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Abstract. We will look at reaction–diffusion type equations of the follow-
ing type,

∂β
t V (t, x) = −(−Δ)α/2V (t, x) + I1−β

t [V (t, x)1+η].

We first study the equation on the whole space by making sense of it via an
integral equation. Roughly speaking, we will show that when 0 < η � ηc,
there is no global solution other than the trivial one while for η > ηc,
non-trivial global solutions do exist. The critical parameter ηc is shown
to be 1

η∗ where

η∗ := sup
a>0

{
sup

t∈(0, ∞),x∈Rd

ta

∫
Rd

G(t, x − y)V0(y) dy < ∞
}

and G(t, x) is the heat kernel of the corresponding unforced operator.
V0 is a non-negative initial function. We also study the equation on a
bounded domain with Dirichlet boundary condition and show that the
presence of the fractional time derivative induces a significant change in
the behavior of the solution.
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1. Introduction and main results

A very influential paper by Fujita [12] studies the following equation

∂tu(t, x) = Δu(t, x) + u(t, x)1+η x ∈ R
d

u(0, x) = u0(x). (1.1)

Let ηc = 2
d . It was shown in [12] that when 0 < η < ηc, there is no

nontrivial global solution no matter how small the initial condition u0 is, pro-
vided it is nonnegative. When η > ηc, then one can construct nontrivial global
solution when u0 is small enough. The critical case η = ηc was shown to fall
into the first category; see [13,18]. These results have inspired a lot of general-
izations. See the survey papers [8,20] and the book [23]. Equation (1.1) could
be interpreted via the integral equation

u(t, x) =
∫
Rd

p(t, x − y)u0(y) dy +
∫ t

0

∫
Rd

p(t − s, x − y)u(s, y)1+η dy ds,

(1.2)

where p(t, x) is the Gaussian heat kernel. This is the approach we adopt here.
Roughly speaking, our aim here is to look at similar questions but for a

class of equations which involve the fractional Laplacian as well as a fractional
time derivative. Equations of these types have been receiving a lot of attention
lately; see the recent works of Allen et al. [3,4] and of Allen [1,2] among
others on the purely analytic side and the very recent work of Capitanelli
and D’Ovidio [5] and references therein for the more probabilistic aspects.
See [7,22] for the space–time fractional equations in bounded domains with
Dirichlet boundary conditions. Consider the following generalization of (1.2),

V (t, x) =
∫
Rd

G(t, x − y)V0(y) dy +
∫
Rd

∫ t

0

G(t − s, x − y)V (s, y)1+ηdsdy.

(1.3)

The first term in the above display now solves the space–time fractional heat
equation

∂β
t V (t, x) = −(−Δ)α/2V (t, x), x ∈ R

d,

V (0, x) = V0(x), (1.4)

where α ∈ (0, 2) and β ∈ (0, 1). The fractional time derivative is the Caputo
derivative defined by

∂β
t V (t, x) =

1
Γ(1 − β)

∫ t

0

∂V (r, x)
∂r

dr

(t − r)β
.

The solution to (1.3) is referred to as the integral solution to the following
equation

∂β
t V (t, x) = −(−Δ)α/2V (t, x) + I1−β

t [V (t, x)1+η],

V (0, x) = V0(x).
(1.5)
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More precisely, the integral solution to (1.5) is given by a measurable and
finite almost everywhere function V which satisfies (1.3) almost everywhere
(t, x) ∈ R

+ × R
d. See page 78 of [23] for more information. The operator

−(−Δ)α/2 denotes the fractional Laplacian which is the generator of an α-
stable process. V0 will always be assumed to be a non-negative function. We
will impose further assumptions on V0 later. The operator I1−β

t is defined by

I1−β
t f(t) :=

1
Γ(1 − β)

∫ t

0

(t − τ)−βf(τ)dτ.

Its presence is important in making the connection between (1.3) and (1.5). See
[26] for the fractional Duhamel’s principle. We note that the time-fractional
equation (1.5) is a particular type of reaction–diffusion equation and is there-
fore useful from the point of view of applications. The presence of the term
I1−β
t in front of the non-linear term means that in the absence of diffusion,

the reaction behaves according to the classical dynamics V̇ = V 1+η while the
fractional time derivative is used to model subdiffusive behavior rather than
diffusion behavior which would have been the case if there were no fractional
time derivative. For more information regarding fractional dynamics, see [22].

Our main findings can be summarized as follows:
• We show that ηc = α

βd . This is a direct generalization of the dichotomy
first discovered in [12,13,18]. When β = 1 and α = 2, (1.3) becomes
(1.2). Our new found exponent is therefore consistent with that obtained
in [12].

• We also study (1.3) on a bounded domain with Dirichlet boundary condi-
tions. For the usual heat equation, that is with the usual time derivative
and Laplacian, there is no such dichotomy. This means that one can al-
ways produce global solutions no matter what η is ; See [23]. In our case,
we show that this is not true; for small η, there is no global solution other
than the trivial one.
We focus only on integral solution to (1.5). The book [23] contains a list

of other concepts of solution. There are also various meanings of non-existence
or blow-up of solution, we will be focusing mainly on point-wise non-existence.
See [20] or [23], where this is explained in great details. Our method will rely
on some new estimates on the heat kernel associated with (1.4) some of which
were proved in [11] and later extended in [6]. We will make use of subordination
to get new information about the heat kernel. See (2.8) of this current paper. A
difficulty in establishing non-existence on the whole line is that the heat kernel
does not satisfy the semigroup property. We had to establish a new strategy
to achieve our first result. Since we had to bypass the semigroup property our
method might even be new for the classical heat equation; that is ; when α = 2
and β = 1. Our first theorem reads as follows.

