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ABSTRACT Person re-identification (Re-ID) in camera networks under complex environments has achieved
promising performance using deep feature representations. However, most approaches usually ignore to learn
features from non-salient parts of pedestrian, which results in an incomplete pedestrian representation. In
this paper, we propose a novel person Re-ID method named Adversarial Erasing Attention (AEA) to mine
discriminative completed features using an adversarial way. Specifically, the proposed AEA consists of the
basic network and the complementary network. On the one hand, original pedestrian images are used to
train the basic network in order to extract global and local deep features. On the other hand, to learn features
complementary to the basic network, we propose the adversarial erasing operation, that locates non-salient
areas with the help of attention map, to generate erased pedestrian images. Then, we utilize them to train
the complementary network and adopt the dynamic strategy to match the dynamic status of AEA in the
learning process. Hence, the diversity of training samples is enriched and the complementary network could
discover new clues when learning deep features. Finally, we combine the features learned from the basic and
complementary networks to represent the pedestrian image. Experiments on three databases (Market1501,
CUHK03 and DukeMTMC-reID) demonstrate the proposed AEA achieves great performances.

INDEX TERMS Person re-identification, dynamic strategy, adversarial learning.

I. INTRODUCTION
Person re-identification (Re-ID) in camera networks targets
to retrieve a specific pedestrian from a large gallery which is
captured by multiple visual sensors [1]–[3]. There are many
applications (such as multi-camera tracking [4], [5], crowd
counting [6], [7] and so on [8], [9]) that require an accurate
person Re-ID algorithm. However, it is a challenging task
under complex environments because of significant changes
in body poses, viewpoints, illuminations, etc.

Recently, many researchers [10]–[14] employ Convo-
lutional Neural Networks (CNNs) to extract pedestrian
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representations Afterwards, the distance metric is applied
to compute the similarity. There are mainly three kinds of
representations, i.e., global deep features, local deep features
and combination of them. The global deep features focus
on salient areas of the whole pedestrian image. As shown
in Fig. 1(a), we visualize the convolutional activation map
where only some parts of pedestrian are mainly concerned.

Some researchers exploit local deep features to learn
the structural information of pedestrian. Specifically, they
directly divide pedestrian images or convolutional activation
maps into several sub-regions and extract local deep fea-
tures from sub-regions [15], [16]. As shown in Fig. 1(b),
we visualize the convolutional activation map for local
deep features, where the network pays attention to different
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FIGURE 1. Visualization of convolutional activation maps for (a) global
deep features, (b) local deep features, (c) global and local deep features,
and (d) the proposed AEA. The warmer color denotes higher value, that is,
attention regions of CNN.

parts from global deep features. Other partition strategies
are proposed to apply external operations, such as pose
estimation [17]–[19].

Furthermore, some methods [20]–[22] learn global and
local deep features simultaneously to represent pedestrians,
which could make full use of their own advantages. As shown
in Fig. 1(c), we visualize the convolutional activation map
where more parts of pedestrian are concerned by the network.
However, some non-salient parts or rare pedestrian informa-
tion may be easily ignored, which results in an incomplete
pedestrian representation.

In this paper, we propose a novel method named
Adversarial Erasing Attention (AEA) to learn discriminative
completed features using an adversarial manner. For this pur-
pose, we design a deep network including two subnetworks,
i.e., basic network and complementary network. The basic
network learns global and local deep features for pedestrian
images simultaneously. Meanwhile, the complementary net-
work aims at learning complementary information to the
basic network. In other words, it is expected to extract fea-
tures from non-salient areas of pedestrian where the basic
network does not focus on. Since attention maps could cap-
ture the attention location of deep network, we propose the
adversarial erasing operation to locate the non-salient areas
using attentionmaps. Concretely, we erase salient areas based
on the attention map of basic network, and therefore the
remaining areas are non-salient. Afterwards, we map these
erased areas to original pedestrian images, and obtain erased
pedestrian images which are utilized to train the complemen-
tary network.With such adversarial learning, the complemen-
tary network can discover new clues from non-salient areas of
pedestrian.

