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ABSTRACT: Polycrystalline materials are widely utilized in engineering fields. In this study, 
peridynamic (PD) models are developed for the first time in the literature to investigate 
thermally-induced fracture phenomenon for cubic polycrystals and ceramic made of different 
materials. After validating the current model, the influences of the grain size, grain boundary 
strength and composition of the materials on the fracture behavior are analyzed. Two different 
types of pre-existing cracks, i.e. vertical and horizontal, are considered. The effect of grain size 
is much more obvious for ceramic materials and crack branching is observed for both vertical 
and horizontal crack cases. Grain boundary strength has a significant influence on crack 
behaviour. For weaker grain boundaries intergranular fracture pattern is observed whereas for 
stronger grain boundaries transgranular crack pattern is more dominant. Crack branching is 
much more significant when the silicon carbide ratio is higher due to the difference in 
coefficients of thermal expansion of two different materials. By comparing with the reference 
results available in the literature similar fracture features are obtained. 
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1. Introduction 

Most metals, alloys and ceramics are usually polycrystalline materials. Polycrystalline 
materials usually consist of numerous crystals at the microscale. Each crystal may have its own 
properties such as shape, size, grain orientation and so forth. These microscale properties can 
have an impact on the features of materials at the macroscale and finally affect the 
characteristics of the whole structure. Although research studies concerning the polycrystalline 
materials have been performed for decades, understanding the fracture phenomenon in these 
materials, especially at the microscale, is rather limited. This is because not only the crystals 
have various characteristics, but also the patterns of the crack can also be diverse [1].  

Experiments are powerful tools to carry out research about polycrystalline materials. 
Traditional experiments, as a result of lacking advanced photographic and imaging 
technologies, usually concentrated on one specific aspect of polycrystals [2-4]. Recently, with 
the development of tomography, even the 3-D microstructures of the polycrystalline materials 
can be clearly observed. By utilizing a dual-beam focused iron beam-scanning electron 
microscope (FIB-SEM) combining with an Electron Backscattered Diffraction (EBSD) system, 
Groeber et al. [5] successfully obtained the information about grain size and orientations of the 
nickel-based superalloy in 3-D. By accurately collecting data about grains, the mechanical 
performance of the material can be estimated and tested. Ludwig et al. [6] used the x-ray 
diffraction contrast tomography (DCT) to obtain the shapes and orientations of the grains of a 



polycrystalline material without considering deformations. Then, by using the same 
tomography technique together with propagation-based phase-contrast tomography, Herbig et 
al. [7] investigated the microstructure of the titanium alloy. More importantly, this setup also 
showed the potential to observe crack propagation. Although experiments can provide 
important information about the microstructure of polycrystalline materials, experiments about 
the fracture of polycrystals usually require expensive equipment and the preparation and 
analysis process are quite complex and time-consuming [8]. Computational modeling of 
polycrystalline materials would be a more practical and economical approach. 

Cohesive zone model (CZM) is one of the most popular numerical methods to simulate 
the fracture of polycrystalline materials. After applying the Finite Element Method (FEM) to 
CZM, Camacho and Ortiz [9] simulated the dynamic fracture of brittle materials based on their 
linear cohesive law. Ortiz and Pandolfi [10] focused on the problem of fracture of metals and 
the initiation and propagation of the crack were analyzed according to the potential-based law 
developed by Tvergaard and Hutchinson [11]. CZM combining with FEM was also chosen by 
Lin et al. [12] to study about the role of the properties of the cohesive zone on the transitions 
of the crack pattern. Boundary element method (BEM) [13] can be a more effective and easier 
method than CZM and it can overcome some drawbacks of FEM including the complexity of 
the analysis. BEM has been successfully applied to analyze different types of fracture of 
polycrystalline materials [14, 15]. Furthermore, BEM was further extended to model 
polycrystals to illustrate the crack propagation phenomenon under thermal loading [8, 16, 17]. 
Multiscale cohesive zone model (MCZM) was recently developed from CZM by Zeng and Li 
[18] and it is another useful and improved tool for the simulation of fracture of polycrystalline 
materials. Intergranular/transgranular and brittle/ductile fracture were analyzed using MCZM 
by Qian and Li [19] and Li et al. [20], respectively. Galvis and Sollero [21] combined the 
MCZM with BEM together and the analysis of the intergranular crack propagation in zinc and 
nickel was performed. Apart from CZM, the Extended Finite Element Method (X-FEM) and 
Body Force method can also be utilized to simulate the fracture process in polycrystalline 
materials [22, 23]. 

