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Abstract. The climate trends observed worldwide over the past few decades appear to corrob-
orate the concerns of the scientific community about the many threats posed by global warm-
ing. Future changes of the current climate are expected to occur on different scales all around
the globe, hence modifying the environmental background on the basis of which technological
installations have been designed and operated. This can potentially threat the safety of the in-
stallations as well as their. The development of suitable tools aiming to predict the impact of
climate change on technological installations is then essential in the wider context of climate
change mitigation.
Hydropower installations play often a crucial role not only as a long-term renewable resource
of energy but also for flood control and water supply in the case of droughts. All these aspects
highlight the increasing importance of such installations as well as their growing vulnerability
to natural hazards. It is hence essential to enlarge the current understanding of the interaction
mechanisms between such installations and the changing surrounding environment in order to
take adequate measures for climate change adaptation and ensure the future safety and produc-
tivity of hydropower production.
The current study aims to provide a novel model for the evaluation of the impact of climate
change on the safety of hydropower stations. The approach adopted allows to include in the
model the uncertainty inevitably associated with the input variables and to propagate such un-
certainty within the analysis. The model proposed is finally applied to a realistic case-study in
order to highlight its potential and limitations.
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1 INTRODUCTION

Hydropower is currently the most common source of renewable energy, accounting for about
20% of global electricity production and for over 50% of the electricity generation of one third
of all countries worldwide [8]. The large success of water resources for the electricity produc-
tion, which has been often accompanied by the rapid growth of developing countries such as
Brazil and China (today among the six biggest producers worldwide), has several reasons. First
of all, it is a long-term renewable resource able to provide predictable and non-polluting en-
ergy. Secondly, hydropower systems such as dams and reservoirs can assist in flood control or,
by the same token, provide water supply in the case of droughts [7]. Moreover, the conversion
efficiency of hydroelectric generation can reach values over 90% (with peaks of 95% for large
installations), greatly larger than fossil-fuelled production whose efficiency is generally around
30-40%. Finally the low operating and maintenance cost of hydropower and the long projected
life span (up to 70 years) make this technology attractive and extremely cost-effective. On the
other hand, these same strengths (e.g. the use of natural resources, the flood prevention purpose,
the long operational life) make hydropower potentially sensitive to climate change, threatening
the efficiency and safety of installations [4]. Indeed, the threat of climate change of worsening
the occurrence of extreme weather events, both in terms of intensity and frequency, as well as
the rise of temperatures are expected to have a significant impact on the water resources world-
wide, affecting negatively the performance of hydroelectric systems as well as subjecting them
to new and unquantified risks. Despite the importance of hydropower production and the further
hazards introduced by climatic change, relatively few studies have addressed these issues and
no methodology for the analysis of such impact has ever reached a general consensus [16].
The main aim of the current work is to implement a probabilistic framework for the evaluation
of the impact of extreme weather events on hydroelectric systems, focusing on the scale of a
single station. The climate variables are included in the analysis in light of future projections,
allowing to carry the analysis with regards to future possible scenarios and trends. At this phase,
the study is limited to the analysis of the impact of future precipitation trends, while other vari-
ables, such as temperature rise or occurrence of droughts are currently behind the purpose of
the implementation.
In the following sections, the theoretical background of the methodology used is presented to-
gether with a brief overview of the computational tools adopted for the implementation. The
proposed model, and its application to a simple case-study, are then described in Section 3.

2 Methodology and computational tools

The methodology selected for the implementation of such a model consists of the general-
ization of the so called Enhanced Bayesian Networks approach [17]. This latter is based on
the integration of the well-known Bayesian Networks (BNs) with structural reliability meth-
ods (SRMs). Similarly, the methodology adopted integrates the use of Credal Networks (CNs),
which can be regarded as a generalization of BNs able to include imprecise probabilities in the
framework, with cutting-edge and robust SRMs. The choice of this particular methodology is
justified by its large potential in the representation of the interaction between weather events and
technological installations, as proved in former studies [19][20]. Indeed the approach allows to
embody the aleatory character of natural events as well as the epistemic uncertainty associated
(in particular in the case of climate projections), through the use of probabilistic models, in-
tervals or imprecise random variables. Also, the uncertainty affecting the output (as well as
discrete probabilities) is quantified and expressed in terms of probability bounds. These latter
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are a crucial information for decision-makers or more generally analysts using the model: not
only they express a measure of the meaningfulness of the results computed but also highlight
the degree of ignorance which characterizes the estimation. Conversely, to exclude uncertainties
from the analysis would lead to an unsound approach and unreliable results. Finally, a further
advantage of the methodology is the use of external and existent numerical and physical models
which can be easily integrated in the overall framework without affecting the congruence of the
model. In the following sections, the basics of such methodology are briefly introduced.