To match the dynamic status of AEA, we propose a
dynamic strategy which conducts adversarial erasing opera-
tion at each iteration. As a result, it could increase the diver-
sity of training samples with these erased pedestrian images.
Finally, we integrate the features learned from the basic
and complementary networks to represent pedestrian images.
Fig. 1(d) visualizes the attention maps of the proposed AEA

where the two networks focus on different parts of pedestrian.
Hence, the features extracted from the two subnetworks could
obtain discriminative completed representations for pedes-
trian images. It is worth mentioning that the proposed AEA
does not resort to any external operations when learning deep
features. In the learning process, we assign the identity label
of original image to the erased pedestrian image. Tomake full
use of erased pedestrian images, we utilize the cross-entropy
loss and the triplet loss simultaneously.

In a word, the proposed AEA has the following contribu-
tions: 1) the complementary network locates non-salient areas
of pedestrian in a pixel-wise manner without any external
operations, and learns complementary features by an adver-
sarial way; 2) we dynamically erase salient areas of pedestrian
at each iteration so as tomatch the dynamic status of AEA and
enrich the diversity of training samples; 3) the proposed AEA
surpasses other approaches on three public person Re-ID
databases.

II. RELATED WORK
A. PERSON RE-IDENTIFICATION
Recently, person Re-ID approaches mainly utilize CNNs to
learn deep features [23]–[27]. Some methods learn global
deep features to represent pedestrian images. Qian et al. [24]
extract the global features of pedestrian images frommultiple
levels, and integrate them to describe pedestrian images
using a weighted strategy. However, global deep features
ignore subtle differences between pedestrian images, which
results in incomplete pedestrian representation. Hence, some
methods are proposed to directly divide pedestrian images or
convolutional activation maps into several parts for extract-
ing local deep features. Sun et al. [16] uniformly partition
convolutional activation maps to extract local deep fea-
tures. Wang et al. [26] obtain deep local features by divid-
ing the convolutional activation map into different strips.
Yao et al. [14] propose the Part Loss Network (PL-Net)
which could minimize the representation learning risk by
automatically detecting human body parts and computing the
person classification loss.

Furthermore, some approaches resort to external opera-
tions, such as pose estimation, to learn local deep features.
Zheng et al. [28] first employ the pose estimation to generate
PoseBoxes and then utilize these PoseBoxes to learn local
deep features. Wei et al. [29] apply Deeper Cut [30] to locate
pedestrian key points and learn robust features from the part
of pedestrian. Some approaches combine global deep feature
and local deep features to represent pedestrian. Li et al. [31]
learn global deep features from the whole pedestrian body,
and employ Spatial Transformer Networks (STN) to obtain
local deep features. Zhang et al. [22] jointly learn global
feature using the coarse branch and multi-scale local features
using different fine branches simultaneously. In this paper,
we learn global, local and complementary deep features in
a unified framework without any external operations, and
obtain discriminative completed features.
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FIGURE 2. The structure of AEA. The black arrow indicates the direction of forward propagation and the solid red line represents the
path of back propagation.

B. ATTENTION OF CNN
Attention mechanism is applied in many applications includ-
ing image caption generation, visual question answering
and person Re-ID [32]–[35]. In [32], the spatial attention
is employed to relate each word with the corresponding
image part, and make the latent attention align different struc-
tures for textual-visual matching. Liu et al. [33] propose the
HydraPlus-Net for pedestrian analysis, which feeds multiple
level attention maps into various feature layers so as to learn
multiple attentions. Zhou et al. [34] introduce the temporal
attention model for person Re-ID that automatically selects
the discriminative frames. In [35], a multi-stream deep model
is proposed to obtain representations from aligned pedestrian
images using attention mechanism.