Theorem 1.1. Suppose that 0 < η � α/βd and ‖V0‖L1(Rd) < ∞. If we further
assume that V0 is strictly positive on a set of positive measure, then for any
fixed x ∈ R

d, there exists a t0 > 0 such that the solution to (1.5) blows up
at t0.
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The above theorem generalizes Theorem 18.3 of [23] but the method is
different. The presence of the time fractional derivative makes it that when
α � d, the heat kernel has a singularity at x = 0 for all t > 0. This partly
motivated the proof of the next theorem.

Theorem 1.2. Suppose that η > α/βd and let qc = βdη/α. Then, for V0 �≡ 0
such that ‖V0‖Lqc (Rd) is small, the solutions to (1.5) exist globally in the sense
that ‖V (t, ·)‖L∞(Rd) < ∞ for all t > 0.

In fact, we will also show that for some p > 1, ‖V (t, ·)‖Lp(Rd) decays
polynomially. This is also an extension over previously known results. We
will also show that the solution is jointly continuous whenever it exists. Even
though regularity properties of the solution is not a priority here, our results
in this direction seem to be new. When d < α, we have better estimates on
the heat kernel so that we can establish the following stronger result. Since
α ∈ (0, 2), this condition reduces the dimension to d = 1. The theorem below
significantly extends Theorem 20.1 of [23].

Theorem 1.3. Let d < α and η > α/βd. There is some δ > 0 such that if V0

satisfies

0 � V0(x) � δG(γ, x) for all x ∈ R
d,

where γ is a positive constant, then

V (t, x) � G(t + γ, x).

Moreover, the solution is jointly continuous on (0, ∞) × R
d.

We have therefore shown that ηc = α
βd . This is consistent with the fol-

lowing characterization which says that this exponent is the reciprocal of the
following quantity,

η∗ := sup
a>0

{
sup

t∈(0, ∞),x∈Rd

ta
∫
Rd

G(t, x − y)V0(y) dy < ∞
}

.

Indeed one can show that the supremum of
∫
Rd G(t, x − y)V0(y) dy behaves

like t−βd/α. This characterization also gives ηc = 0 when (1.1) is solved on
a bounded domain with Dirichlet boundary condition. See page 108 of [23]
where this is described in more details. Our results should be compared with
those in [17] where a different class of fractional equations were studied; Fujita
exponents were obtained for those equations. However, the presence of the
operator I1−β in (1.5) makes it that their results do not cover ours.

Our next result shows that this is not true when one looks at the corre-
sponding equation with a time-fractional derivative. Fix R > 0 and consider
the following

∂β
t V (t, x) = −(−Δ)α/2V (t, x)+I1−β

t [V (t, x)1+η], t > 0 and x∈B(0, R),

V (t, x) = 0, x ∈ B(0, R)c,

V (0, x) = V0(x), x ∈ B(0, R).

(1.6)
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Here −(−Δ)α/2 denotes the generator of α-stable process killed upon exiting
the ball B(0, R). This is the infinitesimal generator of the semigroup corre-
sponding to symmetric stable process killed at the exterior of B(0, R). We can
also obtain the same process by subordinating the Brownian motion and then
killing it at the exterior. Fractional powers of the Dirichlet Laplacian corre-
sponds to a different process which is obtained by killing the Brownian motion
upon reaching the boundary of the ball B(0, R) and then subordinating it.

We will again look at the integral formulation of the equation,

V (t, x) =
∫

B(0, R)

GD(t, x − y)V0(y) dy

+
∫

B(0, R)

∫ t

0

GD(t − s, x − y)V (s, y)1+ηdsdy, (1.7)

where now GD(t, x, y) is the Dirichlet heat kernel of the associated opera-
tor. Denote φ1 to be the first eigenfunction of the above Dirichlet fractional
Laplacian and set

KV0,φ1 :=
∫

B(0, R)

V0(x)φ1(x) dx.

We are now ready to state the final theorem of this paper. This is a consequence
of the spectral decomposition of the heat kernel in terms of Mittag-Leffler
functions and the proof uses the eigenfunction method of [14]. The first part
of this theorem is in sharp contrast with Theorem 19.2 of [23].

Theorem 1.4. Suppose that 0 < η < 1/β −1, then there is no global solution to
(1.6) whenever KV0,φ1 > 0. For any η > 0, there is no global solution whenever
KV0,φ1 > 0 is large enough.

At this point we do not investigate the dichotomy as in the equation on
the whole plane. One can perhaps argue that since the solution to the Dirichlet
equation is smaller than that on the whole plane, we can find global solution
when η is large enough.

Here is a plan of the article. Section 2 contains estimates needed for the
proof of Theorem 1.1. This is given in Sect. 3. Section 4 is devoted to the
proof of Theorem 1.2 while the proofs of Theorems 1.3 and 1.4 are given in
Sects. 5 and 6 respectively. We use the notation f(t, x) � (�)g(t, x) when there
exists a constant C independent of (t, x) such that f(t, x) � (�)Cg(t, x) for
all (t, x) ∈ (0, ∞) × R

d.