As an alternative approach, peridynamics (PD) can be utilized. PD was introduced by 
Silling [24] and its governing equations are in the form of integro-differential equations. The 
PD formulation does not contain any spatial derivatives which leads to advantages for problems 
including discontinuities such as cracks. PD has been applied to many different types of 
material systems including metals [25-27] and composites [28-30]. A recent review on 
peridynamics research can be found in Javili et al. [31].  

In order to apply PD methodology to model polycrystalline materials especially to 
simulate fracture at microscale, several research studies have been performed for different 
types of crystals. First of all, Ghajari et al. [32] developed a novel model for hexagonal crystals 
based on Bond-based PD theory (BBPD). This model allows the phenomena of crack 
nucleation and branching to be automatically simulated during the numerical analysis. The 
model was verified by comparing PD results against analytical and experimental reference 
solutions. Then the fracture of the microstructure of alumina was investigated indicating that 
this PD model can be successfully used to analyze materials with hexagonal crystal structures. 
Secondly, Askari et al. [33] built a PD model for crystals with cubic systems. The effect of the 
grain boundary on the mechanisms of the fracture was explored for silicon using this model. 
De Meo et al. [1] introduced another novel model based on BBPD for cubic crystals. The 



robustness of this model was proven by both static/dynamic analysis of an iron plate without a 
crack and a steel plate with a pre-existing crack. The influences of the grain size, grain 
orientation, grain boundary strength, and fracture toughness ( IcK ) of the materials on the 

fracture mechanisms of steel were also explored. De Meo et al. [34] used their model to 
investigate the stress corrosion cracking (SCC) phenomenon contributed by adsorption-
induced decohesion. Their results were quite identical to the reference experimental results. 
Zhu et al. [35] extended this BBPD model to ordinary state-based PD (SBPD) which eliminates 
the restriction of the limitations on material constants due to assumptions of BBPD formulation.  

As a well-known phenomena, structures made from metals or ceramics usually suffer 
from temperature change. These changes can be due to the heating-up process during the 
working condition or the cooling-down process during the fabrication procedure. The thermal 
expansion/shrinkage of the material can result in initiation and propagation of cracks especially 
under the condition that there is a pre-existing crack. The thermal-expansion induced fracture 
of polycrystalline materials are mainly caused by: 1) the differences of the thermal expansion 
coefficients ( ) among different material compositions, 2) transformations of the crystal 
systems during the change of the temperature, 3) elastic anisotropy leading to variation of strain 
distributions [8]. This study focuses on peridynamic modelling of the fracture behaviour at the 
microscale for the polycrystalline materials caused by thermal loading for the first time in the 
literature. In Section 2, the PD model will be briefly presented. Next, three static examples will 
be shown as part of Section 3 to test the feasibility of the model. In Sections 3.4 and 3.5, the 
numerical analysis of the crack propagation for a cubic polycrystalline material and a ceramic 
made of two different materials will be presented. Finally, conclusions of the study will be 
given.  

 

2. PD theory 

2.1 Basic equations 

The governing equations of PD are in the form of integro-differential equations and can 
be written as: 
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where   x  is the density of the material point,  , tu x  is the acceleration of the material point 

at time t ; Hx  is defined as the horizon (shown in Fig. 1) which defines the range of interaction 

of the material point at x with other material points; dV x  is the volume of the materials points 

within the horizon;  , tb x  is the body load externally exerted on the material point at x . 

Analytical solution of Eq. (1a) is usually not available. Therefore, meshless approach is widely 
utilized to numerically solve Eq. (1a) which then takes the discretized form as: 
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where N is the number of material points withing the horizon of the material point ix . f  is 

the bond (interaction) force between material points ix and jx and it can be calculated as: 
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where c  is the bond constant between two material points. For 2-D isotropic materials, the 
bond constant can be written as [36]:  
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Fig. 1. PD horizon and interactions between material points 

 

In Eq. (3), k  is the bulk modulus, i.e.  / 2 1k E   , and h  is the thickness of the plate.   

is the radius of the horizon, usually taken as 3 dx    where dx is the grid size [36]. E  and 
  are material constants corresponding to elastic modulus and Poisson’s ratio, respectively. It 
should be noted that   is constrained as 1 / 3 for 2-D problems due to the limitation of BBPD. 
 y x u is the position of the material point in the deformed configuration where u is the 

displacement and x  is the position of the material point in the original configuration. If the 
temperature loading is taken into account, the equation of the PD force can be updated as: 
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where T  is the temperature change of the bond. The temperature change of the bond can be 
calculated by averaging the temperature changes of the two interacting material points. 



