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Abstract. Artificial Neural Networks (ANN) are used in place of expensive models to reduce
the computational burden required for reliability analysis. Often, ANNs with selected archi-
tecture are trained with the back-propagation algorithm from few data representatives of the
input/output relationship of the underlying model of interest. However, different performing
ANNs might be obtained from the same training data, leading to an uncertainty in selecting the
best performing ANN. On the other hand, using cross-validation to select the best performing
ANN based on the highest R* value can lead to a biassing in terms of the prediction made by the
selected ANN. This is due to the fact that the use of R* cannot determine if the prediction made
by ANN is biased. Additionally, R* does not indicate if a model is adequate, as it is possible to
have a low R? for a good model and a high R? for a bad model. Hence we propose an approach
to improve the prediction robustness of an ANN based on coupling Bayesian framework and
model averaging technique into a unified framework. The model uncertainties propagated to
the robust prediction is quantified in terms of confidence intervals. Two examples are used to
demonstrate the applicability of the approach
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1 INTRODUCTION

Nowadays, numerical models are increasingly used to analyze and predict the performance
of complex critical systems. Concurrently, engineering practitioners are concerned with un-
certainty, which is inherent to these systems. As a consequence, probabilistic analyses, such as
reliability analysis [1], robust design optimization [2], and sensitivity analysis [3], have received
much attention in the last decades. However, the computational cost required for performing
the aforementioned analyses depends on several factors such as: the numerical model repre-
senting the system, the type of analysis, and the treatment of uncertainties (i.e. aleatory and/or
epistemic uncertainty). In the context of reliability analysis, the propagation of parameter un-
certainties from model inputs to outputs is performed by means of Monte Carlo simulation
based approaches. These simulation approaches include: Monte Carlo (MC) [4], and advanced
MC such as: Importance Sampling [5], Directional Sampling [6], Line Sampling [7], Subset
Simulation [8] etc. Although, advanced MC methods are very efficient, the computational cost
required to perform reliability analysis is usually expensive. A popular strategy to reduce the
computational costs is to replace the real model with a surrogate model such as an artificial
neural network (ANN). ANNs can be constructed based on few data sets from the underlying
model of interest. On the other hand, the use of an ANN for this kind of analysis introduces
model selection uncertainty in addition to biassing and variance in the estimated quantity of
interest. As a matter of fact, an ANN with a specific architecture trained repeatedly with a fi-
nite data set Dy,qin(X,y) results to different performing ANNs whose cost functions are being
trapped at different local minima of the cost function solution space. This phenomenon occurs
as a result of the random initialization of the weights within each ANN. Consequently, it is of
common practice to select the best ANN from the uncertain set on the basis of performance on
an independent validation set, and to keep only the network with the lowest validation error and
discard the rest. However, there are two disadvantages to such approach. Firstly, all of the effort
required to train the remaining networks is wasted. Secondly, the generalization performance
of the networks on the validation set has a random component due to the noise on the data,
hence the network which had the lowest error on the validation set might perform poorly on a
new test set. These disadvantages can be overcome by combining the networks together to form
a committee that can significantly improve the robustness of the predicted quantity. Hence, in
this paper an approach is proposed to improve the robustness of a neural network when used
to predict the probability of failure pr. The outline of this paper is as follows: In Section 2, a
succinct theory of reliability analysis using simulation approach and neural network modelling
is discussed. This is followed by the proposed approach (Section 3). Next, to demonstrate the
applicability of the proposed approach, two numerical examples are tested in Section 4. Finally,
conclusions are provided in Section 5.

2 RELIABILITY ANALYSIS

The limit-state function can simply be defined as a deterministic mapping from the z-dimensional
input space to a one-dimensional output space:

G:xeDyCR*—-y=G(x)eR (1)

where x is the z-dimensional state variables and y the performance variable. G(x) indicates
if a realization x € Dy corresponds to the safe state (G(x) > 0) or failed state (G(x) < 0). In
the context of probability theory, the failure probability, pr, is defined as the probability that a
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realization x € Dy corresponds to a failed state in terms of the limit-state function G(x):
pr=P(G(x) <0) = A fx(x)dx (2)
f

where Dy = x € Dy : G(x) <0 is the failure region and fx(x) is the joint probability density
function of the state variables X. As Eq.(2) is analytically intractable due its multidimensional
nature, Monte Carlo simulation (MCS) (see [4]) allows on to numerically compute the estimate
of the failure probability pr, considering a large sample of size N :

1 N
br=v Y Tgx)<o(xi) 3)
i=1

where I;(x) <o is the indicator function for failure such that [ = 1 for G(x) < 0 and I = 0 other-
wise.

