

Benzylic C–H Functionalisation by [Et₃SiH+KO^tBu] leads to Radical Rearrangements in *o*-tolyl Aryl Ethers, Amines and Sulfides

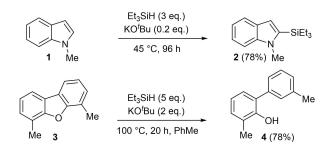
Jude N. Arokianathar,^a Krystian Kolodziejczak,^a Frances E. Bugden,^a Kenneth F. Clark,^a Tell Tuttle,^{a,*} and John A. Murphy^{a,*}

^a Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom E-mail: tell.tuttle@strath.ac.uk; john.murphy@strath.ac.uk

Manuscript received: March 17, 2020; Revised manuscript received: April 9, 2020; Version of record online:

Dedicated to Professor Bernd Giese on the occasion of his 80th birthday.

Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.202000356


© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

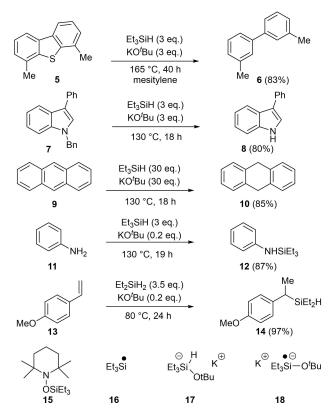
Abstract: Reaction of $Et_3SiH + KO'Bu$ with diaryl ethers, sulfides and amines that feature an *ortho* alkyl group leads to rearrangement products. The rearrangements arise from formation of benzyl radicals, likely formed through hydrogen atom abstraction by triethylsilyl radicals. The rearrangements involve cyclisation of the benzyl radical onto the partner arene, which, from computation, is the rate determining step. In the case of diaryl ethers, Truce-Smiles rearrangements arise from radical cyclisations to form 5-membered rings, but for diarylamines, cyclisations to form dihydroacridines are observed.

Keywords: radical; Truce-Smiles rearrangement; silane; KO'Bu.

Introduction

In 2013, Grubbs *et al.* reported^[1] that heating Et₃SiH with KO'Bu afforded a novel reagent which has since been shown to carry out a wide range of chemical transformations.^[1–11] (Schemes 1 and 2). This versatile reagent achieves regioselective silylation reactions of

Scheme 1. Early transformations with Et₃SiH+KO'Bu.


Adv. Synth. Catal. 2020, 362, 1–9 Wiley Online Library 1 These are not the final page numbers!

indoles **1** and other heterocycles.^[1,3,5,6] at lower temperatures, cleavage of Ar–O bonds in aryl ethers **3**,^[1] and Ar–S bond cleavage in thioethers **5**^[4] at higher temperatures. In addition, the reagent debenzylates Nbenzylindoles, **7**,^[7] reduces fused aromatic hydrocarbons, (*e.g.* **9**) to their dihydro counterparts,^[7] and converts primary and secondary amines, e.g. **11** to their silylated derivatives,^[9,10] in this case, **12**. The analogous silane, Et₂SiH₂, (and less efficiently, Et₃SiH) in combination with KO^rBu, converts styrenes, e.g. **13** to their hydrosilylated derivatives, in this case, **14**.^[8]

It appears that many different types of reactive species may be produced from heating Et₃SiH with KO 'Bu, and the nature of the reactive species present in this mixture is really not fully understood. Houk, Stoltz *et al.* detected^[5] TEMPO-SiEt₃, **15**, following addition of TEMPO, which provides evidence for triethylsilyl radicals **16**, and Jeon *et al.* have proposed K⁺ [Et₂Si (H)₂O'Bu]⁻ and analogue **17** as hydrogen atom transfer agents (and ultimately, hydrosilylation agents).^[8] The

@ 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

Scheme 2. Recent transformations by $Et_3SiH + KO'Bu$.

radical anion **18** has also been proposed to play an active role.^[1,7] As an indication of the range of mechanisms under consideration, both radical^[5] and non-radical^[6] mechanisms have been proposed for the silylation reactions of indoles **1**. Our recent efforts have reported novel reactions that provide new information on the diverse pathways open to this reagent.^[7,10,11]