One of the most important parameters of BBPD is the stretch and it can be defined as:  
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In order to judge whether a bond should be broken or not, critical stretch ( 0s ) parameter is 

utilised. If the value of stretch is larger than critical stretch, the bond can be regarded as broken, 
i.e. there will not be any force acting between the two material points of this bond. The critical 
stretch can be calculated from the material properties as: 
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where cG is the critical energy release rate. 

2.2 PD equations for single cubic crystal 

Under the plane-stress condition, the local stiffness matrix for a single cubic crystal can 
be written as: 
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Fig. 2. PD model for polycrystalline when the orientation of the crystal is 0° (blue lines 

represent Type-1 bonds and red lines represent Type-2 bonds) 
 

Based on the PD model developed by De Meo et al. [1], bonds for a single cubic crystal can be 
divided into two different groups. Type-1 bonds shown as blue lines in Fig. 2 are located in all 
directions of the material. The bond constant for Type-1 bonds can be calculated from the 
components of the stiffness matrix as:  
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Type-2 bonds shown as red lines in Fig. 2 exist in some specific directions. These directions 
are defined according to the orientations of the crystals. Type-2 bond angle with respect to the 

crystal orientation is specified as  2 1 , (  1,  2,  3,  4)
4
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bonds can be calculated as: 
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  , ij is the bond length between material points i and j. 

The accuracy of this model under mechanical loading was verified by De Meo et al. [1]. 
For cubic crystal, the thermal expansion coefficient,  is same in all directions. Therefore, the 
thermal loading can be directly taken into account by using the bond force expression given in 
Eq. (4).  

2.3 PD model for polycrystalline materials 

In order to generate the polycrystalline model, the Voronoi tessellation method was 
utilized. The seeds were randomly distributed over the plate and the nodes were divided into 
different crystals by minimizing the distance between the seeds and nodes. Besides, for cubic 
polycrystals, the grain size and grain orientations were randomly determined. The plot of the 
crystals is shown in Fig. 3. In this study, the grain boundary width is assumed to be zero. 
Moreover, for the bonds crossing the grain boundaries, their bond constant values are 
calculated as the average of the bond constant values of the associated material points. One 
definition that should be noted here is the grain boundary coefficient (GBC) and it is the ratio 
of the strength of the bond crossing the grain boundary to the strength of the bond inside the 
grains. It is an important parameter for the investigation of the influence of the grain boundary 
strength. 

Fig. 3. Crystals generated by the Voronoi tessellation method. 
 

 



3. Numerical analysis 

In this section, several numerical cases are considered to verify the current formulation and 
demonstrate its capabilities. First, static analysis of an isotropic plate subjected to thermal 
loading problem is considered to verify the thermo-mechanical peridynamic formulation. Next, 
the same analysis is repeated by considering a single cubic crystal and cubic polycrystals 
instead of an isotropic material. The solution to the static cases is obtained by utilising an 
implicit scheme by directly equating the inertia term to 0 in the peridynamic equation of motion 
given in Eqs. (1a,b) and solving a matrix system to obtain the solution as explained in [37]. 

Following static analyses, dynamic analysis of cubic polycrystals with pre-existing cracks 
subjected to thermal loading problem is performed. Finally, a similar case is considered by 
investigating the thermo-mechanical behavior of a ceramic material made of two materials. 
The solution to the dynamic analysis is obtained by using explicit time integration and utilizing 
a stable time step size to obtain a stable solution as explained in [36]. 

All problem cases have two-dimensional models based on plane-stress assumption. The 
thickness of the plate is provided for the completeness of the information. The discretization 
size and horizon size used in numerical cases are sufficient to obtain accurate results with 
reasonable computational time. To demonstrate the suitability of the discretization and horizon 
size utilized in this study, convergence studies are performed and demonstrated in Appendix.   

