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Abstract

This paper investigates parameter estimation problems for multivariable controlled autoregressive autore-

gressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multi-

variable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized

extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification

model into several subsystems based on the hierarchical identification principle and estimate the parameters

using the coupled relationship between these subsystems. The simulation results show that the new algorithm

can give more accurate parameter estimates of the M-CARARMA system than those of the M-GESG algorithm.

Keywords: Coupling identification, Parameter estimation, Stochastic gradient, Auxiliary model, Multivariable
system

1. Introduction

Parameter estimation has wide application in many areas such as controller designs [1, 2] and stochastic

systems [3, 4], signal processing [5, 6, 7, 8] and other practical projects [9, 10]. Exploring valid methods is the

eternal theme of the parameter estimation [11, 12, 13, 14]. Recently, Torres et al. proposed an approach based

on state observers to identify the parameters of an unknown periodic force exerted on a mechanical system

[15]. The approach can be described as two stages, the one is to obtain the estimates of the coefficients of a

Fourier series that approximates the periodic force, and the other one is to get the frequencies of the signal. By

eliminating the linear parameters through the orthogonal projection, Gan et al. presented a variable projection

algorithm for the radial basis function network-based autoregressive with exogenous inputs model [16].

In recent years, multivariable systems, i.e., MIMO systems, have garnered widespread attentions [17, 18],

resulting in a rich collection of studies [19, 20] and further interests in system identification for MIMO systems

[21, 22, 23]. For MIMO systems with unknown inner variables, an auxiliary model based algorithm was studied

by means of the iterative search principle [24]. Like the least squares approach [25, 26, 27], the stochastic

gradient (SG) has been widely used in the parameter estimation [28, 29]. Recently, Cheng et al. studied the

identification problem for Hammerstein nonlinear ARMAX systems and proposed a multi-innovation fractional

order stochastic gradient algorithm [30]. In addition, they introduced a forgetting factor on the step size and

a variable gradient order for the purpose of improving the convergence performance. Since the SG algorithm

is a kind of recursive algorithm, it will produce the data saturation with the time length increasing [31, 32].

Parameter estimation methods can be applied to many areas [33, 34, 35, 36], including bilinear systems [37] and

bilinear-parameter systems [38].

This paper studies the parameter estimation problems for multivariable systems. As we all know, multivari-

able systems are high-dimensional and have many parameter matrices to be dealt with [39]. Generally, we divide

a multivariable system into several subsystems according to the number of the outputs by using the hierarchical
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identification principle [40, 41]. However, each subsystem contains a same parameter vector after the decom-

position. In order to cut down the redundant computation, the coupling identification concept is employed to

estimate the parameters [42]. With regard to the unknown variables, we establish the auxiliary models and

replace the unknown variables with the outputs of the auxiliary models [43, 44]. The main contributions of this

paper lie in the following aspects.

• This paper decomposes a multivariable controlled autoregressive autoregressivemoving average (M-CARARMA)

system into several subsystems by means of the hierarchical identification principle.

• A partially coupled generalized extended stochastic gradient (PC-GESG) algorithm is derived for M-

CARARMA systems by using the coupling concept and the auxiliary model.

• The proposed PC-GESG algorithm has a higher computational efficiency than the multivariable general-

ized extended stochastic gradient (M-GESG) algorithm.

• The parameter estimates given by the PC-GESG algorithm are more accurate than those given by the

M-GESG algorithm under the same noise level. In addition, the forgetting factor partially generalized

extended stochastic gradient (FF-PC-GESG) algorithm can achieve better performance than the PC-

GESG algorithm.

The rest of this paper is organized as follows. In Section 2, we give some definitions and the identification

model for the M-CARARMA system. Section 3 proposes the M-GESG algorithm for comparison. Section 4

divides the system into several subsystems and presents the PC-GESG algorithm by employing the coupling

concept. Section 5 shows the results of numerical simulations to assess the performance of the proposed methods.

Finally, we offer some concluding remarks in Section 6.

2. Problem formulation

Let us introduce some symbols. “A =: X” or “X := A” stands for “A is defined as X”; the superscript T

stands for the vector/matrix transpose; the symbol Im denotes an identity matrix of sizes m×m; 1m stands for

an m-dimensional column vector whose elements are 1; 1m×n represents a matrix of size m× n whose elements

are 1; the symbol ⊗ represents the Kronecker product, for example, A := aij ∈ R
m×n, B := bij ∈ R

p×q,

A ⊗ B = [aijB] ∈ R
(mp)×(nq), in general, A ⊗ B 6= B ⊗ A; col[X] is defined as the vector formed by all

columns of matrix X arranged in order, for example, X := [x1,x2, · · · ,xn] ∈ R
m×n, xi ∈ R

m (i = 1, 2, · · · , n),

col[X] := [xT

1 ,x
T

2 , · · · ,x
T

n]
T ∈ R

mn; θ̂(t) denotes the estimate of θ at time t; the norm of a matrix (or a column

vector) X is defined by ‖X‖2 := tr[XXT].