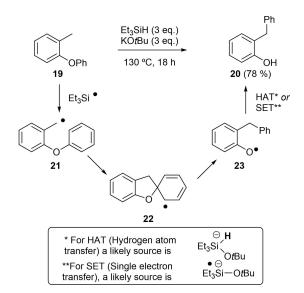
As mentioned above, diaryl ethers were studied by Grubbs *et al.* who reported Ar–O bond cleavages, e.g. $3\rightarrow 4$. The more recently published proposal^[4] for the mechanism involves *ipso* silyl radical addition to an aryl ring at the site of substitution, *i.e.* at the carbon involved in the Ar–O bond, followed by fragmentation of the C–O bond. In principle, electron transfer from a species such as **18** to the π^* system of a diaryl ether, might also produce cleavage of the aryl ether,^[1] and our original experiments were designed to explore the nature of the cleavages. This paper now reports our results.

Results and Discussion

When substrate **19**, (substrates were routinely synthesised *via* standard reactions, such as Ullmann or Chan-Lam coupling reactions. For details of their preparation and characterisation, see S.I.), was subjected to our standard $Et_3SiH/KO'Bu$ reaction conditions (3 eq. of

Adv. Synth. Catal. 2020, 362, 1–9 Wiley Online Library 2 These are not the final page numbers!

both reagents at 130 °C for 18 h) in the absence of solvent, rearranged product **20** (78%) was isolated (Scheme 3). Control thermal reactions (i) with KO'Bu but with no Et₃SiH, (ii) with Et₃SiH but with no KO 'Bu and (iii) with neither reagent (a purely thermal rearrangement is known at $320 \,^{\circ}C^{[12]}$) returned only starting material, which confirmed that the combination of Et₃SiH and KO'Bu was essential for the transformation.


Given the evidence for triethylsilyl radicals in these reaction mixtures, this rearrangement looks to be a radical-induced Truce-Smiles rearrangement.^[13–18] Hydrogen atom abstraction from the methyl group of **19** forms radical **21**. This radical then undergoes rearrangement via the spirocyclic radical **22**, which rearomatises in forming phenoxyl radical **23** that is quenched in due course.

Efforts then focused on optimisation of the reaction with substrate **19** through variation of temperature, reaction time, nature of the silane and nature of the base and solvent, prior to using those optimised conditions to study the scope of the reaction with a variety of substrates. Initially, a temperature study was conducted at $70 \,^{\circ}$ C, $100 \,^{\circ}$ C and $150 \,^{\circ}$ C, but all proved inferior to our standard $130 \,^{\circ}$ C (see Table 1).

A survey of reaction times showed that yields suffered when the reaction was conducted for a shorter period than 18 h (Table 2).

Varying the nature of the silane showed that tri-*n*-alkylsilanes as well as methyldiphenylsilane and phenyldimethylsilane worked comparably well (Ta-ble 3).

On the other hand, triphenylsilane was much less effective and tri*iso*propylsilane gave no conversion at all, suggesting that substantial stabilisation of the silyl radical in triphenylsilyl radical, or substantial steric

Scheme 3. Truce-Smiles rearrangement of radical 21.

 $\ensuremath{\mathbb{C}}$ 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

reaction of 19 .		

Entry	Temperature, T (°C)	20 (%) ^[a]	19 (%) ^[a]
1 ^[b]	130	78	0
2	70	0	86
3	100	57	28
4	150	75	0

^[a] % yield determined by internal NMR standard (1,3,5trimethoxybenzene);

^[b] isolated by column chromatography

Table 2. Effect of varying reaction time on rearrangement of19.

Entry	Reaction Time	20 (%) ^[a]	19 (%) ^[a]
1 ^[b]	18 h	78	0
2	10 min	3	74
3	30 min	54	25
4	6 h	63	17

^[a] % yield determined by internal NMR standard (1,3,5trimethoxybenzene);

^[b] isolated by column chromatography.

Table 3. Effect of varying silane on aryl migration reaction of**19**.