2. Some estimates

We begin this section by giving a brief description of the process associated
with (1.4). However; we will not use this process directly. Instead we will use
it to derive a suitable representation of its heat kernel. See [7,21] for more
information. Let Xt denote a symmetric α-stable process associated with the
fractional Laplacian where α ∈ (0, 2). Its density function will be denoted by
p(t, x). This is characterized through the Fourier transform which is given by
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p̂(t, ξ) =
∫
Rd

e−iξ·xp(t, x)dx = e−t|ξ|α .

The following properties of p(t, x) will be needed in this paper:
• p(st, x) = s−d/αp(t, s−1/αx). (2.1)

• ∂p(t, x)
∂t

� 1
t
p(t, x). (2.2)

• ∇p(t, x) � 1
t1/α

p(t, x). (2.3)

• For all t > 0, x, y ∈ R
d and ρ ∈ [0, 1],

|p(t, y) − p(t, x)| � |x − y|ρ
tρ/α

[p(t, x/2) + p(t, y/2)]. (2.4)

We also have

c1

(
t−d/α ∧ t

|x|d+α

)
� p(t, x) � c2

(
t−d/α ∧ t

|x|d+α

)
, (2.5)

for some positive constants c1 and c2. The first identity (2.1) follows from
scaling. The bounds on the derivatives are also standard and can be found for
instance [19,25]. Inequalities (2.4) and (2.5) can be found in [10,19] respec-
tively. The process associated with (1.4) is not Markov and the heat kernel
G(t, x) does not satisfy the semigroup property. We describe this process next.
Let D = {Dr, r � 0} be a β-stable subordinator with β ∈ (0, 1). Its Laplace
transform is given by E(e−sDt) = e−tsβ

. Let Et be its first passage time defined
by

Et = inf{τ : Dτ > t}. (2.6)

Et is also called the inverse subordinator. The process which we will be in-
terested in is given by the time changed process XEt

. This is the process
associated with the time fractional heat equation given by (1.4). Its density
G(t, x) is given by a simple conditioning as follows

G(t, x) =
∫ ∞

0

p(s, x)fEt
(s)ds, (2.7)

where

fEt
(x) = tβ−1x−1−1/βgβ(tx−1/β).

The function gβ(·) is the density function of D1 and is infinitely differentiable
on the entire real line, with gβ(u) = 0 for u � 0. After a change of variable,
(2.7) turns into

G(t, x) =
∫ ∞

0

p

((
t

u

)β

, x

)
gβ(u) du, (2.8)

which makes the following asymptotic properties particularly useful,

gβ(u) ∼ K(β/u)(1−β/2)/(1−β) exp{−|1 − β|(u/β)β/(β−1)} as u → 0+,

where K > 0, (2.9)
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and

gβ(u) ∼ β

Γ(1 − β)
u−β−1 as u → ∞. (2.10)

Using (2.8) together with (2.1), we obtain
• G(st, x) = s−βd/αG(t, s−β/αx), (2.11)

As explained above, our method will be partly inspired by the following in-
equality which was proved in [11] and subsequently generalized in [6].

c1

(
t−βd/α ∧ tβ

|x|d+α

)
� G(t, x) � c2

(
t−βd/α ∧ tβ

|x|d+α

)
, (2.12)

where the upper bound is valid for α > d only. In this case, we immediately
have

p(tβ , x) � G(t, x) � p(tβ , x), (2.13)

which we will use to compensate for the lack of the semigroup property. If
|x| � tβ/α, then when α = d, we have

t−β log
(

2
|x|t−β/α

)
� G(t, x) � t−β log

(
2

|x|t−β/α

)
and when d > α,

t−β

|x|d−α
� G(t, x) � t−β

|x|d−α
.

When |x| � tβ/α, then G(t, x) satisfy the bounds given by (2.12) even when
d � α. This was shown in [6]. See also Lemma 3.3 and Lemma 3.7 in [15] for
point-wise and gradient estimates of the kernel G(t, x). Another recent paper
with estimates on the kernel G(t, x) is the paper by Kim and Lim [16]. In the
very interesting paper [9], the authors also noticed that when d > α, the heat
kernel is better behaved. We have the following estimates on the derivatives
of the heat kernel.

Proposition 2.1. For any t > 0 and x ∈ R
d, we have

(a) ∂G(t, x)
∂t

� 1
t
G(t, x). (2.14)

(b) Set T > 0 and let ρ < α, then for t ∈ (0, T ], we have∫
Rd

|G(t, x + h) − G(t, x)|f(t, x) dx � |h|ρ
tρβ/α

, (2.15)

where h ∈ R
d and f(t, x) is a function satisfying supt∈[0, T ] ‖f(t, ·)‖L∞(Rd)

< ∞.

Proof. The proof of the first part follows from

G(t, x) =
∫ ∞

0

p

((
t

u

)β

, x

)
gβ(u) du,
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and (2.2), (2.3) and the asymptotic properties of gβ(u). For the second part,
we use (2.4) to obtain

G(t, x + h) − G(t, x) =
∫ ∞

0

[
p

((
t

u

)β

, x + h

)
− p

((
t

u

)β

, x

)]
gβ(u) du

� |h|ρ
tρβ/α

∫ ∞

0

uρβ/α

[
p

((
t

u

)β

,
x + h

2

)

+ p

((
t

u

)β

,
x

2

)]
gβ(u) du.