3.1 Static analysis of isotropic material under thermal loading 

 
Fig. 4. Two-dimensional plate subjected to thermal loading. 

 

The two-dimensional model shown in Fig. 4 has a length of L = 0.1542 m and a width 
of W = 0.0762 m. The thickness of the plate is 30.1651 10  m. The elastic modulus and 
Poisson’s ratio are 200 GPa and 1 / 3 , respectively, and the density of the material is 7850 

3Kg/m . The thermal expansion coefficient is given as 623 10 o/ C . The PD model is 

generated by 240 120 points and the grid spacing is 30.635 10 mdx   . The horizon size is 
selected as 3 dx   . The left edge of the plate is fully constrained by creating a fictitious 
boundary region with a thickness equivalent to the horizon size. Both displacement components 
in x- and y-directions are costrained inside the fictitious region. The thermal loading is applied 
in the form of a temperature change as 900 C  for all nodes, i.e. 900 CT   . The results of the 
points on the vertical and horizontal centerlines of the plate are chosen to compare with the 



FEM results and the variation of the displacements along the centerlines are shown in Fig. 5. 
It can be seen that the results of PD are identical to the FEM results and the accuracy of the 
model for the thermal expansion problem of isotropic material is verified. 

Fig. 5. Displacements of material points along the central lines of an isotropic material. 
 

 

3.2 Static analysis of a single cubic crystal under thermal loading 

For the second numerical case, a single cubic crystal is considered. The size of the 
model for the thermal single crystal analysis is the same as defined in Section 3.1. The material 
of the cubic crystal is iron and for iron crystal, the stiffness matrix coefficients are given as 

11 231.4 GPac  , 12 134.7 GPac  , and 44 116.4 GPac  . The orientation of the crystal is 

defined as 0°, i.e. Type-2 bonds are placed at 45°, 135°, 225°, and 315° orientations. The 
loading condition and boundary condition are also the same as in the previous section. The PD 
displacements, in x- and y- directions, of the two orthogonal centerlines are collected and their 
comparison against FEM is given in Fig. 6. Results from both approaches are in good 
agreement with each other which shows that the microscale PD model can provide accurate 
results for the thermal loading problems of a cubic crystal under static loading condition. 

Fig. 6. Displacements of material points along the central lines of a single cubic crystal. 
 

 



3.3 Static analysis of cubic polycrystals under thermal loading 

Fig. 7. Polycrystalline structure subjected to thermal loading. 
 

In order to further test the accuracy of the model for cubic polycrystals, a 
5 mm  2.5 mm iron plate with a thickness of 0.5 mm is considered with 100 grains (Fig. 7). 
Apart from the change in the geometry of the plate, the remaining parameters are the same as 
in the single-crystal example. For each grain, the orientation of the crystal is randomly selected. 
By comparing the displacements between PD and FEM results as shown in Fig. 8, it can be 
concluded that for cubic polycrystals, the PD model can capture correct results for the 
thermally-induced deformation problem. 

Fig. 8. Displacements of the material points along the central lines of cubic polycrystals. 
 

3.4 Dynamic analysis of cubic polycrystals with pre-existing cracks under thermal loading 

For the purpose of investigating the fracture behavior and the effects of grain size and 
grain boundary strength for the cubic polycrystalline materials under thermal loading, a 
10 mm  10 mm plate made of -silicon carbide was chosen and the model was created using 

200 200  PD points. The thickness of the plate is the same with the PD grid size dx which is 
equal to 0.05 mm. The stiffness matrix coefficients for the silicon carbide are given as 

11c 395 GPa , 12c 123 GPa , and 44c 236 GPa  [38]. The density of the silicon carbide is 

3100 3Kg/m and the thermal expansion coefficient is 66.58 10 o/ C. The critical stretch of the 

silicon carbide was calculated using the fracture toughness of 63.46 10 MPa m  [39]. The 

time step size for explicit time integration is specified as 91 10 s. For the dynamic cooling 



process, the model is free from any mechanical constraints and the temperature decreases by 

300 C , i.e. 300 CT    , over a short period of time ( 63 10 s ). Two different types of pre-
existing cracks were considered. The first one is a 2 mm crack horizontally located at the center 
of the plate. For the second type, two small cracks were located at the top and bottom edges of 
the plate with a length of 1 mm (Fig. 9).  

