20 30 20 25 20 30 125 115 115 110 115 110

CAM; HAM 30 125 20 25 25 20 25 25 115 120 115 115 105 105

KEN All 35 130 20 20 40 20 20 40 120 115 120 110 105 100

BLM; WST 30 115 25 20 25 25 30 30 115 115 110 115 110 100

CAM All 25 135 25 20 30 20 20 40 120 125 110 115 115 105

BLM; WST 25 120 20 25 25 20 25 30 115 120 115 110 110 105

BLM All 25 130 20 35 20 45 20 50 125 120 120 115 110 110

KEN; WST 25 125 20 25 25 30 30 25 120 115 115 110 115 105

WST All 30 130 25 20 25 20 25 40 125 125 115 120 115 115

KEN; BLM 25 125 30 20 20 25 20 25 125 120 120 110 110 100

HAM All 25 145 25 25 20 35 25 40 130 125 125 120 125 115

BLM; WST 25 135 20 20 25 30 20 35 125 125 120 115 120 120

5.4. Overall model results

The results of the models on the testing data to forecast the NO2 levels at MAR, KEN,
CAM, BLM, WST, and HAM sites are presented in Table 8.
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Table 8: The results of different models for 1h-ahead forecasting of hourly NO2 levels.

Target sites

Model Code Error Index MAR KEN CAM BLM WST HAM

W-LSTM-CA RMSE [µg/m3] 34.791 10.204 23.012 9.110 11.311 22.052

MAE [µg/m3] 25.021 7.241 18.001 6.177 8.006 16.122

R2 0.560 0.851 0.712 0.905 0.861 0.789

FB 0.060 0.043 -0.127 0.049 -0.023 0.050

W-LSTM RMSE [µg/m3] 33.665 8.414 22.022 7.656 10.373 21.723

MAE [µg/m3] 24.500 5.808 16.785 4.892 7.086 15.224

R2 0.580 0.924 0.770 0.931 0.896 0.812

FB 0.049 0.032 -0.113 0.036 -0.007 0.041

LSTM-CA RMSE [µg/m3] 34.911 10.831 23.621 10.135 12.051 22.178

MAE [µg/m3] 26.331 8.333 18.731 6.819 9.563 17.019

R2 0.556 0.851 0.711 0.899 0.859 0.781

FB 0.062 0.041 -0.134 0.054 -0.031 0.057

LSTM RMSE [µg/m3] 34.224 9.610 22.708 9.579 10.854 22.730

MAE [µg/m3] 24.996 7.510 17.301 7.233 7.805 16.670

R2 0.572 0.891 0.749 0.893 0.881 0.797

FB 0.051 0.045 -0.129 0.056 -0.013 0.064

W-MLP-CA RMSE [µg/m3] 34.899 11.019 23.981 9.953 12.377 23.423

MAE [µg/m3] 26.872 8.627 18.763 7.391 9.599 18.053

R2 0.557 0.847 0.708 0.884 0.843 0.778

FB 0.071 0.036 -0.129 0.053 -0.012 0.069

W-MLP RMSE [µg/m3] 33.224 9.320 22.421 9.232 11.117 23.199

MAE [µg/m3] 24.796 7.324 17.116 7.115 8.371 18.031

R2 0.572 0.890 0.756 0.906 0.874 0.790

FB 0.074 0.040 -0.117 0.050 -0.013 0.077

MLP-CA RMSE [µg/m3] 35.665 11.065 24.213 10.244 12.689 23.823

MAE [µg/m3] 27.029 8.680 19.110 7.673 10.003 18.432

R2 0.556 0.845 0.708 0.882 0.843 0.770

FB 0.071 0.039 -0.138 0.063 -0.033 0.061

MLP RMSE [µg/m3] 36.654 9.664 22.924 10.186 11.201 23.695

MAE [µg/m3] 26.224 7.520 17.828 7.883 8.430 18.962

R2 0.564 0.880 0.741 0.881 0.872 0.783

FB 0.056 0.057 -0.134 0.068 -0.010 0.068

It is seen that the integration of a wavelet decomposition technique and a deep learning
model provides results superior to those of the benchmark models. The best model results
are exhibited by the W-LSTM models for KEN and BLM sites. Both models yield the least
RMSE and MAE values and can account for 92% to 93% of the variability of the actual
NO2 levels of the said sites. The W-LSTM models for CAM, WST and HAM sites also
provide relatively satisfactory results, with R2 scores ranging from 77% to 90%. In contrast,
the MLP-CA model for MAR site provides the worst forecasting results, with R2 score of
only 58%. Furthermore, the deep learning models for all sites outperform the benchmark
MLP models. For instance, a significant increase in forecasting accuracy ranging from 0.3%
to 3.4% (R2) is achieved by both the plain and wavelet-based LSTM models when compared to
the MLP models. The W-LSTM models exhibited the greatest improvement in performance,
e.g. 0.8% to 3.5% (R2), when compared to the LSTM models. On the other hand, LSTM-CA
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models yielded the least accuracy improvement, e.g. 0% to 1.7% (R2), when compared to the
MLP-CA models.

5.5. Wavelet-based versus plain models

The results of the proposed and benchmark models for every target site are illustrated
in Figures 13 to 18, where the highlighted bars represent the best-performing model. The