Hence, we have∫
Rd

|G(t, x + h) − G(t, x)|f(t, x) dx � |h|ρ
tρβ/α

∫ ∞

0

uρβ/αgβ(u) du

� |h|ρ
tρβ/α

,

where we have used the fact that for any s � 0 and z ∈ R
d,∫

Rd

p(s, x + y + z)f(t, y) dy

� sup
t∈[0, T ]

‖f(t, ·)‖L∞(Rd)

∫
Rd

p(s, x + y + z)dy,

to arrive at the first inequality. That the integral∫ ∞

0

uρβ/αgβ(u) du

is finite when ρ < α can be seen by looking at the behavior of gβ(u) as u → ∞.
�

Set

Gf(t, x) :=
∫
Rd

G(t, x − y)f(y) dy,

and

Af(t, x) :=
∫ t

0

∫
Rd

G(t − s, x − y)f(s, y)1+η dy ds.

We will need the following to argue that the solution is jointly continuous
whenever it exists.

Proposition 2.2. • Suppose that V0 is such that sup(0, T ) ‖GV0(t, ·)‖L∞(Rd)

< ∞ for some T � ∞, then GV0(t, x) is jointly continuous on (0, T )×R
d.

• Suppose that supt∈(0,T ] ‖f(t, ·)‖L∞(Rd) < ∞ for some T � ∞. Then
Af(t, x) is jointly continuous on (0, T ) × R

d.

Proof. The proof uses Proposition 2.1. We merely indicate how to start the
proof of the more technical part. For h > 0, k ∈ R

d, we write



NoDEA Critical parameters for reaction–diffusion equations Page 9 of 22    30 

Af(t + h, x + k) − Af(t, x) = Af(t + h, x + k) − Af(t, x + k)

+ Af(t, x + k) − Af(t, x)
:= I + II.

For the first part, we have

I =
∫ t+h

0

∫
Rd

G(t + h − s, x + k − y)f(s, y)1+η dy ds

−
∫ t

0

∫
Rd

G(t − s, x + k − y)f(s, y)1+η dy ds

=
∫ t

0

∫
Rd

[G(t + h − s, x + k − y) − G(t − s, x + k − y)]f(s, y)1+η dy ds

+
∫ t+h

t

∫
Rd

G(t + h − s, x + k − y)f(s, y)1+η dy ds.

We can now use the above Proposition to bound each term. We deal with the
second part in a similar fashion.

�
Lemma 2.3. Suppose that ‖V0‖L1(Rd) < ∞. If we further assume that V0 is
strictly positive on a set of positive measure, then there exists a T > 0, such
that for all t � T ,

GV0(t, x) � 1
tβd/α

for all x ∈ B(0, tβ/α).

Proof. Let x ∈ B(0, tβ/α). We now use the lower bound on the heat kernel to
write

GV0(t, x) =
∫
Rd

G(t, x − y)V0(y) dy

�
∫

B(0, tβ/α)

G(t, x − y)V0(y) dy

� 1
tβd/α

∫
B(0, tβ/α)

V0(y) dy.

Choosing T so that
∫

B(0, T β/α)
V0(y) dy � 1

4‖V0‖L1(Rd), we obtain the desired
inequality for t � T . �

3. Proof of Theorem 1.1

Proposition 3.1. Suppose that η < α
βd . Let M > 0, then there exists a T0 > 0

such that for t � T0,

inf
x∈B(0, tβ/α)

V (t, x) � M.

Proof. We begin with the integral solution,

V (t, x) = GV0(t, x) +
∫
Rd

∫ t

0

G(t − s, x − y)V (s, y)1+ηdsdy.
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We look at the second term first. For x ∈ B(0, tβ/α), we have∫
Rd

∫ t

0

G(t − s, x − y)V (s, y)1+ηdsdy

�
∫ t

0

inf
y∈B(0, sβ/α)

V (s, y)1+η

∫
B(0, sβ/α)

G(t − s, x − y)dy ds

�
∫ t/2

0

inf
y∈B(0, sβ/α)

V (s, y)1+η

∫
B(0, sβ/α)

G(t − s, x − y)dy ds

�
∫ t/2

0

inf
y∈B(0, sβ/α)

V (s, y)1+η sβd/α

tβd/α
ds,

where we have used the lower bounds given by (2.12). For the first term we
use Lemma 2.3 to write

inf
x∈B(0, tβ/α)

GV0(t, x) � 1
tβd/α

,

whenever t � T , where T is from Lemma 2.3. Combining these estimates, we
obtain

inf
x∈B(0, tβ/α)

V (t, x) � 1
tβd/α

+
∫ t/2

0

inf
y∈B(0, sβ/α)

V (s, y)1+η sβd/α

tβd/α
ds.

Set

F (t) := inf
x∈B(0, tβ/α)

tβd/αV (t, x),

The above inequality then reduces to

F (t) � 1 +
∫ t/2

0

F (s)1+η

sηβd/α
ds. (3.1)

Now using F (t) � 1 and η < α
βd , we obtain

F (t) � 1 +
∫ t/2

0

1
sηβd/α

ds = 1 + C1t
1−βdη/α � C1t

1−βdη/α.