Fig. 9. Pre-existing cracks (a) horizontal, (b) vertical. 
 

  

  

  
0.75 s  1.5 s  2.25 s  3 s  

Fig. 10.  Crack propagation for the vertical pre-existing crack case for different number of grains. From the 
top to the bottom the number of the grains are: 20, 50, and 100.  

  
Fig. 11. Crack propagation for the vertical pre-existing crack case at 3 s  for 20, 50, and 

100 grains. 



The plate was created using a different number of grains (20, 50, and 100) to explore the effect 
of the grain size on fracture behavior. Grain Boundary Coefficient is specified as GBC = 1. 
The plots of the propagation of the cracks are shown in Figs. 10 and 12 and the crack 
propagation inside the crystals are also presented in Figs. 11 and 13. For the vertical crack, 
with the decrease of the temperature and shrinkage of the plate, the crack starts to propagate 
from the initial notch. However, it can be seen that the speed of the crack propagation is slowing 
down and there is no significant crack propagation after 1.5 s . During the entire process, 

there is no obvious crack branch occurance. Based on the plots of the final stage, the number 
of grains do not have a big impact on the main crack. However, for the 100 grains plate, there 
is an initiation of a new crack from the boundary of the plate. On the basis of the crystal plots 
with crack, all of the three cases are showing transgranular crack pattern and the cracks 
propagate through the crystals rather than along the crystal boundaries. The crack nucleation 
at the right edge, for the 100 grains case, is mainly caused due to increase in grain boundaries 
as the number of grains increase. 

0.75 s  1.5 s  2.25 s  3 s  
Fig. 12.  Crack propagation for the horizontal pre-existing crack case for different number 

of grains. From the top to the bottom the number of the grains are: 20, 50, and 100. 

 
Fig. 13. Crack propagation for the horizontal pre-existing crack case  at 3 s  for 20, 50, 

and 100 grains. 
 

For the horizontal pre-existing crack case, with the shrinkage of the plate, the crack branches 
to propagate but the propagation is not severe until the temperature change is over 225 ℃  and 
then the crack propagates dramatically from the branch tip. It can be seen that the plate with 



100 grains has more branches and the boundary has more potential to initiate new cracks than 
the remaining two cases. This can also be explained by the increase of grain boundaries similar 
to the vertical crack condition. It can be concluded that with the increase of number of grains, 
the possibility of new crack initiation increases. Moreover, at the final stage, even if the crack 
path is not the same, the fracture severity of three cases are still in a similar manner. This means 
that the patterns of the main crack are not significantly influenced by the number of grains, 
which are also in accordance with the conclusion of De Meo et al. [1] 

 

0.75 s   1.5 s  2.25 s  3 s  
Fig. 14.  Crack propagation for the vertical pre-existing crack for different values of GBC. 

From the top to the bottom the values of GBC are: 0.5, 1, and 2. 
 

 
                       (a)                                             (b)                                              (c) 

Fig. 15. Crack propagation for the vertical pre-existing crack at 3 s  for GBC values of 
(a) 0.5, (b) 1, and (c) 2.  

 

Next, different values of the GBC are considered for 100 grains and both types of cracks to 
investigate the effect of grain boundary strength. It is expected that if the GBC is less than 1, 
the fracture behavior becomes more intergranular because the strength of the bond crossing the 
grain boundary becomes weaker than the bonds inside the grains. On the contrary, the crack 
pattern becomes transgranular with the growth of the value of GBC and the crack prefers to 
propagate within the crystals rather than along the grain boundaries. As shown in Figs. 14-17, 



Regardless for the crack being vertical or horizontal, when GBC=0.5, the crack propagates 
from the pre-existing crack and the newly generated crack becomes much more severe than the 
remaining two cases. Additionally, it can be seen from the plots of the grains that the crack 
starts to propagate along the grain boundaries when GBC=0.5. It should also be mentioned that 
the crack patterns are not strongly influenced when GBC=2 with respect to GBC=1 and the 
plots for these two cases are roughly identical except that there are new cracks initiated from 
the grain boundaries for the vertical crack condition for GBC=1. Actually, this phenomenon 
also meets the observation of De Meo et al. [1] and it can be inferred that the strong grain 
boundaries will be beneficial for reducing the possibility of initiation of new cracks.  