Entry	Silane	20 (%) ^[a]	19 (%) ^[a]
1 ^[b]	Et ₃ SiH	78	0
2	Ph ₃ SiH	35	38
3	Ph ₂ MeSiH	73	0
4	PhMe ₂ SiH	77	0
5	(ⁱ Pr) ₃ SiH	0	100
6	ⁿ Pr ₃ SiH	74	0
7	Et ₂ SiH ₂	43	27

^[a] % yield determined by internal NMR standard (1,3,5trimethoxybenzene);

^[b] isolated by column chromatography.

hindrance around silicon, in the tri*iso*propyl radical, adversely affected the rearrangement. Interestingly, the reagent that Jeon et al. found to work most effectively in their hydrosilylation reactions,^[8] diethylsilane, Et₂SiH₂, was much less effective in this transformation (Entry 7).

In a study of the influence of different bases on the reaction, KO'Bu was effective for the aryl migration of substrate **19** to phenol **20** (Entry 1, Table 4). Switching to NaO'Bu only yielded starting material **19** (Entry 2). Similarly, no conversion was seen when using NaH as the base (Entry 3). However, with KH, rearranged product **20** was observed, albeit to a lesser extent than with KOtBu (Entry 4). A control experiment (absence of Et₃SiH) showed that KH alone cannot cause aryl

 Table 4. Effect of varying the base on rearrangement reaction of 19.

Entry	Base	20 (%) ^[a]	19 (%) ^[a]
1 ^[b]	KO ^t Bu	78	0
2	NaO'Bu	0	90
3	NaH	0	100
4	KH	18	30
5 ^[c]	KH	0	80
6	KOH	0	89
7	KOEt	13	31
8 ^[c]	KOEt	0	100
9	KHMDS	0	83
10	LDA	0	100

^[a] % yield determined by internal NMR standard (1,3,5trimethoxybenzene);

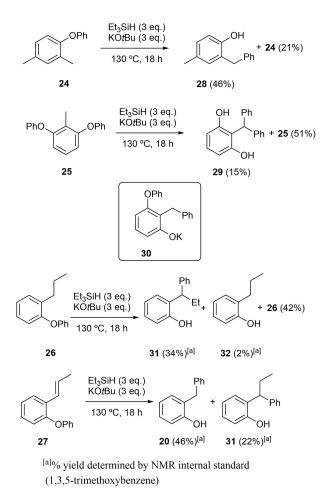
^[b] isolated by column chromatography;

^[c] reaction conducted in the absence of triethylsilane.

migration to occur (Entry 5). These results show the great importance of the potassium ion present in the base for the rearrangement of **19** to **20** and, more generally, for the silane-base system. This was consistent with results from the Grubbs, Stoltz and Jeon groups in their study of different reactions as well as with our earlier studies.^[1,2–4,6,8] KOH, which was employed for C(sp)–H bond silylation by Grubbs *et al.*,^[19] gave no conversion of substrate **19** (Entry 6). KOEt (Entry 7) gave only a 13% yield of phenol **20** from compound **19** and KHMDS and LDA both proved ineffective (Entries 9 and 10).

With these results, the diaryl ethers, 24–27 were prepared and tested under the optimum solvent-free conditions (Scheme 4). Xylylphenyl ether 24 afforded rearranged product 28 (46%) together with some starting material (21%). Symmetrical resorcinol diphenyl ether 25 gave benzhydryl-substituted resorcinol 29 (15%), together with starting material (51%). The double-migration observed in forming 29, and the absence of a product showing a single-migration, such as **30**, is in line with the fact that while **30** would be an intermediate in the process, C-H abstraction from a CH_2 benzylic position in **30** is easier than from the CH₃ group in 25, and so 30 is selectively activated for conversion to 29. The sensitivity of substrates to the alternative and simpler fragmentative mode of reaction witnessed by Grubbs *et al.* was seen with propylphenyl phenyl ether 26, where the simple fragmentation product 32 was seen in low yield (2%), alongside the rearrangement product 31 (34%) and starting material 26 (42%).