2.1 Credal and Bayesian Networks

Credal Networks are a generalization of the well known Bayesian Networks. These latter
present a graphical structure which consists of nodes and directed edges. Each node represents
a variable of the model while the directed edges connecting the nodes capture the relationship
(generally of a causal nature) existent between the variables. Commonly, the network structure
is referred to employing a family metaphor: a node X2 is said to be a child of a node X1 if the
edge connecting the two is originated in X2 and points toward X1; in this case, X2 is also said
to be a parent of X1. Nodes without parents are said to be roots of the network, while nodes
without children and not receiving any evidence are referred to as barren nodes.
These considerations regarding the structure of BNs are valid also for CNs, which present the
same graphical framework. Indeed, the difference between CNs and BNs does not concern the
graphical nature of the approach but its numerical aspect. The main aim of both BNs and CNs is
to factorize the joint probability of complex events exploiting the information available regard-
ing the single variables of the problem under study and their mutual relationships. Moreover,
the most attractive aspect of this methodology is the capability of updating the belief regarding
the event of interest when more information is available about other variables of the network.
Hence, once selected the event of interest, its probability can be computed taking into account
the knowledge available regarding the remaining variables of the model. Such knowledge is
referred to as evidence and the overall process is known as belief updating. This task can be ful-
filled through the use of inference algorithms, which can be of an analytical (i.e. exact inference
algorithms) or approximate (i.e. approximate inference algorithms) nature. For both BNs and
CNs, the input of such algorithms are, beyond the structure of the network, the conditional prob-
ability distributions (CPDs) that are associated with each node and quantify the strength of the
relationships existent between the node itself and its parents (not having any parent, root nodes
are associated with marginal probability distributions). In BNs such conditional probabilities
are either crisp values (in this case the CPDs are referred to as CPTs, i.e. conditional proba-
bility tables) or continuous probabilistic distributions. In CNs the requirements regarding the
nature of the input parameters are relaxed and embrace also imprecise probabilities and hence
probability values known only with a certain degree of uncertainty (i.e. interval probabilities).
This type of representation enhanced significantly the robustness and accuracy of the approach
since allows to capture the uncertainty in input and to propagate it within the model avoiding
the introduction of biases and assumptions not fully justified by the available data. Moreover,
computing the uncertainty of the output, CNs provide a numerical context for the answer of the
model which allows analysts to make decision acknowledging the significance and accuracy of
the information obtained. On the other hand, the adoption of input parameters such as contin-
uous distributions or imprecise probabilities increases the computational effort associated with
the inference computation and can limit the availability of suitable algorithms. In many cases,
in particular for CNs or more generally when continuous probabilistic distribution are involved,
it is necessary to adopt approximate inference algorithms in order to deal with the complexity
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of the model at the cost of a lower (or even unknown) degree of accuracy.

2.2 CNs reduction with SRMs

Several numerical strategies and algorithms have been suggested in the scientific literature
in order to overcome the limitations associated with the inference computation over CNs. The
approach adopted in the current study aims to preserve the flexibility and accuracy of such
methodology at the lowest computational cost. This is obtained integrating the CN framework
with numerical methods imported from the field of structural reliability and involved in the
reduction of the initial model. The main idea is to allow the initial network to embrace a
large variety of mathematical frameworks for the representation of the data in input, such as
crisp probability values, probability bounds, continuous probabilistic distributions, intervals
and imprecise probabilistic distributions (i.e. continuous distributions whose parameters are
known with some uncertainty and hence represented as intervals). Such initial model is then
subject to a reduction procedure that results in an equivalent network containing only discrete
nodes associated with either crisp or interval probability values and on which inference is finally
computed. Hence, the reduction procedure consists of eliminating all the non-discrete nodes
present in the initial model. The initial assumption at the basis of such procedure is that every
node child of at least one non-discrete node must be defined as a domain in the outcome space of
its continuous parents: when such condition is verified the elimination of the mentioned nodes
can be obtained by integration. In other words, the elimination of a non-discrete node implies
the reconstruction of its children’s CPDs in which the result of the integration is stored. This
ensure the preservation of the information associated with the initial network that is not lost but
simply reformulated and stored in the nodes of the final model.
The efficiency of the reduction procedure is obtained through the adoption of robust numerical
methods commonly used in the field of structural reliability.