A multiple-input multiple-output (MIMO) system with the colored noise is given by

A(z)y(t) = B(z)u(t) +w(t), (1)

where y(t) := [y1(t), y2(t), · · · , ym(t)]T ∈ R
m refers to the m-dimensional output vector, u(t) := [u1(t), u2(t),

· · · , ur(t)]
T ∈ R

r denotes the r-dimensional input vector, A(z) and B(z) are matrix polynomials in the unit

backward shift operator z−1 [z−1u(t) = u(t− 1)], and

A(z) := Im +A1z
−1 +A2z

−2 + · · ·+Ana
z−na, Ai ∈ R

m×m,

B(z) :=B1z
−1 +B2z

−2 + · · ·+Bnb
z−nb , Bi ∈ R

m×r,

w(t) := [w1(t), w2(t), · · · , wm(t)]T ∈ R
m is taken as an autoregressive moving average (ARMA) process of a

white noise vector v(t) := [v1(t), v2(t), · · · , vm(t)]T ∈ R
m.

When the w(t) is an ARMA process, there are four cases available for the description of the noise term.

1) The first form is w(t) = C−1(z)D(z)v(t), where C(z) and D(z) are matrix polynomials in z−1, and they

are defined as

C(z) := I +C1z
−1 +C2z

−2 + · · ·+Cnc
z−nc , Ci ∈ R

m×m,

D(z) := I +D1z
−1 +D2z

−2 + · · ·+Dnd
z−nd , Di ∈ R

m×m.
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2) The second form is

w(t) =
d(z)

c(z)
v(t), (2)

where c(z) and d(z) are scalar polynomials in z−1, and they are expressed as

c(z) := 1 + c1z
−1 + c2z

−2 + · · ·+ cnc
z−nc , ci ∈ R,

d(z) := 1 + d1z
−1 + d2z

−2 + · · ·+ dnd
z−nd , di ∈ R.

3) The third form is w(t) = d(z)C−1(z)v(t), where d(z) is a scalar polynomial and C(z) is a matrix

polynomial.

4) The last form is w(t) = D(z)
c(z) v(t), where D(z) is a matrix polynomial while c(z) is a scalar polynomial.

Substituting (2) into (1) gives

A(z)y(t) = B(z)u(t) +
d(z)

c(z)
v(t). (3)

Without loss of generality, assume that the orders m, r, na, nb, nc and nd are known and y(t) = 0, u(t) = 0

and v(t) = 0 for t 6 0.

Let n := mna + rnb, define the parameter matrix ρ, the parameter vector β, the information vector ϕ(t)

and the information matrix φ(t) as

ρT := [A1,A2, · · · ,Ana
,B1,B2, · · · ,Bnb

] ∈ R
m×n,

β := [c1, c2, · · · , cnc
, d1, d2, · · · , dnd

]T ∈ R
nc+nd ,

ϕ(t) := [−yT(t− 1),−yT(t− 2), · · · ,−yT(t− na),u
T(t− 1),uT(t− 2), · · · ,uT(t− nb)]

T ∈ R
n,

φ(t) := [−w(t− 1),−w(t− 2), · · · ,−w(t− nc),v(t− 1),v(t− 2), · · · ,v(t− nd)] ∈ R
m×(nc+nd).

Notice that w(t) can be expressed as different forms,

w(t) =
d(z)

c(z)
v(t)

=A(z)y(t)−B(z)u(t)

= y(t)− ρTϕ(t) (4)

=φ(t)β + v(t). (5)

Substituting (5) into (3) and applying the definitions, we can obtain the hierarchical identification model

y(t) = [Im −A(z)]y(t) +B(z)u(t) +w(t)

= ρTϕ(t) +w(t)

=φ(t)β + ρTϕ(t) + v(t). (6)

Observing (6), we can see that there is not only a parameter vector β to be identified, and also a parameter

matrix ρ to be identified, which makes the model structure complex. Moreover, the input u(t) and output y(t)

are available, that is, only y(t) and ϕ(t) in (6) are known. The objective of this paper is to find a way to handle

the unknown variables and to present a highly efficient algorithm for the M-CARARMA system in (3) by using

the auxiliary model and the coupling concept.

3. The multivariable generalized extended stochastic gradient algorithm

In order to provide a comparison, we drive the basic multivariable generalized extended stochastic gradient

(M-GESG) algorithm for the M-CARARMA system in (3).

For convenience, combine the information vector ϕ(t) with the information matrix φ(t) to construct an

information matrix Φ(t) by means of the Kronecker product:

Φ(t) := [φ(t),ϕT(t)⊗ Im] ∈ R
m×n0 , n0 := nc + nd +mn.
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The parameter matrix ρ and the parameter vector β can be constituted as a high-dimensional parameter vector:

ϑ :=

[

β

col[ρT]

]

∈ R
n0 .

Then rewrite (6) as the pseudo-linear regressive model

y(t) = Φ(t)ϑ+ v(t). (7)

The new parameter vector ϑ contains all parameters of the M-CARARMA system in (3). Applying the stochastic

gradient method to the identification model in (7), we can derive the M-GESG algorithm.

In consideration of the unknown variables w(t) and v(t), we employed the auxiliary model method to solve

this problem. Let ŵ(t) and v̂(t) be the outputs of the auxiliary models, and define the estimate of φ(t):

φ̂(t) := [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc), v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)] ∈ R
m×(nc+nd).