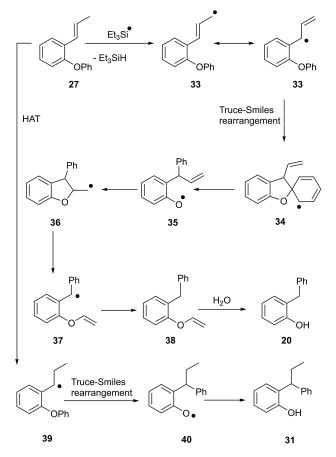
Substrate 27 provided useful information on the routes to activation for rearrangement. It does not feature an easily abstractable benzylic H-atom, as C–H bonds to sp^2 -carbons are so strong, but the terminal sp^3 -methyl group C–H bonds in cinnamyl compound


Adv. Synth. Catal. **2020**, *362*, 1–9 Wiley Online Library

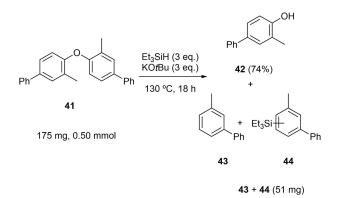
© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

These are not the final page numbers! 77

3


Scheme 4. Probing the scope of the rearrangement.

27 should have similar bond strength to the benzylic C-H in 19. Abstraction of the cinnamyl C-H would form radical 33. Scheme 5 shows the evolution of radical 33 to the unexpected product 20. Radical 33 undergoes a Truce-Smiles rearrangement to give radical 35. Cyclisation to give 36 followed by a fragmentation and hydrogen atom abstraction via benzyl radical 37 leads to vinyl ether 38, and then facile hydrolysis of the vinyl ether would afford the observed product 20.


Alternatively, a benzyl radical 39 could be reached by a different route, namely through hydrogen atom transfer (HAT), as proposed in Jeon's work. In Jeon's examples, the benzyl radical that is formed by HAT to the styrene undergoes silulation (as seen in $13 \rightarrow 14$, Scheme 1). In this case, that benzyl radical **39** has an alternative exit via a Smiles rearrangement, resulting in phenol 31.

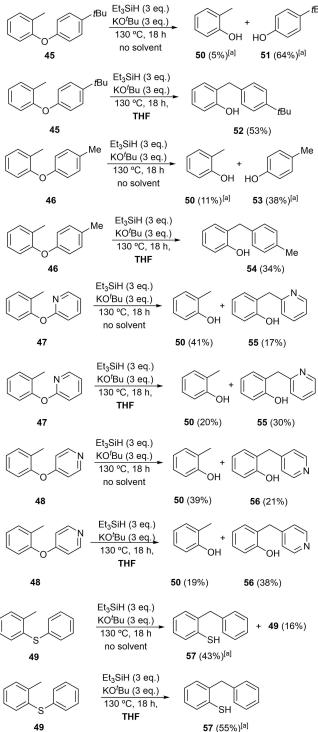
A point of concern for us was the mass balance in our reactions. With so many likely types of reactive species present, it was not surprising that a range of alternative products might be formed, but we wondered whether some products might be volatile. Accordingly,

Wiley Online Library Adv. Synth. Catal. 2020, 362, 1-9 These are not the final page numbers! 77

Scheme 5. Proposal for the formation of phenols 20 and 31 from substrate 27.

Scheme 6. Fragmentation of substrate 41.

4


substrate 41 was selected (Scheme 6). This substrate has the advantage of being derived from a phenylsubstituted phenol, and therefore the products arising should not be volatile. Also, this substrate is symmetrical and this should limit the number of byproducts. In this case, reaction under our standard conditions afforded the phenylcresol 42 (74%), and an inseparable mixture of *m*-methylbiphenyl 43 and

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

silvlated counterparts **44**. Interestingly, no product of Smiles rearrangement was observed.

Continuing our exploration of the scope of the reaction, substrates **45** and **46** were now assessed (Scheme 7). Although they differed from substrate **19**

Scheme 7. Rearrangements in THF as solvent, compared to solvent-free conditions.

Adv. Synth. Catal. 2020, 362, 1–9 Wiley Online Library

Me respectively. The pyridine substrates **47** and **48** were next examined. In these cases, the rearrangement products **55** and **56** respectively, as well as *o*-cresol. **50**, were

(11%) and **53** (38%).