Plugging F (t) � C1t
1−βdη/α into the inequality (3.1) we get

F (t) � C2t
2(1−βdη/α)

Similar computations imply that for any given fixed integer N > 0, there are
strictly positive constants cN and c̃N such that

F (t) � c̃N tcN .

We therefore obtain infx∈B(0, tβ/α) V (t, x) � tcN −βd/α. Since η < α
βd , we can

take N so that cN − βd/α > 0. Hence for any fixed M > 0, there exists a
T0 > 0 such that infx∈B(0, tβ/α) V (t, x) � M whenever t � T0.

�

A consequence of the above is the following.
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Proposition 3.2. Let η < α
βd , then for T large enough∫ T

0

∫
Rd

V (s, y)1+ηG(T + t − s, x − y) dsdy � T,

whenever 0 < t < T
3 and x ∈ B(0, T β/α).

Proof. We use the previous proposition to write∫ T

0

∫
Rd

V (s, y)1+ηG(T + t − s, x − y) dy ds

�
∫ 3(T+t)/4

(T+t)/2

∫
B(0, sβ/α)

V (s, y)1+ηG(T + t − s, x − y) dy ds

� M1+η

∫ 3(T+t)/4

(T+t)/2

∫
B(0, sβ/α)

G(T + t − s, x − y) dy ds.

Since t < T
3 , we have B(0, (T + t − s)β/α) ⊂ B(0, sβ/α) and |x − y| � c1(T +

t − s)β/α. We therefore have∫
B(0, sβ/α)

G(T + t − s, x − y) dy

�
∫

B(0, (T+t−s)β/α)

G(T + t − s, x − y) dy

� 1,

where we have used the lower bound given by (2.12) to obtain the last inequal-
ity. We combine these estimates above to obtain the result. �

Remark 3.3. When η = α
βd , instead of (3.1), we obtain

F (t) � 1 +
∫ t/2

1

F (s)1+η

s
ds.

This immediately gives us F (t) � ln t for t > 1. Similar computations to that
of the proof of Proposition 3.2 then give us the following bound∫ T

0

∫
Rd

V (s, y)1+ηG(T + t − s, x − y) dsdy � (ln T )1+η

T βd/α
,

under the same conditions as Proposition 3.2.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let T > 0 which we are going to fix later. We will
assume that there exists a solution up to time T . If this not the case, then
there is nothing to prove. From the integral solution, we have

V (t + T, x) =
∫
Rd

G(t + T, x − y)V0(y) dy

+
∫
Rd

∫ t+T

0

G(t + T − s, x − y)V (s, y)1+ηds dy.
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A simple change of variables and the fact that the first term of the above
display is non-negative, we obtain

V (t + T, x) �
∫
Rd

∫ T

0

G(t + T − s, x − y)V (s, y)1+ηdsdy

+
∫
Rd

∫ t

0

G(t − s, x − y)V (s + T, y)1+ηdsdy.

We bound the first term of the above display. We now restrict our attention to
the case η < βd/α. By Proposition 3.2, for x ∈ B(0, 1), we have upon taking
T large enough,∫

Rd

∫ T

0

G(t + T − s, x − y)V (s, y)1+ηdsdy � T.

We now look at the second term.∫
Rd

∫ t

0

G(t − s, x − y)V (s + T, y)1+ηdsdy

�
∫ t

0

inf
y∈B(0, 1)

V (s + T, y)1+η

∫
B(0,1)

G(t − s, x − y)dy ds.

Set A = {y ∈ B(0, 1) : |x − y| � (t − s)β/α} with t � (1/2)α/β . We now use
the fact that on A, we have Gt−s(x − y) � (t − s)−βd/α to write∫

B(0,1)

Gt−s(x − y)dy

�
∫

A

Gt−s(x − y)dy � c,

(3.2)

for some constant c. Putting the estimates above, we obtain

inf
x∈B(0, 1)

V (t + T, x) � T +
∫ t

0

inf
x∈B(0, 1)

V (s + T, x)1+η ds, (3.3)

This implies that infx∈B(0, 1) V (t + T, x) blows up in finite time. By choosing
T large enough, we can make sure that the blow-up time t̃ is less than (1/2)α/β

as required. This finishes the proof for the case η < βd/α. When η = α
βd , we

can use Remark 3.3 and very similar computations which led to (3.3) to obtain

inf
x∈B(0, T β/α)

V (t + T, x) � (ln T )1+η

T βd/α
+

∫ t

0

inf
x∈B(0, T β/α)

V (s + T, x)1+η ds,

(3.4)

whenever 0 < t � T/3. This shows that V (t + T, x) has a blow-up time of
order T

(ln T )1+η which can be made to be strictly less than T/3 upon taking T

large enough. The proof is now complete. �
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4. Proof of Theorem 1.2

The proof of the following result is a straightforward application of Young’s
convolution inequality and the heat kernel estimates. The first part below can
also be found in [15].