2.1 MODELLING ARTIFICIAL NEURAL NETWORK FOR RELIABILITY ANALY-
SIS

A setback on the use of MCS to compute the estimate of pr is the large number of model
evaluation required for computing a robust estimate. Hence, an ANN can be used in place of the
limit state function to reduce the computational cost. The construction an ANN requires a set of
real-valued input/output data pairs D;,qin(X,y) of size N4 generated according to a signal plus
noise model y = p1(x) + €, where y is the observed performance generated from the expensive
model, x is the independent state variables sampled from a joint probability density Q(x), € is
independent, identically distributed (iid) noise sampled from a density W(€) (not necessarily
Gaussian) having mean of 0 and variance 62, and (x) the unknown function that is needed
to be approximated by finding an approximation {1 (x) from Dy,4,(X,y). A priori assumptions
can be made about the functional form of p(x). However, since a parametric function class
is usually unknown, non-parametric regression approach must be resorted to. Using the non-
parametric approach, one constructs an estimate f1(x) of p(x) from a large class of functions
T known to have good approximation properties. The class of approximation functions usually
contains a set of estimators f(w,x) C Y for which the elements of each subclass f(w,X) are con-
tinuously parametrized by a set of p weights w%; ¢ = 1,2, ..., p. The gradient decent algorithm
[9] which is used to minimize the cost function J of the neural network defined as:

1 Ntrain

D M % @)

Ntrain i=1

by finding a set of weights w* such that for any given input, the cost function is sufficiently
small. However, a limitation of the gradient decent algorithm to train an ANN is the possibility
of the cost function to be trapped in a local minimum, thereby reducing the predictive capability
of the network.

3 THE PROPOSED APPROACH

The proposed approach aims towards improving the robustness of the prediction made by an
ANN when used to perform reliability analysis [10]. The underlying idea behind the proposed
approach is to construct a set of ANNs with the same architecture and based on the same training
data set Dy,4in(X,y). By doing so, a distribution of identical ANNs having their error functions
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trapped in different local minima is created. The major highlight of this approach is that the
solution space of the error function is exploited as many times as possible with the possibility
of locating a global minima on the error surface. Further, Bayes’ theorem is used to evaluate
the posterior probability of each of the trained ANN based on their likelihood to predict the
training data. This is followed by the use of a model averaging technique (adjustment factor
approach see [11]) to combine the total prediction made by all the ANNSs in the set to yield a
robust prediction that converges to the true value. Finally, the model uncertainty propagated to
the predicted quantity is quantified in terms of confidence intervals.

3.1 BAYESIAN MODEL SELECTION FOR ARTIFICIAL NEURAL NETWORK

Given a set of M identical (i.e. the same model structure) competing ANNs Ny, k=1,2,..M
trained with same data set Dy,4in(X,y), Bayes theorem can be used to express the posterior
probability of the k* ANN in the set which is defined by:

P<Dtrain (X7 y) |Nk)P(Nk)

P(Ni|Dyrain) =
o ]qVI:lP(Dtrain(X7Y)|Nq)P Ny)

(&)

where P(Dy,qin(X,y)|Ny) is the likelihood of training data Dy, (X,y) for the Ny ANN, and P(Ny,)
is the prior probability of Ng, which is the ANN probability evaluated before observing training
data Dy,4in(X,y). The prior ANN probability P(Ny) can be specified depending on the existing
prior knowledge about the credibility of ANN N, or it can be given as a uniform probability,
P(Ny) = 1/M, if no additional information is provided. The advantage of assigning uniform
prior probability to P(Ny) is that the difficulty of estimating the prior probability numerically is
avoided. The likelihood P(Dy4in(X,y)|Ni) may be thought of as the probability of observing the
training data D4, (X,y) under Ny ANN. It supplies a relative measure of how well the N, ANN
is supported by the training data Dy, (X,y). Since the denominator in Eq.(5) is common for all
the ANNS, the posterior ANN probability is proportional to prior probability and the likelihood.
The likelihood of each ANN is evaluated by measuring the degree of agreement between the
training data Dy, (y) and the response ¥ for each ANN. Hence, a probabilistic relationship be-
tween training data Dy,4in(X,y) and ANN predictions § involving uncertainty can be described.
Typically, the bias function and noise are included as parts of the probabilistic relationship to
match ANN predictions with training data. The bias function captures the discrepancies be-
tween the expensive model responses and predictions made by the ANN. The noise is usually
assumed to be independent and identically distributed normal random variable with a mean of
zero [12]. Various authors, see e.g. [13, 14, 15] have used the Bayesian statistical methodol-
ogy to quantify the uncertainty in the bias function modelled as a Gaussian process. In their
works, a mathematical formulation that combines bias function associated with the ANN and
noise from training data is utilized to describe the probabilistic relationship between the train-
ing data Dy, (X,y) and ANN predictions §. The mathematical formulation of this probabilistic
relationship is given by the following equation:

D:rain (Y) = },} —& (6)

where € is a random variable that covers both bias associated with the ANN prediction § and
the noise in the response training data D;,4,(y). € is assumed to be an independent identically
distributed random variable with a mean u of zero. The use of € with zero mean does not shift
ANN prediction y. This reflects the fact that y is the most probable prediction value for the
ANN. The bias function is not included as a separate term in the probabilistic relationship. This
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is due to the fact that introducing a separate bias function results in shifting the prediction j of
the ANN from the initially predicted value.

The likelihood P(Dyyqin(X,y)|Ni) of training data Dy, (X,y) for ANN Ny is evaluated by
observing where the training data points D4, (y) are located in the distribution of y esti-
mated by N;. The procedures to estimate the distribution P($|Ny) of Nj and the likelihood
P(Dyyain(X,y)|Ny) is given. First, the uncertainty in errors of predictions ¥ made by Ny is quan-
tified by introducing an assumption that the prediction errors are independent and identically
distributed normal random variable with a mean y of zero. The error of the prediction of the k"
network is represented by the following:

Ei = Dtrain(yi) _)’)\iv‘gki ~ N(O7 sz)vl = 1727 7N (7)

where Dyqin(v;) is the ith training response output data, y; the prediction of the training data
made by N, sz is the variance of prediction error &;, and N the number of samples in the
training data. The prediction error &; measured is considered to be a random sample from a
normal distribution with a mean pt of zero and variance sz. Using the principle of maximum
likelihood estimation (MLE) (see [16]), the variance sz for Nj can be estimated as:

N
Z & 8)

Secondly, the predictive distribution P(§|Ny) of response ¥ under model Ny is created by includ-
ing the prediction error obtained in the previous step into the prediction of § made by N;. This
predictive distribution is defined by the following equation:

P($|Nk) = Dirain(y) + ki )

Lastly, assuming that the residuals between the training data D4, (X,y) and ANN N; output ¥
are normally and independently distributed with a mean of zero and constant variance sz, the
likelihood function P(Dyqin(X,y)|Ny) is approximated by:

~ ‘]2

N
L Z Xp{—;~y s
\/27mo} 2N = 20;

3.2 ROBUST ARTIFICIAL NEURAL NETWORK PREDICTION

P(Dlrain (X> y) ’Nk) ~

} (10)

To obtain a robust prediction from an ANN, the estimates made by all the subsequent trained
ANNSs are combined using model averaging technique. Specifically, the adjustment factor ap-
proach (see [11]) which is a model averaging technique is combined with Bayes’ theorem. In
this way, the ANN having the highest posterior probability is used in conjunction with other
respective ANNS trained to correct the bias estimate predicted by the single ANN. The adjust-
ment factor Ay is evaluated by assuming the error between the prediction of all the subsequent
trained ANNs and the training data are normally distributed. The robust ANN prediction can
be obtained from the following equation:

Yrobust :)3*+Af (11)

where ¥* represents the point estimate of the best ANN in the set characterised by the highest
probability, and y,,p,s; represent the robust prediction which incorporates the model uncertainty.
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Since the adjustment factor Ay is assumed to be a normal distribution, the expected value and
variance of the adjustment factor A is given by the following relationships:

M
Z Nk‘Dtram yk_y ) (12)

P(Nk|Dtrain>()A’k_E(yrobust))z (13)

Mx

Var(Af) =
k

I
—

Similarly, the expected value and variance of the robust prediction y,q; can be estimated from
the following relationships:

E<yrobust) :j’\*‘i"E(Af) (14)

Var(ymbusl) = Var(Af) (15)

where E(Ay) and Var(Ay) represents the expected value and variance of the adjustment factor,
and E(Y,opust) and Var(y,opus ) represents the expected value and variance of the robust estimate.