 

0.75 s   1.5 s  2.25 s  3 s  
Fig. 16.  Crack propagation for the horizontal pre-existing crack case for different values of 

GBC. From the top to the bottom the values of GBC are: 0.5, 1, and 2 
 

 
                       (a)                                              (b)                                             (c) 

Fig. 17. Crack propagation for the horizontal pre-existing crack case  at 3 s  for GBC 
values of (a) 0.5, (b) 1, and (c) 2. 

 

3.5 Dynamic analysis of ceramic made of two materials with pre-existing cracks under thermal 
loading 

In this section a type of ceramic, which is constituted of two materials (silicon carbide 
and alumina), is considered under thermal loading condition based on an earlier study by Geraci 



and Aliabadi [17]. They utilize the BZM to investigate the effect of number of grains and 
material composition (the percentages of the silicon carbide). In this study, the PD model is 
used to analyze the same problem and the effect of the GBC is also taken into consideration. 
Although the crystal system for silicon carbide and alumina are cubic/hexagonal and trigonal, 
respectively, according to [17], these two materials can be treated as isotropic materials for 
simplification. To be able to compare PD results with the results given in [17], same approach 
is utilized by treating two materials as isotropic materials.  The required parameters for the two 
materials are collected and summarized in Table 1 [17]: 

 

Materials 
Elastic Modulus 

(GPa) 
Thermal Expansion 
Coefficient ( /℃ ) 

Density 
( 3/Kg m )

Fracture toughness 

( MPa m ) 
Silicon carbide 470 64 10  3100 3 

Alumina 431 68.4 10  3690 3 
Table 1. Material information for silicon carbide and alumina 

 

0.5 s  1 s  1.5 s  2 s  
Fig. 18.  Crack propagation for the vertical pre-existing crack case for different number of 
grains with 50% silicon carbide. From the top to the bottom the number of the grains are: 

20, 50, and 100. 
 
 
 
 
 
 



 
(a) Crack propagation showing the distribution of crystals. 

 
(b) Crack propagation showing the material composition (blue represents silicon carbide) 

 
Fig. 19. Crack propagation for the vertical pre-existing crack case with crystals and 
material composition at 2 s  for 20, 50, and 100 grains with 50% silicon carbide. 

 

The geometry of the model (number of PD points, the patterns of the pre-existing cracks, and 
the size of the plate) is same as the previous Section 3.4. The only difference is the range of 
temperature change which has been reduced to 200 ℃  because the currently used materials 
are more sensitive to the thermal loading. For the condition of different number of grains, 20, 
50, and 100 grains are considered with GBC=1. The percentage of the silicon carbide is kept 
as 50%, i.e. almost half of the grains are made of silicon carbide and the rest is alumina. As 
shown in Fig. 18, for the vertical crack, with the decrease of the amount of the grains, the main 
crack becomes easier to branch and the crack is more likely to propagate approaching the other 
edge of the plate. These results agree with the conclusion drawn by Geraci and Aliabadi [17]. 
The damage plots with the distribution of crystals and the two materials are also provided in 
Fig. 19 to support the conclusion. 

 

 

 

 

 

 

 



   

0.5 s  1 s  1.5 s  2 s  
Fig. 20.  Crack propagation for the vertical pre-existing crack for different percentages of 
silicon carbide with 100 grains. From the top to the bottom the percentages of the silicon 

carbide are: 50%, 10%, and 0% 
 

 
(a) Crack propagation showing the distribution of crystals. 

 
(b) Crack propagation showing the material composition (blue represents silicon carbide). 

 
Fig. 21. Crack propagation for the vertical pre-existing crack case with crystals and 

material composition at 2 s  for 50%, 10%, and 0% silicon carbide with 100 grains. 
 

In order to test the influence of the percent of silicon carbide, the plate with 100 grains 
is considered. The number of silicon carbide crystals was reduced from 50% to 10% and then 
to 0%. Due to the fact that the thermal expansion coefficient of silicon carbide is about half of 
the alumina and the strength and fracture toughness of the two materials are quite close, it is 
much easier for the crack to propagate in alumina rather than in silicon carbide. As can be seen 



from the plots in Fig. 20, the main crack is branching although this is not obvious for 50% 
silicon carbide case. However, when the percentage has been reduced to 10%, there exist two 
branches at the initial crack tip and the number of branched cracks increases to 3 when the 
material is pure alumina. It can be concluded that with the increase of silicon carbide, the 
severity of the main crack is limited. However, the drawback is also prominent, there are small 
cracks initiating from the grain boundaries which can be further observed from Fig. 21. It can 
also be shown that the difference of coefficient of thermal expansion, ,  between different 
materials will lead to initiation of new cracks.  