55 and **56** respectively, as well as *o*-cresol, **50**, were obtained under solvent-free and THF conditions. At this stage, it is not possible to define the role of THF. It is clear that potassium ions are of critical importance for this reagent, so it is not too surprising that the nature of its solvation should also be important.

only by a single alkyl group, their reactions took

completely different courses than 19, under analogous

conditions. Thus, 45 gave the two phenols that would

result from simple fragmentation, 50 (5%) and 51

(64%). Likewise, the *p*-cresol derivative 46 gave 50

effect of solvent. Table 5 shows that THF was the solvent of choice. Accordingly, we returned to sub-

strates 45 and 46, and compared their reactivity in

THF with that under solvent-free conditions. Scheme 7

shows that the addition of THF has a profound effect

on the outcome of the reactions of these substrates,

leading to rearranged products 52 (53%) and 54 (34%)

At that stage, we decided to explore one remaining parameter relating to our parent case $19 \rightarrow 20$, *i.e.* the

The formation of *o*-cresol **50** as the sole 'simple fragmentation' product of these substrates (no pyridones were observed) would be consistent either with selective addition of a radical (H atom or triethylsilyl radical) to the pyridine ring, or with selective electron transfer to the electron-deficient pyridine ring in **47** and **48**, followed by fragmentation. In these reactions, the rearrangement product **55** (17%) or **56** (21%) was also seen from substrates **47** and **48**, respectively. When these substrates were treated with the reagent in THF as solvent, the yields of the rearrangement

 Table 5. Effect of solvent on aryl migration reaction of 19.

	$\begin{array}{c} \begin{array}{c} & \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
Entry	Solvent ^[a]	20 (%) ^[b]	19 (%) ^[b]	
1 ^[c]	_	78	0	
2	Hexane	16	24	
3	Toluene	8	30	
4	THF	88	0	
5 ^[d]	THF	58	3	
6	1,4-Dioxane	0	91	

^[a] 5 mL of solvent used;

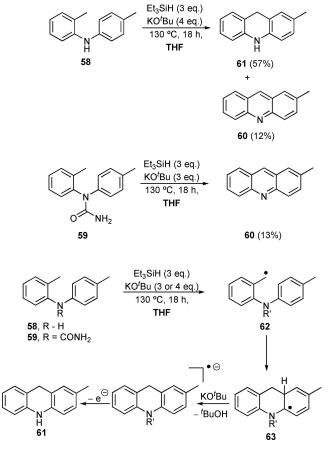
^[b] % yield determined by internal standard (1,3,5-trimethoxybenzene);

^[c] isolated by column chromatography;

[d] 2 mL of THF used

5

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA


These are not the final page numbers! 77

product increased and of the fragmentation product decreased.

To compare the effect of other linking atoms to the oxygen of diaryl ethers, sulfur-linked substrate **49** was explored, and gave the rearrangement product **57** (43%) under solvent-free conditions and the same product (55%) when conducted in THF as solvent.

As these reactions generally afforded greater yields of rearrangement product when conducted in THF as solvent, the next substrates, i.e. N-linked substrates, 58 and 59, were tested only under the THF conditions (Scheme 8). These nitrogen-linked substrates gave very different results than the diphenyl ether substrates. Firstly, urea **59** afforded methylacridine **60** (13%) as the sole isolated product under our standard conditions. In this case, the benzyl radical 62 (Scheme 8) underwent formation of the 6-membered ring in 63 as opposed to the 5-exo-trig reaction to the spirointermediate of a Smiles rearrangement. Radical 63 could then be converted to dihydroacridine 61 by deprotonation followed by electron transfer.^[20] As dihydroacridines are easily converted to acridines in air, this explains the additional isolation of 60 (13%) following purification. In the reaction of 59, it was not clear at what stage the N-(C=O) bond in the urea had

Scheme 8. Rearrangement of diarylamines.

Adv. Synth. Catal. 2020, 362, 1–9

Wiley Online Library

These are not the final page numbers! 77

cleaved. Early cleavage by nucleophilic reaction by KO'Bu would leave a nitrogen anion that might then undergo hydrogen atom abstraction from the benzylic position, leading to rearrangement. To explore whether this was a possibility, substrate **58** was subjected to the rearrangement reaction, but using an extra equivalent of KO'Bu to deprotonate the amine N–H. This substrate was efficiently converted to the dihydroacridine **61** (57%) together with the acridine **60** (12%). With the formation of a new 6-membered ring, the regiochemistry of the rearrangement for nitrogen-linked substrates was clearly different than for their oxygen-linked counterparts, and the reasons for this will be discussed later in the paper, in conjunction with computational results.