3.3 CONFIDENCE INTERVAL FOR ROBUST ESTIMATE

To quantify the uncertainty in the robust prediction y,,,s; due to model uncertainty, confi-
dence intervals are established. In particular, the 5" and 95" percentiles of the robust prediction
are used quantify the model uncertainty. In theory, this interval is likely to contain the true esti-
mated value. As the model uncertainty is assumed to follow normal distribution, the confidence
intervals (see [17]) are calculated from the following equations:

C_I = E(ymhust) + Z* Var(ymbust) (16)

g = E(yrobust) - Z* Var(ymbust) (17)

where CI and CI represents the upper and lower confidence intervals of the robust estimate
and z* represents the upper critical value of the Gaussian distribution quantifying the model
uncertainty.

4 NUMERICAL EXAMPLE
4.1 THE HAT FUNCTION
The hat function is defined by the analytical expression [18]:

G(x) =20 — (x; —x2)> — 8(x1 +xp —4)> (18)

where x;,i = 1,2 is defined as Gaussian variables with mean u,, = 0.5 and standard deviation
oy, = 1.0. Failure is defined as G(x) < 0 hence pr = P(G(x)) < 0. The limit state surface plot
of the hat function is shown in Fig. 1.
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Figure 1: Limit State Surface of Hat Function

The aim of this example is to verify the proposed approach by replacing the limit state func-
tion with an ANN, then compute a robust estimate of pr, quantify the model uncertainty and,
finally, verify the number of identical ANNs that must be trained to attain an optimal robust
estimate of pr.

4.2 ANALYSIS1

Training samples D;,4in(X,y) of size Nyqin = 2000 have been generated via Latin hyper-
cube sampling (LHS) algorithm[19] from the hat function. Two sets Z; = N,k = 1,2,..M
and Z, = N;,i = 1,2,...M composed of M = 1000 identical ANNs have been trained based on
Dyrain(x,y). Specifically, in the first set (Z), all the training samples in Dy,4,(x,y) have been
used to train the ANNs to maximize their predictive performances. For the second set Z, 80%
of the training samples Dy, have been used to train the ANNs and the remaining 20% used
for validation. The network architecture chosen for the ANNs in both sets composed of three
hidden layers (2,7,1). Next, the posterior probability of the ANNs in set Z; has been estimated
using Bayes’ formula by assigning uniform prior probability P(N;) = 1/M to each ANN. On
the other hand, the coefficient of determination R? for the ANNS in set Z» have been estimated
based on the 20% validation samples. Table.l shows a comparison of 10 selected ANNs from
Z, and Z, based on their posterior probabilities and their error values R?. It should be noted
that i ANN in both set (Z; and Z,) have been trained inside the same iteration loop, hence the
initialization of the weight values within each loop it is assumed to be similar. Therefore, their
resultant performances are expected to be similar. As shown in Table.1, although the ANNs
N;,i=1,2,..M in sets Z; and Z; are identical as they have been trained in the same iteration
loop, the performance measures in terms of the posterior probability and R? shows no agree-
ment. For example, the 6/ and 10" ANNs have the highest posterior probability, however their
corresponding R? values don’t show a similar trend. Hence, we can support our claim that the
use of R? value to select the best model is a biased method. Further, to implement the proposed
approach, the ANNSs in Z; have been chosen as they have better performance (i.e. due more
samples used to train them). To accurately compute a robust estimate of g, 10* Monte Carlo
simulation runs have been used for each ANN, and the proposed approach presented have been
used to average out the prediction made by each ANN model into a robust value that is con-
verges to the true value. Finally, the model uncertainty propagated to robust prediction of pr
has been quantified in terms of confidence intervals estimated.
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ANN  P(Dyuin]Ny)  R?
1 0.103 0.9989
2 0.087 0.9998
3 0.101 0.9993
4 0.117 0.9999
5 0.070 0.9998
6 0.122 0.9998
7 0.093 0.9996
8 0.099 0.9999
9 0.086 0.9999
10 0.122 0.9995

Table 1: Artificial Neural Networks Posterior Probability Calculated Compared to Correspond-
ing R? value.