Next, the estimate of the new information matrix Φ(t) can be constructed by φ̂(t):

Φ̂(t) := [φ̂(t),ϕT(t)⊗ Im] ∈ R
m×n0 .

According to (4) and (7), replacing Φ(t), ρ and ϑ with their estimates Φ̂(t), ρ̂(t) and ϑ̂(t), the outputs ŵ(t)

and v̂(t) of the auxiliary models can be computed by

ŵ(t) := y(t)− ρ̂T(t)ϕ(t),

v̂(t) := y(t)− Φ̂(t)ϑ̂(t).

Based on the auxiliary model method, replacing Φ(t) in (7) with its estimate Φ̂(t) and using the negative

gradient search, we can obtain the following M-GESG algorithm:

ϑ̂(t) = ϑ̂(t− 1) +
Φ̂

T

(t)

r(t)
[y(t)− Φ̂(t)ϑ̂(t− 1)], (8)

r(t) = r(t − 1) + ‖Φ̂(t)‖2, (9)

Φ̂(t) = [φ̂(t),ϕT(t)⊗ Im], (10)

ϕ(t) = [−yT(t− 1),−yT(t− 2), · · · ,−yT(t− na),u
T(t− 1),uT(t− 2), · · · ,uT(t− nb)]

T, (11)

φ̂(t) = [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc), v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)], (12)

ŵ(t) = y(t)− ρ̂T(t)ϕ(t), (13)

v̂(t) = y(t)− Φ̂(t)ϑ̂(t), (14)

ϑ̂(t) =

[

β̂(t)
col[ρ̂T(t)]

]

. (15)

The procedure involved in the M-GESG algorithm in (8)–(15) is listed as follows.

1. Set the initial values: let t = 1, ϑ̂(0) = 1n0
/p0, r(0) = 1, v̂(t − j) = 1m/p0, ŵ(t − j) = 1m/p0, i = 1, 2,

· · · , max[nc, nd], p0 = 106 and set a small positive number ǫ.

2. Collect the observation data u(t) and y(t), and construct the information vector and matrices ϕ(t), φ(t)

and Φ̂(t) using (11)–(12) and (10).

3. Compute r(t) using (9) and update the parameter estimation vector ϑ̂(t) by (8).

4. Read ρ̂(t) and β̂(t) from ϑ̂(t) by (15) and compute ŵ(t) and v̂(t) by (13)–(14).

5. Compare ϑ̂(t) with ϑ̂(t−1): if ‖ϑ̂(t)− ϑ̂(t−1)‖ > ǫ, increase t by 1 and go to Step 2; otherwise, terminate

recursive calculation procedure and obtain ϑ̂(t).

Remark 1: The M-GESG algorithm in (8)–(15) is an extension of the scalar stochastic gradient algorithm.

By means of the auxiliary model identification idea, the unknown information matrix Φ(t) is replaced by its

estimate Φ̂(t) in order to guarantee the realization of the algorithm.
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Remark 2: For improving the performance of the M-GESG algorithm, a forgetting factor (FF) λ can be

introduced in (9):

r(t) = λr(t− 1) + ‖Φ̂(t)‖2, 0 ≤ λ < 1. (16)

Another way is to modify (8) as

ϑ̂(t) = ϑ̂(t− 1) +
Φ̂

T

(t)

rε(t)
[y(t)− Φ̂(t)ϑ̂(t− 1)],

1

2
< ε 6 1, (17)

where ε is the convergence index. Introducing the forgetting factor and the convergence index in (16)–(17) can

improve the convergence rate and the parameter estimation accuracy of the M-GESG algorithm.

Remark 3: Although the M-GESG algorithm in (8)–(15) can produce the parameter estimation vector ϑ̂(t),

the weakness is that Φ̂(t) is a high-dimensional informational matrix (n0 ×n0, n0 = nc+nd+mn), which gives

rise to a heavy computational burden. This motivates us to study some new identification algorithms to decrease

the computational cost. For ease of comparison, the computational efficiency of the M-GESG algorithm at each

recursive step is shown in Table 1, where flops represent the floating point operations.

Table 1: The computational efficiency of the M-GESG algorithm

Expressions Number of multiplications Number of additions

ϑ̂(t) = ϑ̂(t− 1) +
ˆΦ

T

(t)
r(t) e(t) ∈ R

n0 mn0 +m mn0

e(t) := y(t)− Φ̂(t)ϑ̂(t− 1) ∈ R
m mn0 mn0

r(t) = r(t − 1) + ‖Φ̂(t)‖2 ∈ R mn0 mn0

Φ̂(t) = [φ̂(t),ϕT(t)⊗ Im] ∈ R
m×n0 n

ŵ(t) = y(t)− ρT(t)ϕ(t) ∈ R
m mn mn

v̂(t) = y(t)− Φ̂(t)ϑ̂(t) ∈ R
m mn0 mn0

Sum 4mn0 +mn+m+ n 4mn0 +mn

Total flops N1 = 8mn0 + 2mn+m+ n

4. The partially coupled generalized extended stochastic gradient algorithm

In this section, a partially coupled generalized extended stochastic gradient (PC-GESG) algorithm is derived

by employing the decomposition technique and the coupling concept. The basic idea is to divide the multivariable

identification model in (6) into m subsystems, and to identify each subsystem based on the coupled relations in

the part of parameters between subsystems.