Lemma 4.1. For all t > 0, we have
(a) ‖GV0(t, ·)‖Lr(Rd) � t−

βd
α ( 1

p − 1
r )‖V0‖Lp(Rd)

with p, r ∈ [1, ∞] satisfying 0 � 1
p − 1

r < α
d

(b) For 0 � s � t, we have∥∥∥∥
∫
Rd

G(t − s, · − y)f(s, y)1+η dy

∥∥∥∥
Lr(Rd)

� (t − s)− βd
α ( 1+η

p − 1
r )‖f(s, ·)‖1+η

Lp(Rd)

(4.1)

with p
1+η , r ∈ [1, ∞] satisfying 0 � 1+η

p − 1
r < α

d .

Proof. Young’s convolution inequality gives us

‖GV0(t, ·)‖Lr(Rd) � ‖G(t, ·)‖Lq(Rd)‖V0‖Lp(Rd),

for any p, q, r ∈ [1,∞] satisfying 1 + 1
r = 1

p + 1
q . The first part now follows by

noting that from the scaling property and the heat kernel estimates,

‖G(t, ·)‖Lq(Rd) � t−
βd
α (1− 1

q ),

whenever 1 − 1
q < α

d . For the second inequality, we use Young’s inequality
again and the above but this time with parameters p

1+η , q, r ∈ [1, ∞] satisfying
1 + 1

r = 1+η
p + 1

q . �

For the next result, we will need the following notation. Set

‖V ‖p,θ := sup
t>0

tθ‖V (t, ·)‖Lp(Rd). (4.2)

Corollary 4.2. Suppose that η > α
βd and let p > βdη

α . Let

θ :=
βd

α

(
α

βdη
− 1

p

)
.

Then, we have
(a) ‖Gf‖p,θ � ‖f‖Lqc (Rd),

where qc := βdη
α and θ/β < 1.

(b) ‖Af‖p, θ � ‖f‖1+η
p, θ ,

with p
1+η ∈ [1, ∞] and p > dη

α .
(c) Suppose that f and g satisfy ‖f‖p, θ < M and ‖g‖p, θ < M for some

M > 0. We then have

‖Af − Ag‖p, θ � Mη‖f − g‖p, θ,

whenever (1 + η)θ < 1, p
1+η ∈ [1, ∞] and p > dη

α .
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Proof. The first part is a straightforward consequence of the first part of the
above Lemma 4.1. For the second part, the same lemma gives us

‖Af‖Lp(Rd) � t1− βdη
αp ‖f‖1+η

Lp(Rd)
,

from which we obtain the result after some computations. The final part is
slightly more involved. For the second inequality below, we use Young’s in-
equality with parameters 1 + 1

p = η+1
p + p−η

p along with the assumption that
p > dη

α ,

‖Af(t, ·) − Ag(t, ·)‖Lp(Rd)

=
∥∥∥∥
∫ t

0

∫
Rd

G(t − s, x − y)[f(s, y)1+η − g(s, y)1+η] dy ds

∥∥∥∥
Lp(Rd)

�
∥∥∥∥
∫ t

0

∫
Rd

G(t − s, x − y)|f(s, y) − g(s, y)||f(s, y)η + g(s, y)η|dy ds

∥∥∥∥
Lp(Rd)

�
∫ t

0

(t − s)−βηd/αp‖|f(s, ·) − g(s, ·)||f(s, ·)η + g(s, ·)η|‖
L

p
1+η (Rd)

ds

�
∫ t

0

(t−s)−βηd/αp‖f(s, ·)−g(s, ·)‖Lp(Rd)[‖f(s, ·)‖η
Lp(Rd)

+‖g(s, ·)‖η
Lp(Rd)

] ds

� Mη‖f − g‖p,θ

∫ t

0

(t − s)−βηd/αps−(1+η)θ ds.

Since (1 + η)θ < 1 and p > βdη
α , the integral in the above makes sense. We

now obtain the result after some computations. �

Proposition 4.3. Let η > α/βd and set qc = βdη
α . Then for ‖V0‖Lqc (Rd) small

enough, there is a unique solution to (1.3) such that

‖V ‖p, θ < ∞ for some p > qc,

where the norm ‖ · ‖p, θ is defined by (4.2) and θ is as in Corollary 4.2.

Proof. The proof is a usual fixed point argument as in say the proof of Theorem
15.2 of [23]. We assume that ‖V0‖Lqc (Rd) < M

2 for some M > 0. Let

BM := {V (t, ·) ∈ Lp(Rd); ‖V ‖p,θ < M},

and

I(V )(t, x) := GV0(t, x) + AV (t, x).

Then one can show that the map I : BM → BM has a unique fixed point when-
ever M is small enough. We now sketch the main steps. From Corollary 4.2,
we have

‖I(V )‖p,θ � ‖V0‖Lqc (Rd) + CM1+η,

which upon choosing ‖V0‖Lqc (Rd) and M small enough yields,

‖I(V )‖p,θ < M.
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Corollary 4.2 also yields

‖I(u) − I(v)‖p,θ � 1/2‖u − v‖p,θ,

for M small enough. By a simple contraction principle argument, we get that
I(V ) has a fixed point in BM .

�

Proposition 4.4. Suppose that ‖V0‖L∞(Rd) < ∞. Then there exists a T > 0
such that there is a unique solution to (1.3) satisfying

‖V (t, ·)‖L∞(Rd) � CT for all t ∈ (0, T ].

The constant CT depends on T and ‖V0‖L∞(Rd).