For the plate with 100 grains and 50% silicon carbide, different GBC is also considered. 
As shown in Figs. 22 and 23, cracks initiating from the grain boundaries become much more 
severe with GBC=0.5 and the shape of the single crystals made of different materials can be 
seen clearly. Furthermore, the crack patterns of the remaining two conditions are quite similar, 
which can also further enhance the conclusion about the effect of GBC in Section 3.4. 

 

0.5 s  1 s  1.5 s  2 s  
Fig. 22.  Crack propagation for the vertical pre-existing crack case for different values of 
GBC with 100 grains and 50% silicon carbide. From the top to the bottom the values of 

GBC are: 0.5, 1, and 2. 
 
 
 
 
 

 



 
(a) Crack propagation showing the distribution of crystals. 

 
(b) Crack propagation showing the material composition (blue represents silicon carbide). 

 
Fig. 23. Crack propagation for the vertical pre-existing crack case with crystals and 

material composition at 2 s  for 0.5, 1, and 2 GBC with 100 grains. 
 

Horizontal pre-existing crack is also considered. After comparing the plots for various 
conditions (Fig. 24 to Fig. 29), the same conclusions can be obtained as the vertical pre-existing 
crack and they can be summarized as: 1) with the increase of number of grains, the propagation 
of the main crack and its branches become relatively hindered but the initiation of small cracks 
at the grain boundary become serious, 2) with the increase of silicon carbide, the severity of 
the main crack decreases due to the decrease of the branches, 3) if the grain boundary strength 
becomes weaker, the crack pattern becomes intergranular but increasing the value of GBC does 
not significantly influence the results. These conclusions are immune to the type of the pre-
existing crack and match well with Geraci and Aliabadi [17]. 

 

 

 

 

 

 

 

 



0.5 s  1 s  1.5 s  2 s  
Fig. 24.  Crack propagation for the horizontal pre-existing crack case for different number 

of grains with 50% silicon carbide. From the top to the bottom the number of the grains are: 
20, 50, and 100 

 

 
(a) Crack propagation showing the distribution of crystals. 

 
(b) Crack propagation showing the material composition (blue represents silicon carbide). 

 
Fig. 25. Crack propagation for the horizontal pre-existing crack case with crystals and 

material composition at 2 s  for 20, 50, and 100 grains with 50% silicon carbide. 
 

 



0.5 s  1 s  1.5 s  2 s  
Fig. 26.  Crack propagation for the horizontal pre-existing crack case for different 

percentages of silicon carbide with 100 grains. From the top to the bottom the percentages 
of the silicon carbide are: 50%, 10%, and 0%. 

 

 
(a) Crack propagation showing the distribution of crystals. 

 
(b) Crack propagation showing the material composition (blue represents silicon carbide). 

 
Fig. 27. Crack propagation for the horizontal pre-existing crack case with crystals and 
material composition at 2 s  for 50%, 10%, and 0% silicon carbide with 100 grains. 

 

 



0.5 s  1 s  1.5 s  2 s  
Fig. 28.  Crack propagation for the horizontal pre-existing crack case for different values of 

GBC with 100 grains and 50% silicon carbide. From the top to the bottom the values of 
GBC are: 0.5, 1, and 2. 

 

 
(a) Crack propagation showing the distribution of crystals. 

 
(b) Crack propagation showing the material composition (blue represents silicon carbide). 

 
Fig. 29. Crack propagation for the horizontal pre-existing crack case with crystals and 

material composition at 2 s  for 0.5, 1, and 2 GBC with 100 grains. 
 