Rewrite the hierarchical identification model in (6) for the M-CARARMA system in (3) as

y(t) = φ(t)β + ρTϕ(t) + v(t). (18)

Let φT

i (t) ∈ R
1×(nc+nd) be the ith row of the information matrix φ(t):

φ(t) := [φ1(t),φ2(t), · · · ,φm(t)]T ∈ R
m×(nc+nd).

Similarly, let ρi(t) ∈ R
n be the ith column of the parameter matrix ρ, that is

ρ := [ρ1,ρ2, · · · ,ρm] ∈ R
n×m.

By using the above definitions, Equation (18) can be rewritten as











y1(t)
y2(t)
...

ym(t)











=











φT

1 (t)
φT

2 (t)
...

φT

m(t)











β +











ρT

1

ρT

2
...
ρT

m











ϕ(t) +











v1(t)
v2(t)
...

vm(t)











. (19)
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Then we can decompose (19) into m subsystem identification models:

yi(t) =φ
T

i (t)β + ρT

i ϕ(t) + vi(t)

=φT

i (t)β +ϕT(t)ρi + vi(t)

= [φT

i (t),ϕ
T(t)]

[

β

ρi

]

+ vi(t), i = 1, 2, · · · ,m. (20)

Define the subsystem information vector

ψi(t) :=

[

φi(t)
ϕ(t)

]

∈ R
n1 , n1 := n+ nc + nd.

Equation (20) can be expressed as

yi(t) = ψ
T

i (t)

[

β

ρi

]

+ vi(t), i = 1, 2, · · · ,m. (21)

This is the subsystem identification model. From (21), we can see that each subsystem identification model

contains the same parameter vector β and the same information vector ϕ(t).

Based on the subsystem identification models in (21), using the negative gradient search gives
[

β̂(t)
ρ̂i(t)

]

=

[

β̂(t− 1)
ρ̂i(t− 1)

]

+
ψi(t)

ri(t)

{

yi(t)−ψ
T

i (t)

[

β̂(t− 1)
ρ̂i(t− 1)

]}

, (22)

ri(t) = ri(t− 1) + ‖ψi(t)‖
2, ri(0) = 1, i = 1, 2, · · · ,m. (23)

Here, some problems arise. The first problem is that the subsystem information vector ψi(t), i = 1, 2, · · · ,m,

contains the unknown variables w(t− j) and v(t− j). Similarly, we use the auxiliary models’ outputs ŵ(t− j)

and v̂(t− j) to replace w(t− j) and v(t− j) and construct the estimate of φ(t):

φ̂(t) := [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc), v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)]

= [φ̂1(t), φ̂2(t), · · · , φ̂m(t)]T ∈ R
m×(nc+nd),

Define the estimate of ψi(t) by using φ̂i(t) and ϕ(t):

ψ̂i(t) :=

[

φ̂i(t)
ϕ(t)

]

∈ R
n1×1.

Based on (4)–(5), the estimates ŵ(t) and v̂(t) can be calculated by

ŵ(t) = y(t)− ρ̂T(t)ϕ(t),

v̂(t) =w(t) − φ̂
T

(t)β̂(t)

= y(t)− ρ̂T(t)ϕ(t)− φ̂
T

(t)β̂(t).

The second problem is that each subsystem has the same parameter vector β. That is to say, each subsystem

can obtain the estimate β̂(t) of β. In order to make it clear, β̂i(t) represents the estimate of Subsystem i.

Replacing the unknown information vector ψi(t) with its estimate ψ̂i(t) and the common parameter estimation

vector β̂(t) with β̂i(t) in (22)–(23), we have
[

β̂i(t)
ρ̂i(t)

]

=

[

β̂i(t− 1)
ρ̂i(t− 1)

]

+
ψ̂i(t)

ri(t)

{

yi(t)− ψ̂
T

i (t)

[

β̂i(t− 1)
ρ̂i(t− 1)

]}

, (24)

ri(t) = ri(t− 1) + ‖ψ̂i(t)‖
2. (25)

As we can see, there are estimates β̂1(t), β̂2(t), · · · , β̂m(t) for i = 1, 2, · · · ,m. In fact, we only need one

parameter estimate of β. In general, the parameter estimates approach their true values with the time t

increasing. One may consider that the parameter estimate β̂i−1(t) is closer to the true parameter than the

parameter estimate β̂i(t− 1). Based on the coupling identification concept, for i = 1, use β̂m(t− 1) to replace

β̂1(t − 1), for i = 2, 3, · · · ,m, use β̂i−1(t) to replace β̂i(t − 1). Through the substitutions, we can obtain the

PC-GESG algorithm:
[

β̂i(t)
ρ̂i(t)

]

=

[

β̂i−1(t)
ρ̂i(t− 1)

]

+
ψ̂i(t)

ri(t)