2.3 Computational Tool

The algorithms related to the methodology outlined in the former section have been im-
plemented computationally in the general purpose software OpenCossan [15][6], obtaining a
complete tool for the reduction and analysis of CNs. The toolbox provides the graphical and
numerical implementation of the models as well as the reduction of EBNs to traditional BNs.
The software allows four main types of nodes: discrete, probabilistic, bounded and hybrid.
On the basis of the variables involved and the level of accuracy required, several options are
available for the structural reliability methods to be adopted. In more detail, traditional and
advanced Monte Carlo methods (such as Line Sampling, Subset Simulations) are suitable when
no interval or hybrid nodes are involved in the computation. Conversely, the most generalized
approach available consists of the adoption of Advanced Line Sampling which can compute all
the possible combination of variables kinds in input [2]. Different options are also available for
performing the inference computation on the reduced network. Such algorithms, both built-in
or from third parties [12], are characterized by different degrees of accuracy and different com-
putational costs. The toolbox integrates also methods for the sensitivity analysis of the models,
allowing to identify the best possible strategy to effectively tune single network parameters in
order to obtain the required level of imprecision in output.

683



Silvia Tolo, Edoardo Patelli, and Diyi Chen

TimeScenario EmissionScenario

ProjectedRainfall

PrecipitationTrend

WindTrend
ProjectedWindSpeed

WindFetch

ExternalPowerGrid

BackupDiesel

TurbineOperationalState

OnSitePower

PowerSupplies

ControlSystem1 ControlSystem2

ControlSystem3

Machinery1

Machinery2

Machinery3
LiftingMechanism1

LiftingMechanism2
LiftingMechanism3

Gate1 Gate2 Gate3

SpillwayState

SpillwayFlow

UnitTransformer

DamHeightDamSlope

EmbankmentRoughness

ReservoirSurface

InitialLevel

TurbineRelease

ReservoirInFlow

DamOvertopping

OtherFailure

LoadRejection

InitialLoadDegreeCoefficient WicketGateClosureTime

PipeLength

PipeDiameter

PipeThickness

ValveClosureTime

ValveVelocityCoefficient

YieldingStrength

PermanentLoad

PenstockStructuralDamage

MaintainanceOutage

Figure 1: Overview of the proposed model

3 Proposed Model

The model proposed refers to the vulnerability analysis of an impoundment facility and takes
into account the structural safety of the dam as well as of the systems dedicated to the power
generation. The network, shown in Fig.3, has been applied to a simple case-study, whose imple-
mentation and anaysis is described in the following section. The case-study refers to a facility
located in the north-western region of China and considers a single turbine unit. The data
adopted where partly collected from a real installation of compatible size and location (such
as for the reservoir, dam and penstock structural parameters as well as for the water levels,
in-flow, comsumption, rainfall records etc). In the case of missing information (e.g. the unit
transformer failure rate), realistic data have been adopted on the basis of the existing literature
and represented through suitable mathematical frameworks able to account for the uncertainty
of the information. The network provides the modelling of the reservoir in order to evaluate
the probaility of overtopping of the dam, as described in Section 3.2 under the different climate
scenarios described in Section 3.1. The overtopping of the dam is assumed to potentially re-
sult in the load rejection, which can also be caused by the failure of the external power grid,
on-site trasformer malfunction, human action or mechanical accidents in turbine units [21].
The section of the network modelling these failure mechanisms (Section 3.3) considers also the
eventual occurrence of water hammer in the penstock of the station due to load rejection.

3.1 Climate Scenarios

Two time scenarios, one related to the period 2021-2050 the other to 2071-2100, have been
analyzed. Similarly, different assumptions have been considered regarding future trends for the
emission of greenhouse gases: the first (SRES B1 according to the IPCC nomenclature [13])
considers the combination of a rapid economic growth with the introduction of clean and ef-
ficient technologies, able to ensure social and environmental stability; conversely, the second
scenario (SRES A2) assumes a less ecologically-friendly and more divided world, resulting in
a regionally oriented economic development and a significant increase of the greenhouse emis-
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sions. The combination of the possible states of the nodes TimeScenario and EmissionScenario
defines the overall scenario of reference, on the basis of which future trends for climate vari-
ables such as wind (WindTrend node) and precipitations (PrecipitationTrend node) are selected.
These predictions are then combined with baseline probabilistic distributions for the relative
variables obtaining the projected distribution of the wind (ProjectedWind) and rainfall (Project-
edRainfall) for all different scenarios. Due to the uncertainty unavoidably associated with future
projections, the nodes ProjectedRainfall and ProjectedWindSpeed are described by imprecise
random variables. Climate data projections for the north-western region of China have been
deduced from the available literature [5] as well as the baseline for the wind speed distribution
[1]. Conversely, the probability distribution of rainfall has been defined on the basis of the data
collected close to the station of reference.