In addition, many approaches focus on how to visualize the
attentionmap of CNN. Zhou et al. [36] present the Class Acti-
vation Mapping (CAM) to visualize the class-discriminative
image regions without any bounding box annotations. Sel-
varaju et al. [37] combine the gradient of attention map and
the final convolutional layer to visualize the localization map.

C. ADVERSARIAL LEARNING
Adversarial learning is widely utilized in domain adaptation,
image generation and so on. In [38], Generative Adver-
sarial Network (GAN) is proposed to generate new sam-
ples, which employs a generative model of learning sample
distribution against a discriminative model of distinguish-
ing generated samples from real ones. Tzeng et al. [39]

present the Adversarial Discriminative Domain Adaptation
(ADDA) to implement adversarial learning between the dis-
criminator and the target CNN in order to obtain domain-
invariant representations. Recently, adversarial learning has
been applied in person Re-ID society. Liu et al. [40] propose
the Adversarial Binary Coding (ABC) to guide the extraction
of binary codes using adversarial learning for efficient person
re-identification. Huang et al. [41] adversarially generate
occluded samples and combine them with training samples
to fine-tune the CNN model.

III. METHOD
In this section, we present the proposed AEA including the
basic network and complementary network. First, we present
the architecture of the basic network, and then describe the
complementary network including adversarial erasing oper-
ation and dynamic learning. Finally, the losses of AEA are
explained in detail.

A. BASIC NETWORK
The performance of AEA heavily depends on the basic net-
work, and therefore we enable the basic network to fuse
global and local deep features. The architecture of the basic
network is shown in the upper branch of Fig. 2. We mod-
ify the ResNet-50 [42] as the backbone network as shown
in Table 1. Specifically, we remove the down-sampling of
Conv5_X to increase the size of convolutional activation
maps, and correspondingly change the filter size of average
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TABLE 1. The architecture of the basic network for learning global deep
features.

pooling to 16 × 8. In addition, we add a 512-dim fully-
connected layer (FC_1) after the average pooling to reduce
the feature dimensionality. In order to integrate local deep
features, we divide Conv5_X into four horizontal parts, and
then follow an average pooling and a 512-dim FC for each
horizontal part. Afterwards, we concatenate the four 512-dim
features, and further combine with the output of FC_1 to
form the pedestrian feature (2,560-dim). Finally, the FC_2
is treated as the classifier to accomplish the classification
task. The neuron number of FC_2 is equal to the identity
number of person Re-ID dataset, i.e., 751, 702 and 767 for
Market1501, DukeMTMC-reID and CUHK03, respectively.
Given a pedestrian image with the size of 256 × 128, the
basic network extracts the 2,560-dim vector to represent the
pedestrian image.

B. COMPLEMENTARY NETWORK
The basic network learns global and local deep features for
pedestrian images, which only focuses on a part of pedestrian.
In order to mine new clues from other parts, we design the
complementary network to mine the complementary features
in an adversarial learning way. The architecture of the com-
plementary network is shown in the lower branch of Fig. 2,
and its backbone network is the same as the basic network
except for adversarial erasing operation.

The complementary network aims at learning features
complementary to the basic network and an intuitive way is to
extract features from the parts where the basic network does
not concern on, i.e., non-salient areas of pedestrian. Thus, it is
key to locating the non-salient areas of pedestrian. Attention
is a set of spatial maps, which represents the region of interest

FIGURE 3. (a) Pedestrian images and (b) their attention maps extracted
from the basic network. The warmer color denotes higher value, that is,
these areas are the focus of basic network.

to the CNN model [43]. We utilize the attention map to
locate the non-salient areas of pedestrian. The attention map
is defined as:

Al =
∑
c

|Ml,c|
2 (1)

where Ml,c expresses the c-th channel of convolutional acti-
vation maps in the l-th layer. It should be noted that the
operations in Eq. 1 are all element-wise. Fig. 3 shows some
pedestrian images and their attention maps extracted from
the basic network where we can see that the attention map
highlights the salient areas of pedestrian.