{

yi(t)− ψ̂
T

i (t)

[

β̂i−1(t)
ρ̂i(t− 1)

]}

, (26)
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ri(t) = ri(t− 1) + ‖ψ̂i(t)‖
2, i = 2, 3, · · · ,m, (27)

[

β̂1(t)
ρ̂1(t)

]

=

[

β̂m(t− 1)
ρ̂1(t− 1)

]

+
ψ̂1(t)

r1(t)

{

y1(t)− ψ̂
T

1 (t)

[

β̂m(t− 1)
ρ̂1(t− 1)

]}

, (28)

r1(t) = r1(t− 1) + ‖ψ̂1(t)‖
2, (29)

ψ̂i(t) = [φ̂
T

i (t),ϕ
T(t)]T, (30)

ϕ(t) = [−yT(t− 1),−yT(t− 2), · · · ,−yT(t− na),u
T(t− 1),uT(t− 2), · · · ,uT(t− nb)]

T, (31)

φ̂(t) = [−ŵ(t− 1),−ŵ(t− 2), · · · ,−ŵ(t− nc), v̂(t− 1), v̂(t− 2), · · · , v̂(t− nd)] (32)

= [φ̂1(t), φ̂2(t), · · · , φ̂m(t)]T, (33)

ŵ(t) = y(t)− ρ̂T(t)ϕ(t), (34)

v̂(t) = y(t)− φ̂(t)β̂m(t)− ρ̂T(t)ϕ(t), (35)

ρ̂(t) = [ρ̂1(t), ρ̂2(t), · · · , ρ̂m(t)]. (36)

The PC-GESG estimates are β̂(t) = β̂m(t) and ρ̂(t)=[ρ̂1(t), ρ̂2(t), · · · , ρ̂m(t)]. So β̂(t) in the calculation of

v̂(t) should be modified as β̂m(t).

The steps involved in the PC-GESG algorithm in (26)–(36) are listed as follows.

1. Set the initial values: let t = 1, β̂m(0) = 1nc+nd
/p0, ρ̂i,0 = 1n/p0, ri(0) = 1 (i = 1, 2, · · · ,m), ŵ(0) =

1m/p0, v̂(0) = 1m/p0, p0 = 106 and set a small positive number ǫ.

2. Collect the observation data y(t) and u(t), and construct the information matrix ϕ(t) using (31).

3. Form φ̂(t) using (32), read φ̂i(t) from (33), then construct ψ̂i(t) by (30).

4. Compute r1(t) using (29) and update the parameter estimates β̂1(t) and ρ̂1(t) using (28).

5. For i = 2, 3, · · · ,m, compute ri(t) using (27) and update β̂i(t) and ρ̂i(t) using (26).

6. Form ρ̂(t) by (36), compute ŵ(t) and v̂(t) using (34)–(35).

7. Compare ρ̂(t) with ρ̂(t−1) and compare β̂m(t) with β̂m(t−1): if ‖ϑ̂(t)−ϑ̂(t−1)‖ > ǫ and ‖ϑ̂(t)−ϑ̂(t−1)‖ >

ǫ, increase t by 1 and go to Step 2; otherwise, terminate recursive calculation procedure and obtain ρ̂(t)

and β̂(t) = β̂m(t).

The schematic diagram of the PC-GESG algorithm in (26)–(36) is shown in Figure 1.

-
β̂m−1(t) Subsystem m

?

ym(t)

?

ρ̂m(t− 1)

?

ρ̂m(t)

β̂m(t)

�

p p pSubsystem 2

?

y2(t)

?

ρ̂2(t− 1)

?

ρ̂2(t)

-
β̂2(t)

-
β̂m(t− 1)

Subsystem 1

?

y1(t)

?

ρ̂1(t− 1)

?

ρ̂1(t)

-
β̂1(t)

Figure 1: The schematic diagram of the PC-GESG algorithm

From Figure 1, we can see that only part parameters are coupled, that is to say, only β̂i(t) are coupled between

the subsystems, the parameter vectors ρ̂i(t) are independent because each subsystem has a corresponding ρ̂i(t).

This is the reason that we call this algorithm the partially coupled GESG algorithm.

Remark 4: Similarly, it is also reasonable to replace r1(t−1) with rm(t−1) and replace ri(t−1) (i = 2, 3, · · · ,m)

with ri−1(t). Then Equations (27) and (29) can be modified as

ri(t) = ri−1(t) + ‖ψ̂i(t)‖
2, i = 2, 3, · · · ,m, (37)

r1(t) = rm(t− 1) + ‖ψ̂1(t)‖
2. (38)

Then (26), (40), (28), (42) and (30)–(36) form another more complex PC-GESG algorithm. Here, the parameter

β and the variable r(t) are coupled in the algorithm.
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Remark 5: In order to improve the parameter estimation accuracy of the PC-GESG algorithm in (26)–(36),

we can introduce the forgetting factor λ in (27) and (29), or add the convergence index ε in (26) and (28):

[

β̂i(t)
ρ̂i(t)

]

=

[

β̂i−1(t)
ρ̂i(t− 1)

]

+
ψ̂i(t)

rεi (t)

{

yi(t)− ψ̂
T

i (t)