Proof. We can use a fixed point as in the above proposition. We leave it to the
reader to fill in the details. �

Proof of Theorem 1.2. We choose V0 ∈ Lqc(Rd) ∩ L∞(Rd). In particular, we
can take V0 to be finitely supported and bounded above by a small positive
constant. Proposition 4.3 ensures that we have a global solution satisfying

‖V (t, ·)‖Lp(Rd) � t−θ for all t > 0,

where p > qc is such that θ/β < 1 and (1 + η)θ < 1. We now use the following
interpolation inequality

‖V (t, ·)‖Lq(Rd) � ‖V (t, ·)‖p/q

Lp(Rd)
‖V (t, ·)‖1−p/q

L∞(Rd)
for q ∈ [p, ∞]

and Proposition 4.4 to conclude that there exists a T > 0 such that

‖V (t, ·)‖Lq(Rd) � CT t−pθ/q for all t ∈ (0, T ]. (4.3)

Now fix any T0 such that T0 > T . We consider V (t + T, x) for t ∈ (0, T0 − T ].
For i = 0, 1, 2, . . . , k, let pi+1 > pi � p so that 1+η

pi
− 1

pi+1
< α

d .

AV (t + T, x) =
∫ t+T

0

∫
Rd

G(t + T − s, x − y)V (s, y)1+η dy ds

=
∫ T

0

∫
Rd

G(t + T − s, x − y)V (s, y)1+η dy ds

+
∫ t+T

T

∫
Rd

G(t + T − s, x − y)V (s, y)1+η dy ds

:= I1 + I2.

Using (4.1) and (4.3), we obtain

‖
∫ T

0

∫
Rd

G(t + T − s, · − y)V (s, y)1+η dy ds‖Lpi+1 (Rd)

�
∫ T

0

(t+T −s)− βd
α ( 1+η

pi
− 1

pi+1
)‖V (s, ·)‖1+η

Lpi (Rd)
ds

�
∫ T

0

(t + T − s)− βd
α ( 1+η

pi
− 1

pi+1
)
s−p(1+η)θ/pi ds

� cT ,
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where cT is a constant depending on T . After a change of variable we obtain,

I2 =
∫ t

0

∫
Rd

G(t − s, x − y)V (s + T, y)1+η dy ds.

We use (4.1) again to write

‖
∫ t

0

∫
Rd

G(t − s, · − y)V (s + T, y)1+η dy ds‖Lpi+1 (Rd)

�
∫ t

0

(t − s)− βd
α ( 1+η

pi
− 1

pi+1
)‖V (s + T, ·)‖1+η

Lpi (Rd)
ds

� c̃1+η
T0,T

∫ t

0

(t − s)− βd
α ( 1+η

pi
− 1

pi+1
) ds,

where we have assumed that ‖V (s+T, ·)‖Lpi (Rd) � c̃T0,T . We now choose p0 =
p and apply the above inequality recursively to show that after a finite number
of iterations, ‖V (t, ·)‖L∞(Rd) is bounded on (0, T0]. Since T0 was arbitrary, this
finishes the proof. �

5. Proof of Theorem 1.3

Throughout this section, we will assume that d < α. As seen above, the G(t, x)
does not satisfy the semigroup property. However, we can use (2.13) to obtain∫
Rd

G(s, x−y)G(t, y−z) dy �
∫
Rd

p(sβ , x − y)p(tβ , y − z) dy

= p(tβ +sβ , x−z),by the semigroup property of p

� p((t + s)β , x − z)

� G(t + s, x − z).

We have used the fact that for any x ∈ R
d and s, t > 0, we have

p(tβ + sβ , x) � c1

(
(sβ + tβ)−d/α ∧ sβ + tβ

|x|d+α

)

� c2

(
(s + t)−βd/α ∧ (s + t)β

|x|d+α

)
� p((t + s)β , x).

A straightforward consequence of the above is the following proposition
where γ will be a strictly positive constant; we will assume this throughout
this section.

Proposition 5.1. If V0(x) � δG(γ, x), for some constant δ > 0, then∫
Rd

G(t, x − y)V0(y) dy � δG(t + γ, x), for all t > 0 and x ∈ R
d.
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Proof. Using the above we obtain∫
Rd

G(t, x − y)V0(y) dy � δ

∫
Rd

G(t, x − y)G(γ, y) dy

� δG(t + γ, x).

�

Proposition 5.2. Suppose η > α
βd , then for all t > 0 and x ∈ R

d,∫
Rd

∫ t

0

G(t − s, x − y)G(s + γ, y)η+1 dsdy � G(t + γ, x).

Proof. We have∫ t

0

∫
Rd

G(t − s, x − y)G(s + γ, y)η+1 dsdy

�
∫ t

0

sup
y∈Rd

G(s + γ, y)η

∫
Rd

G(t − s, x − y)G(s + γ, y) dsdy

� G(t + γ, x)
∫ t

0

1
(s + γ)ηβd/α

ds.

Since γ > 0, some calculus finishes the proof. �

Proposition 5.3. Suppose η > α
βd , then

sup
t>0, x∈Rd

(AV )(t, x)
G(t + γ, x)

� sup
t>0, x∈Rd

(
V (t, x)

G(t + γ, x)

)1+η

.