To locate the non-salient areas of pedestrian, we conduct
the adversarial erasing operation on the attention map and
the process is shown in Fig. 4. Specifically, we first feed a
pedestrian image with the size of 256 × 128 into the basic
network and extract the convolutional activation maps from
Conv2_X which is a 256× 64× 32 tensor. Then, we acquire
the attention map by using Eq. 1, and its size is 64 × 32. In
order to simplify the mapping operation from the attention
map to the original image, we resize the attentionmap into the
same size with the original pedestrian image, i.e., 256× 128,
using bilinear interpolation. Afterwards, we select the top R%
largest values from the resized attention map as salient areas,
and map these salient areas to the corresponding positions
of pedestrian image. Finally, we erase these pixels on the
pedestrian image to generate the erased pedestrian image. It
is worth noting that the erased pedestrian image has the same
label as the original one. There are two advantages of erased
pedestrian images. Firstly, since the erased pedestrian images
are obtained by erasing the salient areas of pedestrian, they
are adversarial to the basic network and the generalization
ability of AEA could be improved. Secondly, the eased pedes-
trian images have the same identities as the original ones, but
they are different. Hence, the diversity of training images is
increased.

We generate the erased pedestrian images based on the
attention map, but the attention map is variable during the
training process due to the updated parameters of deepmodel.
Fig. 5 shows different statuses of attention maps in the
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FIGURE 4. The process of adversarial erasing operation.

FIGURE 5. The pedestrian images and their different statuses of attention
maps, where the first column represents pedestrian images and the
remaining columns represent their attention maps at different statuses.

training stage, from which we can see that AEA focuses on
different salient areas of pedestrian in different statuses. To
match the dynamic status of AEA and generate reasonable
erased pedestrian images, we propose a dynamic strategy to
erase the salient areas of pedestrian in the attention map.
Specifically, we conduct adversarial erasing operation at each
iteration, and then generate the erased pedestrian images as
the mentioned above.

After obtaining erased pedestrian images using adversarial
erasing operation and dynamic strategy, we utilize them to
train the complementary network, and meanwhile extract
2,560-dim complementary deep features to represent pedes-
trians.

C. LOSSES OF AEA
We expect to obtain discriminative completed features of
pedestrians, and therefore simultaneously utilize the cross-
entropy loss and the triplet loss in the proposed AEA.

Specifically, we apply the cross-entropy loss to train the
basic network using original pedestrian images:

LI1 = −
N∑
t=1

q(t)log(p(t)) (2)

where N is the total number of pedestrian identities, q(t) is
the label distribution, and p(t) is the predicted probability of
pedestrian image belonging to the t-th identity.

The label distribution q(t) is expressed as:

q(t) =

{
0 t 6= y
1 t = y

(3)

where y represents the ground-truth identity label.
As for the prediction probability p(t), it is formulated as:

p(t) =
exp (vt )∑N
i=1 exp (vi)

(4)

where vi represents the output of the i-th neuron of FC_2.
Similarly, we employ the entropy loss to train the comple-

mentary network using erased pedestrian images, and denote
the loss as LI2 . Note that the formulas of LI2 and LI1 are the
same.

To take full advantage of erased pedestrian images, the
triplet loss is fed by pedestrian images and their erased pedes-
trian images to learn an effective metric. The triplet loss is
formulated as follows:

LT = [ dap + m− dan]+ (5)

where the symbol [Z ]+ represents the formula max(Z , 0),
m is the margin between positive and negative pairs, dap is
the distance between the anchor and positive samples, and
dan is the distance between the anchor and negative samples.
Specifically, dap and dan are expressed as:

dap = max
p
||f (xa)− f (xp))||2 (6)

dan = min
n
||f (xa)− f (xn))||2 (7)

where {xa, xp, xn} indicate a set of triplets, f (xa), f (xp) and
f (xn) represent feature vectors of the anchor sample xa, the
positive sample xp and the negative sample xn respectively,
and ||.||2 expresses L2 norm, i.e., Euclidean norm. These
feature vectors are the concatenation of global and local
features, and therefore the dimensions of them are 2,560.
Afterwards, these features are all normalized by L2 norm.
Here, the positive sample refers to the pedestrian image with
same identity as the anchor sample, while the negative sample
is from different identities. It should be noted that triplets
contain both original pedestrian images and erased pedestrian
images.