overall performance of the wavelet-based models compares favourably with the plain models.
For instance, an increase of 0.8% to 3.8% in R2 score is achieved by applying DWT on
the LSTM models, and 0.2% to 2.5% on MLP models. It worth noting that the use of
wavelets on the LSTM models for MAR and WST sites only offered slight improvements
on forecasting accuracy. A similar observation can be made for the MLP models for MAR,
WST and HAM sites. Furthermore, less significant improvement is achieved by applying
DWT on models utilising the predictors selected through correlation analysis. For instance,
both LSTM and MLP models with two predictors only achieved a maximum improvement
of 0.6% to 0.8% in terms of R2 scores.

5.6. All predictors versus selection using correlation analysis

The reduction of some utilised predictors through correlation analysis tends to degrade
the overall performance of the models. For instance, the greatest decrease in accuracy,
e.g. 7.3% in R2, was observed by the W-LSTM model for KEN site when only two predictors
are utilised. A similar observation can be made for the remaining models where the decrease
in R2 scores ranges from 1.2% to 5.8%. The results above suggest that the information derived
from all selected reference sites is important in helping the ANN models approximate the
NO2 levels at a given target site. However, it is worth noting that the models with a reduced
number of predictors for KEN, BLM and WST sites still provided satisfactory results, with
results explaining 85% to 90% of the variance of the actual NO2 data. This indicates the
applicability of the proposed spatiotemporal model in cases where the number of neighbouring
sites is severely limited.

5.7. Site-dependency of model the results

It is also very apparent that the performance of the models is site-dependent, consistent
with the findings of several previous works (Alimissis et al., 2018; Tzanis et al., 2019). Several
factors such as the traffic characteristics, location, pollution sources, and geometry of the
buildings around the target site tend to explain the results above. The models for the
background sites, e.g. KEN, BLM and WST sites, significantly outperform the models for
the kerbside sites, e.g. MAR, CAM and HAM sites. For instance, both plain and wavelet-
based models for KEN, BLM and WST sites obtained the lesser error scores than those for
MAR, CAM and HAM sites. It is also worth the emphasis that the performance of the plain
LSTM and MLP models for KEN and BLM sites are almost similar. In summary, the ranking
of the sites in terms of the model performance (in decreasing order) is as follows: BLM, KEN,
WST, HAM, CAM and MAR (see Table 8). It can be said that the overall model results
are influenced by the level of variability of the data. That is, the models for the target sites
with dataset exhibiting high variability perform poorly. For instance, the ranking of the
sites in terms of standard deviation values (in increasing order) almost matches the ranking
above: KEN, BLM, WST, HAM, CAM and MAR (see Table 1). Furthermore, the mutual
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relationship between the data from the neighbouring and targets sites has a significant effect
on the model results. That is, the NO2 level data from KEN, BLM and WST sites are
highly correlated, e.g. correlation score from 0.58 to 0.85, with the data of the remaining
sites except MAR (see Figure 11).
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Figure 13: Forecasting results for MAR site.
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Figure 14: Forecasting results for KEN site.
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Figure 15: Forecasting results for CAM site.
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Figure 16: Forecasting results for BLM site.
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Figure 17: Forecasting results for WST site.
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Figure 18: Forecasting results for HAM site.