3.2 Dam Structural Safety

The overtopping of the dam occurs when the maximum level of the water in the reservoir
overcomes the height of the dam. In order to compute the vulnerability of the dam to such
mechanim, a structural reliability problem was defined[14]. According to the model adopted
for such purpose, the overtopping mechanism can be triggered by the combination of several
factors, such as the reservoir level (which can be influenced by precipitations) and the correct
operation of the spillways. Moreover, the effect of waves originated in the reservoir by the
wind is considered, assuming the wind to be uniform and costant over the fetch. Due to the
lack of data the value of the fetch length has been assumed to be an interval (WindFetch node)
whose bounds have been calculated on the basis of a simplified shape of the reservoir. Sim-
ilarly, the dam slope has been assumed to be smooth (EmbankmentRoughness) and have an
inclination (DamSlope) in the interval [0.78, 1.05] rad. On the contrary, the amount of water
in-flow (ReservoirInFlow), the initial level of the reservoir (InitialLevel), the spillways flow
(SpillwayFlow) and the water flow to the turbine (TurbineRelease) are described by probabilis-
tic nodes designed on the basis of the real data available for the station of reference.
The dam modelled has three spillways: the correct operation of these (SpillwayState) depends
on the correct functioning of the gates associated to each spillways (Gate1, Gate2, Gate3).
Each of these is assumed operational only if the associated control system (ControlSystem1,
ControlSystem2,ControlSystem3) and lifting mechanism (LiftingMechanism1, LiftingMecha-
nism2,LiftingMechanism3) are available. The failure rate for the control systems has been de-
duced from previous literature as for the lifting mechanisms, whose unavailability is considered
in terms of failure of the related machinery [10]. Moreover, the operation of the control system
is bound to the availability of electrical power produced on-site (OnSitePower) or avaiable ei-
ther from the external grid (ExternalPowerGrid) or backup diesels (BackupDiesel). The failure
rates for the nodes ExternalPowerGrid and BackupDiesel have been deduced from the litera-
ture, adopting probability bounds in order to integrate multiple sources and possible set-up of
the systems [3][11]. Similarly, the production of OnSitePower is associated with the availabil-
ity of the on-site transformer and hence to the node UnitTransformer for which the probability
bounds have been also deduced from former studies [18]. Clearly, the production of power
on-site depends also on the availability of the turbine unit (TurbineOperationalState) but, as it
is possible to see in Fig. 3, the two events have not been considered directly dependent. In-
deed, the link between the nodes TurbineOperationalState and PowerSupplies would originate
a cycle within the graph, contraddicting the basic rules of BNs (and CNs) that rely on the use
of acyclic directed graph. Graph theory offers possible solutions for this kind of issues, such as
arc inversion, but in the current phase of the study these strategies have not been implemented.
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Figure 2: Overview of the reduced network

3.3 Penstock Structural Reliability and Turbine Operation

Rapid load rejection, can cause the occurrence of pressure waves within the pipelines of the
facility. This phenomenon, generally known as water hammer, threatens the structural safety of
the station penstock and can trigger more critical accident scenarios jeopardizing the safety of
the entire facility. In order to take into account the occurrence of the water hammer in the model,
a stochastic approach was adopted on the basis of former studies [21]. Structural damages are
assumed to occur when the combination loads acting on the penstock results higher than the
yielding strength of the pipe material. In the case-study analyzed, this latter has been assumed
to be 16 MN steel and to have a yielding coefficient normally distributed with mean equal to
390 MPa and standard deviation of 25.3 MPa. Moreover, the pipe is considered to be 216
m long and to have a diameter of 5 m. In order to take into account the effect of internal
erosion occurring in the penstock, the thickness of the pipe has been assume uncertain, with
values included between 12 mm and 16 mm. If the occurrence of water hammer results in
the structural damage of the pipe, the facility is assumed to shut-down and hence the turbine
would stop being operational (TurbineOperationalState). Apart from the occurrence of this
kind of accident scenario, the turbine is assumed to be out of service also in the case of simple
load rejection (LoadRejection) not resulting in the occurrence of water hammer or structural
damages and in the case of maintenance (MaintenanceOutage).