The overall objective function of AEA can be written as:

L = LI1 + α1LI2 + α2LT (8)
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TABLE 2. Results of the proposed AEA and four baselines on the three databases.

where α1 and α2 are the parameters which control the relative
importance of objective function.

As shown in Fig. 2, we use the solid red line to represent
the path of back propagation. During back propagation, the
total loss L in which the total loss values of LI1 , LI2 and LT are
utilized to optimize the basic network and the complementary
network simultaneously.

In the test stage, we first feed pedestrian images into
the trained AEA model, and then extract features from the
basic and complementary network, respectively. Afterwards,
concatenate them to form final pedestrian feature which is a
5,120-dim feature vector.

IV. EXPERIMENTS
We introduce databases and experimental settings in detail.
Afterwards, we proof the advantages of AEA and compare
with other approaches, and also analysis key parameters of
AEA.

A. DATABASES AND PROTOCOLS
Market-1501 [44] is divided into the training set (12,936
images with 751 identities), the test set (12,936 pedestrian
images with 751 identities) and the query set (3,368 pedes-
trian images).

CUHK03 [45] includes labeled set and detected set, where
7,365 pedestrian images with 767 identities are used for
training, 5,332 pedestrian images with 700 identities are uti-
lized for testing and 1,400 pedestrian images are utilized for
querying.

DukeMTMC-reID [46] provides 16,522 pedestrian
images with 702 identities in training set, 17,661 pedestrian
images with 1,110 identities in the test set, and 2,228 pedes-
trian images in the query set.

B. IMPLEMENTATION DETAILS
We initialize the basic network and complementary network
of AEA using ResNet-50 [47]. As for FC_1 in the two sub-
networks, we set the parameter of Leaky ReLU to 0.1 and
the rate of Dropout to 0.5. In the training stage, we resize all
pedestrian images to 256×128. Batch size is set to 32 for the
basic network including 8 identities and 4 pedestrian images
for each identity. As for the complementary network, every
batch is also set to 32 which contains 8 identities and each
identity comprises 4 erased pedestrian images.

The margin m of the triplet loss in Eq. 5 is set to 0.3,0.3
and 0.35 for Market-1501, DukeMTMC-reID and CUHK03,
respectively. The number of epoch is 100, and learning rate is

TABLE 3. Results of the proposed AEA and other methods on
Market-1501.

fixed to 0.01 before 75-th epochs and decreased by 0.1 in the
remaining 25 epochs. In order to enable the basic network
to predict the salient parts properly, we first train the basic
network for 10 epochs, and then we train the basic network
and the complementary network simultaneously. In Eq. 8, we
experimentally set α1 and α2 to 1.We concatenate the features
extracted from the basic network and the complementary net-
work as the final representation, thus obtaining a 5,120-dim
feature vector. We then normalize features using L2 norm,
and calculate the similarity between them according to the
Euclidean distance.

C. ADVANTAGES OF AEA
In this subsection, we compare the proposed AEA with four
baselines to verify the advantages of AEA.

1) BASELINE 1
It only employs pedestrian images to train the basic network
with the cross-entropy loss and the triplet loss. The input of
FC_2 is also regarded as the input of the triplet loss. In the
test stage, it treats the input of FC_2 (2,560-dim) in the basic
network as the pedestrian representations.

2) BASELINE 2
It utilizes original pedestrian images to train the basic net-
work using the cross-entropy loss and generates erased
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TABLE 4. Results of the proposed AEA and other methods on CUHK03.

pedestrian images using the adversarial erasing operation
and the dynamic strategy. Meanwhile, the erased pedestrian
images are employed to train the complementary network
using the cross-entropy loss and the triplet loss.When testing,
the 2,560-dim deep features extracted from the complemen-
tary network are treated as the pedestrian representations.