5.8. Error distribution and scatter plots of model results

The distribution of the forecasting errors of both LSTM-based and MLP based models
are shown in Figure 19 and 20, respectively. Consistent with the results in Table 8, the
error distribution of the forecasts of the best-performing model, e.g. the W-LSTM model for
BLM site, is centred at 0 µg/m3. On the other hand, the error histograms of the results of the
worst-performing model, e.g. the W-MLP and MLP models for MAR site, are negatively-
skewed. The same histograms also exhibit a wide range of error values, e.g. from around
-100 µg/m3 to around 50 µg/m3.
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Figure 19: Error histograms of the forecasting results of both proposed and benchmark LSTM models for
(a) MAR, (b) KEN, (c) CAM, (d) BLM, (e) WST, and (f) HAM sites.
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Figure 20: Error histograms of the forecasting results of both proposed and benchmark MLP models for
(a) MAR, (b) KEN, (c) CAM, (d) BLM, (e) WST, and (f) HAM sites.
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The scatter plots of the results produced by the W-LSTM and W-MLP models are
shown in Figures 22 and 21. As shown in Figures 21b, 21d, and 21e, the actual and predicted
NO2 data points from the W-LSTM models for KEN, BLM and WST sites are concentrated
near the ideal fit. In addition, the said models demonstrate their ability to capture the
higher values of concentrations more accurately. A similar observation can be made for the
results of the W-MLP models for KEN, BLM and WST sites (see Figures 22b, 22d, and
22e). In contrast, the poor performance of the models for MAR site is clearly depicted
in Figures 22a and 21a. The scatter plot between the actual data and the results of the
W-MLP model for MAR site also exhibits a very high tendency to over-and under-predict,
e.g. FB = 0.0516. This is also true for the W-MLP model for CAM site which yielded
the worst FB score, FB = 0.1173. In general, the plots demonstrate the suitability of the
proposed wavelet-based approach for forecasting NO2 levels at sites utilising only the data
from their neighbouring sites.
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Figure 21: Scatter plots of the actual NO2 data and the forecasting results of the wavelet-based MLP models
for (a) MAR, (b) KEN, (c) CAM, (d) BLM, (e) WST and (f) HAM sites.
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Figure 22: Scatter plots of the actual NO2 data and the forecasting results of the wavelet-based MLP models
for (a) MAR, (b) KEN, (c) CAM, (d) BLM, (e) WST and (f) HAM sites.

5.9. Probability of detection and false alarm rate results

The additional statistical performance metrics results are summarised in Table 9. The
W-LSTM and LSTM results for KEN, CAM and WST sites reveal the ability of the models
to correctly forecast NO2 episodes. In general, the wavelet-based LSTM models provided the
best results although the wavelet-based MLP models also obtained satisfactory predictions.
The results also reveal that the application of DWT improves the ability of the plain LSTM
and MLP models to correctly identify peak NO2 pollution values. Both W-LSTM and W-
MLP models for MAR site provided fairly reasonable results despite their generally poor
results shown in the previous sections. The frequency of peak hourly NO2 data from MAR site
may have helped the models learn to approximate and reproduce peak values. However,
the LSTM and W-LSTM models for both BLM and HAM sites performed poorly. The
said models correctly identified only 19% to 22% of the potential high levels of the actual
NO2 concentration data. On the other hand, all models that demonstrated good performance
in correctly detecting potential episodes seem to display higher tendencies to issue false
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alarms. The W-LSTM models for KEN, CAM and WST performed poorly, releasing false
alerts 44% to 71% of the time. In contrast, the models for HAM and MAR sites exhibited
the least tendencies, e.g. FAR of 0.03% and 19.10%, respectively, in issuing false alarms. In
general, the results shown in the table indicate that the wavelet-based deep learning approach
improves the overall ability of the models for all sites to correctly identify actual episodes
and avoid issuing false alerts.