4.3 ANALYSIS2

To check the number of ANNs that must be trained in order to obtain a robust value (i.e. close
to reference value), the real model has been used to estimate the reference value of pr adopting
the same failure criteria (i.e G(x) < 0) and N = 10* samples. On the other hand, 3 separate tests
adopting our approach utilizing M = 100, 1000, 10000 identical ANNs respectively have been
carried out. As shown in Fig. 2 the robust estimate of pr obtained from the proposed approach
converges to the true value (i.e. blue dashed horizontal line) when M = 1000 identical ANNs are
used. This means that M = 1000 ANN:S is sufficient enough to explore the entire solution space
of the error function, thus locating a global minima. The importance of this approach is that
it can lead to significant improvements in the predictions pr, while involving little additional
computational effort.
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Figure 2: Confidence Intervals and Probability Density Functions Representing Model Uncer-

tainty for M = 100, 1000, 10000 Identical Trained Artificial Neural Networks

44 CANTILEVER BEAM

A cantilever beam of length L and rectangular cross section of width b and height 4 is loaded
at the end by a concentrated point load P. The displacement w at the tip of the beam should be
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determined for the case where the point load P, the Young’s modulus E, the density p of the
material and the height 4 are uncertain.

[

L ~

Figure 3: Cantilever Beam

Uncertainties of the width b and of the length L are assumed to be negligible. The displace-
ment w at the tip of the beam where load P is applied can be expressed mathematically as:

bhL* PL?
=P8 el (19)
8ET 3EI
where g denotes gravitational constant, and / is given as:
b3
I=—— 20
2 (20)
The limit state function for the cantilever beam is defined as:
Gcamilever(x> = B - W(X) (21)

where B = 0.01 is the maximum allowable displacement of the beam. In this example, the
parameter uncertainties are modelled as random variables characterised by probability density
function given in Table. 2.

Parameter  Distribution u o SI—unit
P Log —Normal 5 0.4 KN
h Normal 0.24 0.01 m
P Log—Normal 600 140 Kg/m?
E Log—Normal 10 1.6 GN/m?

Table 2: Model Input Parameters

The aim of this example is to study how small number of training samples (i.e. Nyqin= 50,
100, 150, 200) affects the robust estimate and the corresponding confidence intervals.

4.5 ANALYSIS3

In this section, 2 sets (i.e., similar to Section 4.2) of identical ANNSs (i.e. M = 1000) with hid-
den layer configuration of (4,7,1) have been constructed based on Dy4in(X,¥), Nirain= 50, 100,
150, 200 obtained via LHS algorithm [19]. The approach used in Section 4.2 has been adopted
here to estimate the posterior probability and R? value of the ANNs. Further, to accurately com-
pute an estimate of g, 10* Monte Carlo simulation runs have been used for each ANN in the
first set, and the proposed approach presented have been used to combine the prediction made
by each ANN in the first set into a robust pr estimate. Finally, the model uncertainty has been
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quantified in terms of confidence intervals of the robust estimate. The results of these analyses
are shown in Fig. 4.
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Figure 4: Robust Confidence Intervals Obtained from Different Number of Training Samples
(Nirain= 50, 100, 150, 200)

Notice that the “true” (i.e., reference) value of the failure probability (i.e., pr = 0.0738,
shown in blue dashed lines in Fig. 4) has been obtained with a large number samples (i.e.,
N = 10%) of simulations of the original model to provide a robust term for comparison. Also,
from the results in Fig. 4, as the number of training samples N, increases, the width of the
confidence intervals decreases and the expected value of the robust estimate approaches the
reference value (i.e., pr = 0.0738). On the other hand, in the cases of small training data sets
(e.g., Nirain = 50, 100) the failure probabilities are significantly overestimated by the proposed
approach (e.g., the expected values of the robust estimate are far off from the reference value)
and the associated model uncertainties are quite large. However, in all the cases for small
training data sets, the confidence intervals derived is robust enough to capture the true estimate.
Hence, in a situation where training data set is small, this approach can be used as a guide
to derive a robust confidence interval that is adequate to capture the true value that is being
estimated.

S CONCLUSIONS

Reliability analysis of complex models using the simulation approach is computationally
expensive due to the large number of model evaluations required to compute their robust mea-
sures. In this paper, an ANN is being used as substitutes for an expensive model to alleviate
the computational restrictions. The use of ANN for this kind of analysis introduces additional
biasing and variance (i.e uncertainties) to the predicted quantity. It has been shown that the use
of cross-validation technique to select the best ANN out of a set of ANN with identical archi-
tecture introduces biassing and reduces the robustness of the predicted quantity. Therefore, a
novel approach has been presented to enhance the accuracy of the prediction (i.e. robustness)
made by an ANN and quantify the model uncertainties in terms of confidence intervals. The
proposed approach combines Bayesian model selection and model averaging technique into a
unified framework. The applicability of the proposed approach has been demonstrated on two
examples. Although the computational effort required for implementing the proposed approach
is expensive, parallelization strategies can be adopted to reduce this effort.
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