4. Conclusion 

In this study, thermally-induced crack propagation in polycrystalline materials was 
simulated using peridynamics. The accuracy of the model was tested and verified with three 
static cases under thermal loading for three different material models including isotropic, single 
cubic crystal, and cubic polycrystal. The PD analysis displacement results were identical to 



conventional FEM results. Afterwards, a cubic polycrystalline material with two different types 
of pre-existing cracks, i.e. vertical and horizontal, were analyzed by applying dynamic cooling 
temperature change. The effects of grain size and grain boundary strength were investigated. 
The effect of grain size was much more obvious in the horizontal crack case in which branching 
crack behaviour was observed. For the vertical crack case, initial main cracks propagated in a 
self-similar manner. Grain boundary strength has a significant influence on crack behaviour. 
As expected, for weaker grain boundaried intergranular fracture pattern was observed whereas 
for stronger grain boundaries transgranular crack pattern was more dominant. Finally, a 
ceramic material made of two different materials, i.e. silicon carbode and alumina, was 
considered. As opposed to  cubic polycrystalline case, crack branching occurred for both 
vertical and horizontal cracks. Crack branching was much more significant when the silicon 
carbide ratio is higher due to the difference in coefficients of thermal expansion of two different 
materials. As in the cubic polycrystalline case, as the grain boundary strength decreases, the 
fracture mode turns into an intergranular character. The reached conclusions are in good 
agreement with the reference studies available in the literature.  
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Appendix 

The convergence study is performed for the dynamic analysis of ceramic made of two materials 
case. During the m-convergence test, 100 100 , 200 200 , and 400 400  PD points are 
chosen and the number of the PD points is the only variable. The GBC is fixed at 1 and two 
different types of pre-existing cracks are considered. The results of the three cases are 
computed and the plots are shown in Fig. A1 to Fig. A4.  

 

 

 

0.5 s                        1 s                        1.5 s                        2 s  

Fig. A1.  Crack propagation for the vertical pre-existing crack case for different numbers of 
PD points. From the top to the bottom the number of the points is: 100 100 , 200 200 , and 

400 400 .  

 

 

 

 

 

 

 



 

(a) Crack propagation showing the distribution of crystals 

 

(b) Crack propagation showing the material composition (blue represents silicon carbide) 

Fig. A2. Crack propagation for the vertical pre-existing crack case at 2 s  for 100 100 , 

200 200 , and 400 400  points. 

 

 

 

0.5 s                        1 s                        1.5 s                        2 s  

Fig. A3.  Crack propagation for the horizontal pre-existing crack case for different numbers 
of PD points. From the top to the bottom the number of the points is: 100 100 , 200 200 , 

and 400 400 .  



 

(a) Crack propagation showing the distribution of crystals 

 

(b) Crack propagation showing the material composition (blue represents silicon carbide) 

Fig. A4. Crack propagation for the horizontal pre-existing crack case at 2 s  for 100 100 , 

200 200 , and 400 400  points. 

From the plots, it can be seen that with the increase of the number of material points, the 
damage patterns especially the major fractures are not strongly influenced. It can be concluded 
that the discretization will affect the resolutions of the plots rather than the main features of the 
crack propagation. Compared to 100 100  (low resolution) and 400 400  (time-consuming), 
200 200  PD points is a reasonable choice to keep the critical features of the crack as well as 
high resolutions of the plots. 

For the δ-convergence, as shown in Fig. A5-A8, the horizon size does not have significant 
influence on the pattern of the main crack. Therefore, 3dx   is selected since this is 
suggested horizon size according to [1] and [36] which can provide accurate results with less 
computational time.  

 

 

 

 

 

 

 



 

 

 

 

0.5 s                        1 s                        1.5 s                        2 s  

Fig. A5.  Crack propagation for the vertical pre-existing crack case for different horizon 
sizes. From the top to the bottom the horizon size is: 2dx , 3dx , 4dx , and 5dx . 

 

(a) Crack propagation showing the distribution of crystals 

 

(b) Crack propagation showing the material composition (blue represents silicon carbide) 

Fig. A6. Crack propagation for the vertical pre-existing crack case at 2 s  for 2dx , 3dx , 

4dx , and 5dx  horizon sizes. 



 

 

 

 

0.5 s                        1 s                        1.5 s                        2 s  

Fig. A7.  Crack propagation for the horizontal pre-existing crack case for different horizon 
sizes. From the top to the bottom the horizon size is: 2dx , 3dx , 4dx , and 5dx . 

 

(a) Crack propagation showing the distribution of crystals 

 

(b) Crack propagation showing the material composition (blue represents silicon carbide) 

Fig. A8. Crack propagation for the horizontal pre-existing crack case at 2 s  for 2dx , 3dx , 

4dx , and 5dx  horizon sizes. 