[

β̂i−1(t)
ρ̂i(t− 1)

]}

,
1

2
< ε 6 1, (39)

ri(t) = λri(t− 1) + ‖ψ̂i(t)‖
2, 0 ≤ λ < 1, i = 2, 3, · · · ,m, (40)

[

β̂1(t)
ρ̂1(t)

]

=

[

β̂m(t− 1)
ρ̂1(t− 1)

]

+
ψ̂1(t)

rε1(t)

{

y1(t)− ψ̂
T

1 (t)

[

β̂m(t− 1)
ρ̂1(t− 1)

]}

, (41)

r1(t) = λr1(t− 1) + ‖ψ̂1(t)‖
2. (42)

Equations (26), (40), (28), (42) and (30)–(36) form the forgetting factor partially generalized extended stochastic

gradient (FF-PC-GESG) algorithm. Combining (39)–(42) with (30)–(36), we can obtain the modified FF-PC-

GESG (M-FF-PC-GESG) algorithm. When λ = 1 and ε = 1, the M-FF-PC-GESG algorithm reduces to the

PC-GESG algorithm in (26)–(36).

Remark 6: The PC-GESG algorithm in (26)–(36) divides the MIMO system in (3) into m subsystems, and

identifies the parameters based on the coupled relations between the subsystems. The computational efficiency

of the PC-GESG algorithm is shown in Table 2.

Table 2: The computational efficiency of the PC-GESG algorithm

Expressions Number of multiplications Number of additions
[

β̂i(t)

ρ̂i(t)

]

=

[

β̂i−1(t)

ρ̂i(t− 1)

]

+
ˆψ

i
(t)

ri(t)
xi(t) ∈ R

n1 mn1 +m mn1

xi(t) := yi(t)− ψ̂
T

i (t)

[

β̂i−1(t)

ρ̂i(t− 1)

]

∈ R mn1 mn1

ri(t) = ri(t− 1) + ‖ψ̂i(t)‖
2 ∈ R mn1 mn1

ŵ(t) = y(t)− ρT(t)ϕ(t) ∈ R
m mn mn

v̂(t) = y(t)− φ̂(t)β̂m(t)− ρ̂T(t)ϕ(t) ∈ R
m m(nc + nd) m(nc + nd)

Sum 4mn1 +m 4mn1

Total flops N2 = 8mn1 +m

In the M-GESG algorithm in (8)–(15), the dimension of the information matrix Φ̂(t) is m × n0 (n0 =

nc+nd+mn). In the PC-GESG algorithm in (26)–(36), the dimension of the information matrix ψ̂i(t) is n1×1

(n1 = nc + nd + n). It is apparent from Tables 1–2 that the computational burden of the PC-GESG algorithm

is less than the M-GESG algorithm, that is to say, N1 ≫ N2. Compared with the M-GESG algorithm, the

PC-GESG algorithm avoids many redundant parameter estimates and improves the computational efficiency.

Remark 7: This paper focuses on the parameter identification problems for multivariable CARARMA systems,

which can be seen as an expansion to multivariable case of the CARARMA model in [26]. The multivariable

CARMA-like model in [20] and [21] is another type of MIMO systems, which has the scalar polynomial in

front of the output vector y(t). The PC-GESG algorithm proposed in this paper decompose the multivariable

CARARMA system into m subsystems with the single output and identify each subsystem using the coupled

relations between these subsystems. The work in [25] and [21] also used the hierarchical identification principle,

but they divided the system into two parts and applied the least squares based iterative method to deal with

the two parts. As for the estimation procedure, for every i, we get the estimate ρ̂i(t). In order to obtain the

β̂i(t), we use the estimate β̂i−1(t) of Subsystem i− 1 to replace the estimate β̂i(t− 1) of Subsystem i. Finally,

we can obtain ρ̂(t)=[ρ̂1(t), ρ̂2(t), · · · , ρ̂m(t)] and β̂(t) = β̂m(t).

5. Examples

Example 1. Consider the following multivariable system with two-input two-output:

A(z)y(t) =B(z)u(t) +
d(z)

c(z)
v(t),
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A(z) = I2 +

[

a11 a12
a21 a22

]

z−1 =

[

1 + 0.25z−1 0.40z−1

−0.43z−1 1− 0.76z−1

]

,

B(z) =

[

b11 b12
b21 b22

]

z−1 =

[

0.50z−1 0.45z−1

0.80z−1 0.42z−1

]

,

c(z) = 1 + c1z
−1 = 1− 0.17z−1,

d(z) = 1 + d1z
−1 = 1+ 0.12z−1,

ρT =

[

0.25 0.40 0.50 0.45
−0.43 −0.76 0.80 0.42

]

,

β= [c1, d1]
T = [−0.17, 0.12]T,

ϑ=

[

β

col[ρT]

]

.