Table 9: The results of different models for the 1h-ahead forecasting of hourly NO2 levels.

Target sites

Model Code Alarm Results MAR KEN CAM BLM WST HAM

W-LSTM No. of predicted episodes 810 9 461 18 20 162

No. of correctly predicted episodes 716 7 211 9 15 126

POD 0.612 0.909 0.718 0.188 0.882 0.216

No. of false alarms 147 4 233 6 10 4

FAR 0.191 0.444 0.524 0.333 0.714 0.027

LSTM No. of predicted episodes 740 11 463 15 20 135

No. of correctly predicted episodes 603 4 198 9 13 82

POD 0.532 0.801 0.623 0.196 0.565 0.148

No. of false alarms 159 8 296 7 11 5

FAR 0.197 0.464 0.614 0.383 0.015

W-MLP No. of predicted episodes 721 9 490 16 26 81

No. of correctly predicted episodes 563 5 186 9 14 73

POD 0.499 0.649 0.576 0.196 0.609 0.145

No. of false alarms 168 4 294 7 7 2

FAR 0.247 0.444 0.6204 0.438 0.350 0.030

MLP No. of predicted episodes 680 14 471 15 20 67

No. of correctly predicted episodes 512 5 177 7 13 63

POD 0.477 0.625 0.543 0.152 0.565 0.129

No. of false alarms 185 9 304 8 12 8

FAR 0.257 0.6429 0.6242 0.533 0.462 0.100

No. of observed episodes 1074 8 326 46 23 503

6. Conclusions

In this paper, a novel hybrid forecasting approach based on deep learning neural networks
and discrete wavelet transformation was applied in the 1-h ahead spatial forecasting of hourly
NO2 levels at six urban locations in Central London.

The novelty of this approach is that only the air pollution data from the neighbouring
sites were utilised to estimate the air pollution level at a given target site. This approach
offers a high theoretical significance of the techniques proposed as other explanatory variables
for training the models were not utilised. Another significance of the proposed modelling
approach is the decomposition of the original data into subseries based on wavelets at various
levels with lesser variability and the individual forecasting of the said subseries to increase the
accuracy of the final result. Finally, the proposed approach employs LSTM models to capture
the long-term temporal tendency and provide more accurate estimates of the decomposed
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subseries. Hybrid and plain models based on a feed-forward model were also built to test the
effectiveness of the proposed modelling approach.

The numerical results demonstrate the effectiveness of the wavelet-based LSTM mod-
els in improving the results of the wavelet-based MLP models, and the plain LSTM and
MLP models, despite the extra steps required to perform wavelet transformation. The pro-
posed models are able to account for 77% to 93% of the variance of the actual NO2 data at
almost all sites. The location of the target sites is identified to influence the performance of
the developed models. That is, the data collected at kerbside sites exhibit high variability
making them difficult to estimate. The level of mutual correlation between the collected data
of all the monitoring sites is also identified to affect model results. Finally, the utilisation
of fewer predictors from the neighbouring sites influences the performance of the models. A
further examination of the use of techniques that can identify the most representative sites
to provide sufficient information to the proposed models is therefore needed.

The proposed hybrid deep learning modelling approach has a great potential to be opera-
tionally employed in providing air pollution forecasts in areas that lack monitoring or a good
database. Although there is no clean-cut approach to building data-driven models such as
LSTM models, the techniques and principles applied in developing the models in this paper
can be applied to datasets collected from other locations.

Finally, the findings of the study highlight the ability of hybrid deep learning approaches
in delivering better performance. There is a need to focus on more sophisticated hybrid
modelling techniques, although a trade-off between model complexity and performance should
be carefully considered. In cases where the computational resources are restricted and the
amount of training data is limited, the development of an effective yet parsimonious model
is more ideal.
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