At this stage, our view was that the mechanism of the rearrangement of all of the relevant substrates involved an initial H-atom abstraction from the substrate by triethylsilyl radicals to give the benzyl radicals as intermediates. We were keen to compare these results with approaches where the same benzyl radical intermediates could be generated in a more conventional manner, using a silane with a thermal radical initiator. Accordingly, we took both triethylsilane and tris(trimethylsilyl)silane and our simplest substrate 19 and treated them, in parallel experiments, with azoisobutyronitrile (AIBN), dibenzoyl peroxide (BPO) and di-tert-butylperoxide (DTBP) to see if the same rearrangement could be triggered (entries 1-6, Table 6). However, no rearrangement product 20 was seen in any of the six experiments. The Si-H bond of triethylsilane is quite strong, while TTMSS was developed as a silane that is more susceptible to Si-H bond cleavage.^[21] If benzyl radicals are formed under these conditions from 19, then the kinetics of the Smiles rearrangement must be a lot slower than the

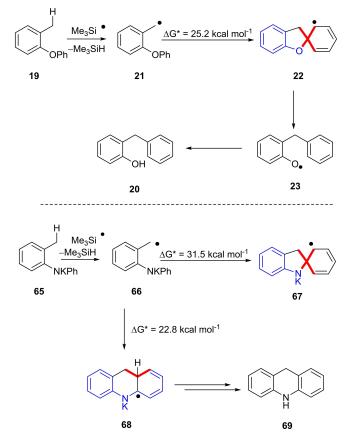
 Table 6. Probing substrate 19 with silyl radicals generated from radical initiators with silane.

Silane (1.5 eq.) Radical Initiator (1 eq.) DPh Benzene, T °C, 18 h					
	19			20	
Entry	Silane	Radical Initiator	T (°C)	20 (%) ^[a]	19 (%) ^[a]
1	Et₃SiH	BPO	130	0	81
2	Et₃SiH	DTBP	130	0	77
3	Et₃SiH	AIBN	95	0	85
4	TTMSS	BPO	130	0	92
5	TTMSS	DTBP	130	0	99
6	TTMSS	AIBN	95	0	86

^[a] % yield determined by internal standard (1,3,5-trimethoxybenzene); BPO=benzoyl peroxide; DTBP=di-*t*-butyl peroxide; AIBN=2,2'-azobisisobutyronitrile; TTMSS=tris (trimethylsilyl)silane.

 $\ensuremath{\mathbb{C}}$ 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

Scheme 9. Reaction of bromide 64 with TTMSS.


kinetics of quenching of the radical by silane. Whereas the experiments in Table 6 feature high concentrations of silanes as quenching agents, this is likely to be very different from the cases studied in this paper with KO 'Bu+Et₃SiH. When these two reagents are heated together, it is known that hydrogen gas is liberated into the headspace of the reaction vessel, and this can arise, for example, from conversion of **17** to **18**. In these reactions, therefore, the concentration of abstractable Si-H hydrogens available to a transient radical at any instant, may be much lower.

Halogen atom abstraction by silyl radicals is a more normal method of creating radicals on substrates.^[19] Therefore, 1-(bromomethyl)-2-phenoxybenzene **64** was reacted with TTMSS (tristrimethylsilylsilane) in the presence of AIBN (Scheme 9). No rearranged product **20** was observed, but debrominated compound **19** (61%) was formed. This means that the benzylic radical undergoes hydrogen atom abstraction from TTMSS faster than aryl migration under these conditions.

Computational Results

The above results contrast the regiochemistry of rearrangements seen with diaryl ethers and diarylamines. In the case of diaryl ethers, and also for the sulfide case **49**, the benzyl radical cyclises to form a 5membered ring in a spirobicyclic system, which then expels an aryloxyl or arylthiyl radical to give a Smiles rearrangement. Cyclisation to form 5-membered rings is the expected outcome from such radical cyclisations. However, formation of a benzyl radical in the corresponding diarylamine cases results in cyclisation to form a 6-membered ring, which is unusual.