Proof. We have∫ t

0

∫
Rd

G(t − s, x − y)V (s, y)1+η dy ds

�
∫ t

0

∫
Rd

G(t − s, x − y)G(s + γ, y)1+η

∣∣∣∣ V (s, y)
G(s + γ, y)

∣∣∣∣
1+η

dy ds

� sup
t>0, y∈Rd

(
V (t, y)

G(t + γ, y)

)1+η ∫ t

0

∫
Rd

G(t − s, x − y)G(s + γ, y)1+η dy ds.

We now use Proposition 5.2 to complete the proof. �

We need one final result before the proof of Theorem 1.3.

Proposition 5.4. Suppose that η > α
βd and

sup
t>0, x∈Rd

V (t, x)
G(t + γ, x)

� M and sup
t>0, x∈Rd

W (t, x)
G(t + γ, x)

� M,

for some M > 0, then we have

sup
t>0, x∈Rd

|(AV )(t, x) − (AW )(t, x)|
G(t + γ, x)

� Mη sup
t>0, x∈Rd

∣∣∣∣V (t, x) − W (t, x)
G(t + γ, x)

∣∣∣∣ .
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Proof. We start off by writing

|AV (t, x) − AW (t, x)|

=
∣∣∣∣
∫ t

0

∫
Rd

G(t − s, x − y)[V (s, y)1+η − W (s, y)1+η] dy ds

∣∣∣∣
�

∫ t

0

∫
Rd

G(t − s, x − y)[|V (s, y) − W (s, y)|][V (s, y)η + W (s, y)η] dy ds

� Mη

∫ t

0

∫
Rd

G(t − s, x − y)G(s + γ, y)1+η |V (s, y) − W (s, y)|
G(t + γ, y)

dy ds

� Mη sup
t>0,x∈Rd

|V (t, x)−W (t, x)|
G(t + γ, x)

∫ t

0

∫
Rd

G(t−s, x−y)G(t+γ, y)1+η dy ds.

An application of Proposition 5.2 yields the desired result. �

We set

‖V ‖ := sup
t>0,x∈Rd

V (t, x)
G(t + γ, x)

. (5.1)

The proof of Theorem 1.3 involves a Picard iteration which we define as follows.
For n � 0,

Vn+1(t, x) :=
∫
Rd

G(t, x − y)V0(y) dy + (AVn)(t, x). (5.2)

Proof of Theorem 1.3. We have all the ingredients to follow the proof of [12],
which is just a standard fixed point argument. Indeed, one can use Proposi-
tions 5.3 and 5.4 to show that the above Picard Iteration scheme has a fixed
point. The steps are in fact similar to the proof of Proposition 4.3. We leave
it to the reader for filling in the details. �

6. Proof of Theorem 1.4

The proof of this theorem relies on the following spectral decomposition of the
Dirichlet heat kernel,

GD(t, x, y) =
∞∑

n=1

Eβ(−νntβ)φn(x)φn(y). (6.1)

νn are the eigenvalues of the the fractional Laplacian on the domain B(0, R)
and the corresponding eigenfunctions {φn}n�1 form an orthonormal basis of
L2(B(0, R)). Here Eβ(t) =

∑∞
k=0 tβk/Γ(1+βk) is the Mittag-Leffler function.

See [7,21] for more information about this. If β were one, the above rep-
resentation would have been in terms of the exponential function instead of
the Mittag-Leffler function. The key observation is that we have the following
polynomial decay [24, Theorem 4]:

1
1 + Γ(1 − β)t

� Eβ(−t) � 1
1 + Γ(1 + β)−1t

for all t > 0. (6.2)
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We will only need the lower bound for the proof. The proof follows the same
idea as that of Kaplan [14].

Proof of Theorem 1.4. Set

F (t) :=
∫

B(0, R)

V (t, x)φ1(x) dx.

We now use the integral formulation of the equation given by (1.7) together
with the representation (6.1) to write

F (t) = Eβ(−ν1t
β)

∫
B(0, R)

V (t, y)φ1(y) dy

+
∫ t

0

Eβ(−ν1(t − s)β)
∫

B(0, R)

φ1(y)V (s, y)1+η dy ds

� Eβ(−ν1t
β)KV0,φ1 +

∫ t

0

Eβ(−ν1(t − s)β)F (s)1+ηds

� KV0,φ1

tβ
+

∫ t

0

F (s)1+η

tβ
ds,

where we have also taken t to be large enough. We now let G(t) := tβF (t)
and consider the case β(1 + η) < 1. Then the above inequality reduces to

G(t) � KV0,φ1 +
∫ t

0

G(s)1+η

sβ(1+η)
ds.

Since G(t) is a super-solution to the following non-linear ordinary differential
equation.

G̃′(s)
G̃(s)1+η

=
1

sβ(1+η)
with G̃(0) = KV0,φ1 .

Therefore there exists a t0 such that G(t) = ∞ for all t � t0 no matter what
the initial condition KV0,φ1 is.

When β(1 + η) � 1 and KV0,φ1 > 0, we obtain for t > 1

G(t) � KV0,φ1 +
∫ t

1

G(s)1+η

sβ(1+η)
ds

which can now be compared with

G̃′(s)
G̃(s)1+η

=
1

sβ(1+η)
with G̃(1) = KV0,φ1 .

Therefore there exists a t1 such that G(t) = ∞ for all t � t1 provided that the
initial condition KV0,φ1 is large enough. This finishes the proof since φ1(x) is
strictly positive. �
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