3.4 Results

Fig. 3.4 shows the reduced CN obtained from the initial model (Fig. 3). Inference has been
computed in the network, mainly aiming to quantify the probability of dam overtopping and of
outage of the turbine unit for the different cases considered. In all of the scenarios analyzed
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the probability of the occurrence of structural damages in the penstock remained largely ne-
glectable. Also the probability of overtopping of the dam remains quite low for both the time
scenarios considered, as shown in Table 1, while the probability of load rejection results quite
signficant. This value is coherent with the historical average frequency of load rejection cal-
culated on the basis of eight hydroelectric stations in China [21]. The overall results can be
interpreted as proof of the robustness of the facility to rapid transients: even if a sudden rejec-
tion of the load is required the structural safety of the penstock is guaranteed. Hence the design
of the pipe results robust and the occurrence of pressure waves within the penstocks does not
significantly threaten the overall safety of the facility. The probability of overtopping of the

Table 1: Inference computation results for the different time scenarios considered

Event 2021-2050 2071-2100
Dam Overtopping [1.84 · 10�6, 2.35 · 10�4] [< 10�22, 2.67 · 10�4]
Load Rejection [6.92 · 10�1, 6.98 · 10�1] [6.92 · 10�1, 6.98 · 10�1]
Turbine not Operational [6.98 · 10�1, 7.0 · 10�1] [6.98 · 10�1, 7.0 · 10�1]

dam, even if it remains low in all the scenarios considered, appears to be strongly affected by
uncertainty for the time period 2071-2100: this highlights the lower quality of the information
available for this time scenario. The probability of overtopping was also quantified for the spe-
cific emission scenarios considered, as shown in Table 2: it results higher for the high emission
scenario in the first part of the time domain, while the upper bound of the probability appears
lower for the SRES A2 scenario in the time period 2071� 2100. Nevertheless, due to the large
uncertainty affecting the output, the difference between the two trends appears not significant
enough to deduce a clear path for the risk of overtopping in the two emission scenarios: more
investigation, including further climate factors, is needed. In order to better comprehend the

Table 2: Inference computation results for the different time and emission scenarios considered

Medium Emission Scenario
Event 2021-2050 2071-2100
Dam Overtopping [1.29 · 10�5, 1.06 · 10�4] [< 10�22, 2.96 · 10�4]

High Emission Scenario
2021-2050 2071-2100

Dam Overtopping [2.72 · 10�5, 2.98 · 10�4] [< 10�22, 2.01 · 10�4]

behaviour of the system, the probability of overtopping has been computed also in the case of
several what-if scenarios, such as the occurrence of load rejection, the malfunctioning of the
spillways and the loss of electric power from the external grid. In all these cases, shown in
Table 3, the probability of overtopping grows sligthly with respect to the values shown in Table
1, demonstrating the robustness of the system with regards to these events.

Table 3: Probability of dam overtopping in the case of malfunction of specific subsystems

What if...? 2021-2050 2071-2100
Losd Rejection [3.24 · 10�5, 2.34 · 10�4] [< 10�22, 3.33 · 10�4]
All Spillways out of Order [6.00 · 10�5, 2.20 · 10�4] [< 10�22, 3.40 · 10�4]
Power Grid Out of Order [2.15 · 10�5, 1.64 · 10�4] [< 10�22, 2.67·�4]
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4 Conclusions

A model for the vulnerability analysis of hydropower impoundment facilities was proposed.
The suggested approach is based on the combination of Credal Networks with system reliability
methods and takes into account the risk of overtopping of the dam, the structural safety of the
penstock as well as the reliability of the power generation and connection systems. Further-
more, thanks to the flexibility of the methodology adopted, the model allows to estimate the
future risks related to the facility in view of climate change projections.
To test the validity of the model this has been applied to a simple case-study based on an existent
hydropower station located in the north-west region of China. The analysis was carried out for
the time periods 2021� 2050 and 2071� 2100 and for two different emission scenarios (SRES
B1 and A2). The results highlight the robustness of the facility to rapid transients (and hence
to the risk of water hammer occurring in the penstock) on the one hand but result affected by
strong uncertainty on the other. This can be attributed mainly to the high imprecision associated
with the climate change projections.
Future research will focus on overcoming the current limitations of the model and on its further
development in order to include other factors having the potential to affect the safety and pro-
ductivity of the stations (e.g. temperature rise, droughts etc.). Indeed, the inclusion of further
climate variables could result helpful in order to better track the evolution of the risk in time
and hence in defining suitable precautionary measures able to effectively tackle future risks
threatening both existing and new facilities.
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