3) BASELINE 3
It adopts the same network structure with the proposed AEA,
but erases salient areas based on the original pedestrian
image. Specifically, for Baseline 3, we first transform the
pedestrian image (RGB) into the gray image, and treat the
pixel positions with the top R% largest values in the gray
image as the salient areas. Then, we erase these salient areas
at the corresponding positions of the pedestrian image (RGB)
to obtain the erased pedestrian image. It should be noted
that since the original pedestrian images are invariant, the
salient areas and erased pedestrian images of Baseline 3 are
immutable in the training process. Hence, for convenience
we erase the salient areas only once in the training process.
In Baseline 3, the pedestrian image is represented by the
5,120-dim feature vector, which is the same as the proposed
AEA.

4) BASELINE 4
Compared with AEA, it does not utilize the dynamic strategy.
Specifically, we first train the basic network using the cross-
entropy loss and the triplet loss until convergence. Then, we
extract the attention maps from Conv2_X of the trained basic
network. Afterwards, we use the adversarial erasing operation
to obtain erased pedestrian images. Finally, we utilize original
pedestrian images as the input of the basic network and
meanwhile we utilize erased pedestrian images as the input
of the complementary network. Note that we do not adopt
the dynamic strategy in Baseline 4, that is, we employ the
adversarial erasing operation only once, and therefore the
erased pedestrian images are invariant in the training stage.
The test stage of Baseline 4 is the same as AEA.

We list the comparison results in Table 2 where the fol-
lowing conclusions can be drawn. Firstly, the proposed AEA
outperforms four baselines in all situations. Secondly, the
proposed AEA yields higher accuracy than Baseline 1 and

TABLE 5. Results of the proposed AEA and other methods on
DukeMTMC-reID.

Baseline 2 on the three databases. It is because Baseline
1 and Baseline 2 extract deep features from the basic net-
work and the complementary network respectively, while
the proposed AEA fuses the two kinds of complementary
features in a unified framework. Thirdly, Baseline 1 achieves
better results on rank-1 accuracy and mAP than Baseline 2.
It is because Baseline 1 learns feature representations from
whole pedestrian images, while Baseline 2 extract features
from erased pedestrian images where the salient areas are
occluded. Fourthly, Baseline 4 surpasses Baseline 3, which
demonstrates the attentionmap contains more semantic infor-
mation than the original pedestrian image. Hence, the atten-
tion map is utilized to locate salient areas in the proposed
method. Finally, Baselines 4 is experimentally validated as
inferior to the proposed AEA. It is because the proposed AEA
adopts the dynamic strategy which could match the dynamic
status of AEA while Baseline 4 does not utilize the dynamic
strategy.

D. COMPARISON WITH OTHER METHODS
Table 3 shows the results on Market1501 where the proposed
AEA obtains the best results (95.9% rank-1, 87.9% mAP).
Compared with AANet [63] and CFCNN [22] which utilize
global and local deep features to represent the pedestrian,
the proposed AEA achieves better results than them, because
the proposed AEA not only learns global and local deep
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TABLE 6. Some results about REDA, AOS and AEA.

features, but also learns completed features using an adver-
sarial manner.

Table 4 shows the results on CUHK03. As for the labeled
setting, the proposed AEA obtains 71.2% rank-1 accuracy
and 67.6% mAP. As for the detected setting, the proposed
AEA obtains 67.8% rank-1 accuracy and 65.5% mAP. These
results surpass other methods in Table 4.
Table 5 shows the results on DukeMTMC-reID. The pro-

posed AEA yields 88.4% rank-1 accuracy and 75.5% mAP,
which obtains the best results compared with other methods.
Since DukeMTMC-reID is an extremely challenging person
Re-ID database, the superiority of AEA is verified once again.