We rationalise this by looking at Scheme 10, which also incorporates the headline results of our DFT calculations. In the calculations, trimethylsilane was used in place of tiethylsilane for reasons of computational economy. Trimethylsilyl radical abstracts a hydrogen atom from substrate 19 to form 21. Radical 21 undergoes cyclisation to spiro-intermediate 22 with a very accessible barrier of 25.2 kcalmole⁻¹. Fuller computational details are available in the SI file, which show that that step is the rate determining step in the conversion of $19\rightarrow 20$. By comparison, the corresponding diarylamine, *o*-tolylphenylamine is likely to be in

Scheme 10. Energy barriers for rearrangement of benzyl radicals.

its deprotonated form, *i.e.* it is likely to exist as its potassium salt, **65**. Hydrogen atom abstraction provides radical **66**. The kinetic barrier to cyclisation to from the spiro intermediate is now a much higher $31.5 \text{ kcal mole}^{-1}$, while the cyclisation to the 6-membered ring intermediate has a barrier of 22.8 kcal mole⁻¹. Conversion of **66** to **68** represents the rate determining step in to conversion to **69**.

Intuitively, the difference can be rationalised, by considering the extent of resonance delocalisation of a heteroatom lone pair over an aryl ring. In 21, an oxygen lone pair can delocalise over both aryl rings. If this radical cyclises to spiro-intermediate 22, the delocalisation of the oxygen lone pair is now confined to just one aromatic ring (delocalisation area shown in blue), so there is an energy sacrifice in getting to the spiro-intermediate. This sacrifice will be greater for a nitrogen lone pair than for an oxygen (or sulfur) lone pair because a nitrogen lone pair is more available to undergo resonance delocalisation. For a nitrogen anion, e.g. 66, the penalty for loss of delocalisation by the N-'lone pair' over one of the aryl rings will be more extreme than for neutral nitrogen, but for neutral or anionic nitrogen, the loss of resonance energy will be greater than for oxygen. The loss of resonance energy

Adv. Synth. Catal. 2020, 362, 1–9 Wiley Online Library 7 These are not the final page numbers! © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

in these intermediates will be partially reflected in the transition state leading to the spiro-intermediates. By contrast, cyclisation $66 \rightarrow 68$ provides much greater delocalisation of the charge and spin (delocalisation area shown in blue), and again this is likely reflected in the transition state $66 \rightarrow 68$. This is in line with the efficient formation of product 69 from anion 66.

Conclusion

In summary, reaction of $Et_3SiH + KO'Bu$ on diaryl ethers, sulfides and amines with an *ortho* alkyl group leads to rearrangement products. The rearrangements arise from formation of benzyl radicals through hydrogen atom abstraction, likely by triethylsilyl radicals. The rearrangements involve cyclisation of the benzyl radical onto the partner arene, which is the rate determining step. In the case of diaryl ethers, Truce-Smiles rearrangements are observed, arising from radical cyclisations to form 5-membered rings, but for diarylamines, cyclisations to form dihydroacridines are observed. This preference for N-linked substrates is borne out by very recent reductive rearrangements of N-aryl indoles in the presence of the same reagents, *i. e.* Et_3SiH and KO'Bu.^[11]

Acknowledgements

Adv. Synth. Catal. 2020, 362, 1-9

We thank the University of Strathclyde for funding and the EPSRC-funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk) for computational resource via EPSRC grant no. EP/K000586/1.

References

- A. Fedorov, A. A. Toutov, N. A. Swisher, R. H. Grubbs, *Chem. Sci.* 2013, 4, 1640–1645.
- [2] A. A. Toutov, W.-B. Liu, K. N. Betz, A. Fedorov, B. M. Stoltz, R. H. Grubbs, *Nature* 2015, 518, 80–84.
- [3] A. A. Toutov, W.-B. Liu, K. N. Betz, B. M. Stoltz, R. H. Grubbs, *Nat. Protoc.* 2016, 10, 1897–1903.
- [4] A. A. Toutov, M. Salata, A. Fedorov, Y.-F. Yang, Y. Liang, R. Cariou, K. N. Betz, E. P. A. Couzijn, J. W.