In simulation, the inputs {u1(t)} and {u2(t)} are taken as two independent persistent excitation signal

sequences with zero mean and unit variances, {v1(t)} and {v2(t)} are taken as two white noise sequences with

zero mean and variances σ2
1 for v1(t) and σ2

2 for v2(t). Taking σ2
1=0.202, σ2

2=0.302, respectively, we use them

to generate the output vector y(t) = [y1(t), y2(t)]
T. The parameter estimation error is in direct proportional to

the number of the parameters and the noise variance, and is in inverse proportion to the data length. Here, we

choose the data length t = 3000 to estimate the parameters. To apply the M-GESG algorithm in (8)–(15), the

PC-GESG algorithm in (26)–(36) and the FF-PC-GESG algorithm to estimate the parameters of this system,

all the initial values of the parameters are set to be zero. The parameter estimates and errors are shown in

Tables 3–5. The parameter estimation errors δ := ‖ϑ̂(t)− ϑ‖/‖ϑ‖ versus t are shown in Figures 2–5.

Table 3: The M-GESG estimates and errors
t c1 d1 a11 a12 a21 a22 b11 b12 b21 b22 δ(%)

100 -0.06867 0.06610 0.05685 0.19915 -0.29108 -0.31399 0.30361 0.23460 0.37417 0.17876 52.51553

200 -0.08817 0.08414 0.06589 0.22001 -0.29961 -0.35736 0.31480 0.24555 0.39796 0.18911 48.68301

500 -0.10174 0.09510 0.08670 0.24658 -0.30398 -0.40209 0.33002 0.26416 0.42648 0.20727 44.14468

1000 -0.11188 0.10385 0.09795 0.26501 -0.30945 -0.43253 0.33982 0.27402 0.44760 0.22024 41.06893

2000 -0.12179 0.11170 0.10835 0.27978 -0.31164 -0.46424 0.34754 0.28500 0.46732 0.23182 38.18475

3000 -0.12704 0.11609 0.11397 0.28862 -0.31442 -0.48180 0.35245 0.29060 0.47988 0.23845 36.50561

True values -0.17000 0.12000 0.25000 0.40000 -0.43000 -0.76000 0.50000 0.45000 0.80000 0.42000

Table 4: The PC-GESG estimates and errors
t c1 d1 a11 a12 a21 a22 b11 b12 b21 b22 δ(%)

100 -0.12069 0.11019 0.12141 0.31966 -0.39648 -0.49910 0.46218 0.38248 0.52012 0.29075 29.19004

200 -0.13543 0.12283 0.13629 0.33369 -0.39808 -0.54744 0.46702 0.38959 0.55218 0.29628 25.22640

500 -0.14584 0.13040 0.16156 0.35161 -0.39697 -0.59295 0.47234 0.40259 0.58890 0.31626 20.67429

1000 -0.15145 0.13462 0.17440 0.36258 -0.39834 -0.61841 0.47483 0.40752 0.61324 0.32896 17.98801

2000 -0.15714 0.13883 0.18394 0.37035 -0.39634 -0.64536 0.47677 0.41339 0.63350 0.33989 15.62146

3000 -0.15941 0.14063 0.18898 0.37435 -0.39722 -0.65767 0.47811 0.41597 0.64644 0.34621 14.32294

True values -0.17000 0.12000 0.25000 0.40000 -0.43000 -0.76000 0.50000 0.45000 0.80000 0.42000

Table 5: The FF-PC-GESG estimates and errors (λ = 0.99)
t c1 d1 a11 a12 a21 a22 b11 b12 b21 b22 δ(%)

100 -0.13296 0.12033 0.13689 0.33229 -0.39721 -0.53841 0.47208 0.38619 0.54370 0.30444 25.79253

200 -0.15048 0.13510 0.16087 0.35064 -0.39951 -0.60660 0.47642 0.39826 0.59605 0.31322 19.97721

500 -0.16221 0.14222 0.21880 0.38224 -0.40065 -0.68726 0.48550 0.42655 0.68732 0.35863 10.47748

1000 -0.16548 0.14256 0.24410 0.40267 -0.41147 -0.72488 0.48764 0.43626 0.75133 0.39656 4.85150

2000 -0.17035 0.14634 0.24776 0.39674 -0.41453 -0.75299 0.49516 0.44617 0.78449 0.41986 2.35778

3000 -0.16843 0.14501 0.24977 0.39864 -0.42984 -0.76080 0.50236 0.44720 0.80790 0.42432 1.77632

True values -0.17000 0.12000 0.25000 0.40000 -0.43000 -0.76000 0.50000 0.45000 0.80000 0.42000

Example 2. Consider a following multivariable system:

A(z)y(t) =B(z)u(t) +
d(z)

c(z)
v(t),

A(z) = I2 +

[

a1 a2
a3 a4

]

z−1 +

[

a5 a6
a7 a8

]

z−2

=

[

1 + 0.52z−1 − 0.43z−2 0.45z−1 + 0.29z−2

−0.32z−1 − 0.24z−2 1− 0.52z−1 + 0.48z−2

]

,
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Figure 2: The parameter estimation errors versus t
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Figure 3: The M-GESG estimates ĉ1(t), d̂1(t), â12(t), â22(t), b̂21(t) versus t
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Figure 4: The PC-GESG estimates ĉ1(t), d̂1(t), â12(t), â22(t), b̂21(t) versus t
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Figure 5: The FF-PC-GESG estimates ĉ1(t), d̂1(t), â12(t), â22(t), b̂21(t) versus t