The proposed AEA generates erased pedestrian images in
the learning stage, and therefore it could be regarded as a kind
of data augmentation method. Hence, we also compare AEA
with other data augmentation methods, i.e., REDA [56] and
AOS [41]. For fair comparison, we utilize the same network
structure to implement REDA and AOS. The experimental
results are shown in Table 6 where the proposed AEA is
superior to REDA and AOS. Compared with REDA [56] that
randomly occludes rectangle regions in original pedestrian
images, the proposed AEA surpasses REDA by a large mar-
gin. It is because the proposed AEA learns erased pedestrian
images from the attention map using adversarial learning,
whereas REDA does not have the learning process. Further-
more, the proposed AEA obtains better performance than
AOS [41] where the erased area is invariant. Additionally,
AOS learns the erased area using a separate network, that is
the erasing operation and the feature learning are separate. On
the contrary, the proposed AEA obtains variant erased areas
using dynamic strategy, and learns erased areas and features
in a unified framework.

E. PARAMETER ANALYSIS
In this subsection, we evaluate several important parameters
which influence the performance of AEA, i.e., the parameter
R to regulate the percentage of erased areas, the margin m in
Eq. 5 to adjust the distances between positive and negative
pairs, and α1 and α2 in Eq. 8 to control the relative impor-
tance of objective function. In addition, we also discuss the
selection of convolutional layer for the attention map.

We first evaluate the influence of the parameter R on
the three databases, and the evaluation results are shown in
Fig. 6. We can see that when R is too small, the performance
decreases because the erased pedestrian image is similar to
the original one, and meanwhile when R goes too large,
the performance also declines because of erasing too many
salient areas. Hence, we set R to 10 for Market-1501 and
DukeMTMC-reID, and 20 for CUHK03.

FIGURE 6. Influence of the parameter R in rank-1 accuracy and mAP on
the three databases.

TABLE 7. Effect of the parameters α1 and α2 in rank-1 accuracy on the
Market-1501 database.

Then, we test the influence of the marginm, and the results
are shown in Fig. 7.We changem from 0.1 to 0.5 with the step
of 0.1. When m is equal to 0.3, the rank-1 accuracy and mAP
obtain the best results on Market-1501 and DukeMTMC-
reID. Similarly, the proposed AEA achieves the best results
on CUHK03 when m is set to 0.35.

Afterwards, we discuss the influence of α1 and α2 in
Eq. 8 on Market-1501, and our experiments have shown
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FIGURE 7. Influence of the margin m in rank-1 accuracy and mAP on the
three databases.

TABLE 8. Effect of the parameters α1 and α2 in mAP on the Market-1501
database.

TABLE 9. Effect of extracting convolutional activation maps from
different layers on Market-1501.

that the conclusions can be generalized to CUHK03 and
DukeMTMC-reID as well. We take the values of α1 and α2
from a discrete set {0.1, 0.5, 1, 1.5, 2}. From Table 7 and 8, it
is clear that the proposed AEA reaches the best results when
α1 = α2 = 1.

Finally, we also discuss the selection of convolutional
activation maps Ml,c in Eq. 1 which are used to form the
attentionmap. The results are shown in Table 9 where extract-
ing convolutional activation maps from Conv2_X obtains

better performance than others. It should be noted that the
experimental results can be generalized to CUHK03 and
DukeMTMC-reID.

V. CONCLUSION
In this paper, we have proposed the AEA to learn dis-
criminative completed features for person Re-ID. The AEA
extracts global and local deep features from original pedes-
trian images, and learns complementary features using erased
pedestrian images. In order to generate effective erased
pedestrian images, we have presented the adversarial erasing
operation to locate salient areas on the attention map, and
adopted the dynamic strategy to match the dynamic status
of AEA. Because of the diversity of training samples, i.e.,
original and erased pedestrian images, the generalization abil-
ity of AEA is improved. The experimental results on three
large-scale person Re-ID databases have demonstrated that
the proposed AEA achieves better performance than other
state-of-the-art methods.
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