Shabaker, K. N. Houk, R. H. Grubbs, *Nat. Energy* **2017**, doi.org/10.1038/nenergy.2017.8.

- [5] W.-B. Liu, D. P. Schuman, Y.-F. Yang, A. A. Toutov, Y. Liang, H. F. T. Klare, N. Nesnas, M. Oestreich, D. G. Blackmond, S. C. Virgil, S. Banerjee, R. N. Zare, R. H. Grubbs, K. N. Houk, B. M. Stoltz, *J. Am. Chem. Soc.* 2017, *139*, 6867–6879.
- [6] S. Banerjee, Y.-F. Yang, I. D. Jenkins, Y. Liang, A. A. Toutov, W.-B. Liu, D. P. Schuman, R. H. Grubbs, B. M. Stoltz, E. H. Krenske, K. N. Houk, R. N. Zare, *J. Am. Chem. Soc.* 2017, *139*, 6880–6887.
- [7] A. J. Smith, A. Young, S. Rohrbach, E. F. O'Connor, M. Allison, H.-S. Wang, D. L. Poole, T. Tuttle, J. A. Murphy, Angew. Chem. Int. Ed. 2017, 56, 13747–13751.
- [8] P. Asgari, Y. Hua, C. Thiamsiri, W. Prasitwatcharakorn, A. Karedath, X. Chen, S. Sardar, K. Yum, G. Leem, B. S. Pierce, K. Nam, J. Gao, J. Jeon, *Nature Catalysis* 2019, 2, 164–173.
- [9] A. A. Toutov, K. N. Betz, A. M. Romine, R. H. Grubbs, US Patent Application US 2019/0218232A1.
- [10] F. Palumbo, S. Rohrbach, T. Tuttle, J. A. Murphy, *Helv. Chim. Acta.* 2019, 102, e1900235.
- [11] A. J. Smith, D. Dimitrova, J. N. Arokianathar, K. Kolodziejczak, A. Young, M. Allison, D. L. Poole, S. G. Leach, J. A. Parkinson, T. Tuttle, J. A. Murphy, *Chem. Sci.* 2020, *11*, 3719–3726.
- [12] For thermal rearrangement of 19→20 at 320 °C under vacuum, see: A. Factor, H. Finkbeiner, R. A. Jerussi, D. M. White, J. Org. Chem. 1970, 35, 57–62.
- [13] C. M. Holden, M. F. Greaney, Chem. Eur. J. 2017, 23, 8992–9008.
- [14] I. Allart-Simon, S. Gerard, J. Sapi, *Molecules* 2016, 21, 878.
- [15] Z.-M. Chen, X.-M. Zhang, Y.-Q. Tu, Chem. Soc. Rev. 2015, 44, 5220–5245.
- [16] T. J. Snape, Chem. Soc. Rev. 2008, 37, 2452-2458.
- [17] K. Plesniak, A. Zarecki, J. Wicha, Top. Curr. Chem. 2007, 275, 163–250.
- [18] For a review of aryl migrations in radical systems, see: A. Studer, M. Bossart *Tetrahedron* 2001, 57, 9649–9667.
- [19] A. A. Toutov, K. N. Betz, D. P. Schuman, W.-B. Liu, A. Fedorov, B. M. Stoltz, R. H. Grubbs, *J. Am. Chem. Soc.* 2017, *139*, 1668–1674.
- [20] A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2011, 50, 5018–5022.
- [21] C. Chatgilialoglu, Chem. Rev. 1995, 95, 1229–1251.

These are not the final page numbers! 77

Wiley Online Library

8

FULL PAPER

Benzylic C–H Functionalisation by $[Et_3SiH+KO'Bu]$ leads to Radical Rearrangements in *o*-tolyl Aryl Ethers, Amines and Sulfides

CH₃ OPh Et₃SiH (3 eq.) KO*t*Bu (3 eq.) 130 °C, 18 h Ph

OH

(78 %)

Adv. Synth. Catal. 2020, 362, 1-9

J. N. Arokianathar, K. Kolodziejczak, F. E. Bugden, K. F. Clark, T. Tuttle*, J. A. Murphy*