B(z) =

[

b1 b2
b3 b4

]

z−1 +

[

b5 b6
b7 b8

]

z−2 =

[

−0.10z−1 − 0.24z−2 0.26z−1 − 0.25z−2

0.67z−1 + 0.43z−2 0.26z−1 + 0.51z−2

]

,

c(z) = 1 + c1z
−1 = 1 + 0.22z−1,

d(z) = 1 + d1z
−1 = 1− 0.17z−1,

ρT =

[

0.52 0.45 −0.43 0.29 −0.10 0.26 −0.24 −0.25
−0.32 −0.52 −0.24 0.48 0.67 0.26 0.43 0.51

]

,

β= [c1, d1]
T = [0.22,−0.17]T,

ϑ=

[

β

col[ρT]

]

.

Take the same simulation conditions as those in Example 1. Similarly, use the M-GESG algorithm, the

PC-GESG algorithm and the FF-PC-GESG algorithm to estimate the parameters of this multivariable system,

respectively. Since there are 18 parameters, we do not give the table for parameter estimates and errors. Here,

we use the parameter estimation error curves to show the performance of the algorithms. The parameter

estimation errors versus t are shown in Figure 6.
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Figure 6: The parameter estimation errors versus t

Example 3. The paper-making process can be viewed as a multi-input and multi-output stochastic system

and can be modeled by a multivariable controlled autoregressive system. A simple sketch of the paper-making

process is given in Figure 7. The thick paper fiber materials with a certain concentration from the pulp workshop
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are pumped into a flow box to dilute them with water. After discharging from the flow box, the next step is

to drain water from the materials by the braid fabric. Then the paper is formed by the pressing machine. The

paper sheet goes through the dryer section to remove the remaining water by steam heating. Finally, workers

check the moisture and basis weight of the manufactured paper and obtain the qualified products. By regulating

the amount of the thick paper fiber materials and the steam pressure in the dryer section, the moisture and

basis weight of the production can be controlled. In Figure 7, u1(t) and u2(t) are the amount of the materials

and the steam pressure, y1(t) and y2(t) are the moisture and the basis weight.
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Figure 7: A simple sketch of the paper-making process

Assume that the system from u(t) to y(t) be modeled by the following multivariable model:

y(t) +

[

−0.62 0.45
−0.58 −0.32

]

z−1y(t) +

[

−0.33 0.29
−0.24 0.48

]

z−2y(t) =

[

−0.86 0.16
0.68 −0.44

]

z−1u(t) +

[

−0.84 −0.65
0.55 0.61

]

z−2u(t) +w(t),

where w(t) is taken as an autoregressive moving average process of the white noise vector v(t):

w(t) =
1 + 0.15z−1 − 0.12z−2

1− 0.12z−1 + 0.11z−2
v(t).

The simulation conditions and steps are similar to those in Example 1. Take λ = 0.9 and the data set length

t = 3000. Apply the M-GESG, PC-GESG and FF-PC-GESG algorithms to estimate the parameters of this

example system. Their estimation errors δ versus t are shown in Figure 8.
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Figure 8: The parameter estimation errors versus t

From Tables 3–5 and Figures 2–8, we can draw the following conclusions.
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1. The parameter estimation errors of the M-GESG, the PC-GESG and the FF-PC-GESG algorithms become

smaller with the data length t increasing – see the estimation errors of the last columns in Tables 3–5.

2. Under the same noise levels, the PC-GESG algorithm can give more accurate parameter estimates than

the M-GESG algorithm – see Tables 3–4 and Figures 2–6 and 8.

3. The FF-PC-GESG algorithm can improve the parameter estimation accuracy – see Table 5 and Figures 2,

6 and 8.

6. Conclusions

In this paper, we have presented a recursive identification algorithm of multivariable systems. This iden-

tification algorithm has been developed for multivariable systems with autoregressive moving average noise.

Differing from the M-GESG algorithm, the PC-GESG algorithm decomposes the original system into several

subsystems according to the number of the outputs. The basic idea is to use the coupling concept to reduce

the redundant parameter estimates of the coupled parameter vectors between subsystems. So the PC-GESG

algorithm avoids the redundant computation and can improve the calculation efficiency. Through the numerical

simulations, we can conclude that the PC-GESG algorithm has more accurate parameter estimates compared

with the M-GESG algorithm. In addition, the FF-PC-GESG algorithm has smaller parameter estimation errors

than the PC-GESG algorithm.

The differences between the previous identification algorithms and the PC-GESG algorithm are discussed.

The presented algorithm is based on the decomposition technique and aimed to solve the coupled items between

subsystems. The proposed coupling based identification method can be applied to other multivariable systems

with different structures and disturbance noises. Moreover, the idea of this algorithm can be adopted when the

concerned system model has the coupled terms. Applying the proposed algorithm to a real project will be further

investigated in our future work. The proposed approaches in the paper can combine other mathematical tools

[45, 46, 47] and statistical strategies [48, 49, 50, 51] to study the performances of some parameter estimation

algorithms and can be applied to other multivariable systems with different structures and disturbance noises

and other literature [52, 53, 54].
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