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Abstract—Missing or corrupt data is common in real-world
datasets; this affects the estimation and operation of analytical
models where completeness is assumed or required. Statistical
wind power forecasts utilise recent turbine data as model inputs,
and must therefore be robust to missing data. We find that wind
power data is ‘missing not at random’, with missing patterns
also related to the forecast output. Approaches for dealing with
this missing data in training and operation are proposed and
evaluated through a case study, leading to a suggested forecasting
methodology in the presence of missing data. In the training set,
missing data was found to have significant negative impact on
performance if simply omitted but this can be almost completely
mitigated using multiple imputation. Greater increase in forecast
errors is seen when input data are missing operationally, and re-
training forecast models using the remaining inputs is found to
be preferable to imputation.

Index Terms—forecasting, missing data, time series, vector
autoregression, wind power

I. INTRODUCTION

Renewable electricity generation in Scotland has increased
from 19.7% of total electricity generation in 2007 to 70.3%
in 2017. This rise is due at least in part to measures aim-
ing to limit the impact of climate change and is echoed
across the European Union as a whole [1]. The variability
of wind power production has a significant impact on power
system operation [2], where accurate forecasts are required to
aid decision making [3]. Very short-term (minutes to hours
ahead) planning and operation is important for trading and
to balance electricity supply and demand [4], and at these
time horizons statistical methods typically outperform those
based on numerical weather prediction [5]. These methods
are driven by recent observations of wind speed and power
from (potentially multiple) wind farms; however, this data
is subject to information loss from communication errors or
delays as well as maintenance operations and curtailments.
This loss negatively impacts model estimation and operation,
and therefore the predictive abilities, of forecasting models.

There has been little work to describe the general missing
properties seen in wind farm operational data, and while
some works have considered missing data in wind power
time series for other applications, its impact on forecasts has
not been assessed. The impact of missing data on monthly
and annual average measurements was discussed for wind
energy resource assessments [6] along with the corresponding

lain Dinwoodie
Natural Power
Stirling, UK
iaind @naturalpower.com

impact on revenue [7]. Other applications include power curve
estimation [8], wind farm control [9] and fatigue assessment
[10].

In very short-term wind power forecasting studies, subsets
of data with missing values are often simply omitted, which
may bias model estimates and is not an option when producing
operational forecasts. Recent works have focused on high
dimensional modelling [11], dynamic models [12] and data
sharing via privacy preserving algorithms [13], for example,
but with the implicit assumption of data completeness.

Other research has presented methods for filling missing
data in a wind time series; however, the simulated missing
values are selected randomly throughout the time series [14]
which does not reflect real patterns of missing data, and
Lotfi [15] uses imputation by simple autoregressive or moving
average models which are not suited to filling extended periods
of missing data. The purpose of filling in a time series is
generally to allow further analysis, for example to calculate
energy yields or to detect sensor failures. By only reporting
the accuracy of the imputation process itself, the financial
or decision-making consequences of the proposed imputation
methods are not addressed.

Fields that often utilise longitudinal studies, such as med-
ical trials and political behaviour studies, have traditionally
encountered significant levels of missing data [16] and as
such have developed methods to quantify and account for its
effects on study outcomes. Central to these methods is the
classification of missing data into one of three types [17]:
Missing Completely at Random (MCAR), Missing at Random
(MAR) and Missing Not at Random (MNAR), sometimes
known as ‘non-ignorable missing’. Data may be classified as
MCAR when the probability of a data point being missing is
completely independent of any variables in the dataset; in this
case, the remaining complete data has the same distribution
as the original population with no missing data and so there
will be no bias introduced to the model estimation. MAR data
occurs when ‘missingness’ in one variable is independent of its
own value but does depend on the value of another. Finally,
if the probability of a point being missing is dependent on
the value it would have taken, then the missing pattern is
classified as MNAR. In this case, the distribution of values
in the remaining observed cases is not the same as that in the
missing data points and so any model analysis ignoring this
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discrepancy will produce biased results.

Several methods for dealing with missing data exist, with
varying validity for the different missing data types. Simple
methods include ‘complete case analysis’ where any data
points with partial information are discarded [18]; this will
produce biased results if data is not MCAR because the
remaining data is no longer a random sample from the un-
derlying distribution. This may be counteracted by weighting
remaining data using missing probabilities [19], but this does
not prevent reduction in size of the data set. Another popular
ad-hoc method is imputation, where any missing values are
filled with a simple substitute, such as the mean value [20],
the preceding value, or the (weighted) nearest neighbour(s).
While these may be acceptable methods for individual missing
points and datasets with very low proportions of missing data,
they are not suited to filling the long spans of missing data
seen in wind power time series.

Final forecast errors should reflect the additional error from
loss of information at missing values as well as inherent
forecast uncertainty. Multiple imputation reconciles the need
for complete data with an accurate estimation of final un-
certainty by filling the data set several times according to
a probability distribution for the missing values, producing
multiple completed data sets leading to multiple forecast
values, allowing calculation of the spread of forecast outcomes
as well as a mean forecast. Care must be taken to correctly
identify the distribution of missing values [21], although a
multivariate normal distribution is also commonly used [22]
as an approximation. It has been observed that results using
multiple imputation are generally as good as those from more
complex and rigorous alternatives [23].

In this paper, complete data from 10 UK wind farms is used
to quantify the increase in error in wind power forecasts from
different types of missing data through a vector autoregressive
(VAR) model. Forecast skill reflects the loss of information
from missing data as it involves fitting the model to the time
series directly. In addition, forecasts are used by many groups
of people ranging from wind farm operators to electricity
traders and power system managers. Indeed, while this work
uses wind turbine data, the analysis and approaches used may
be applied to other sensor-based time series such as smart
meters where similar issues with missing data are also seen.
Section II introduces the analyses of real data including a
test for MNAR missingness as well as outlining the missing
data cases considered in the case study. Case study model
setup, assumptions and creation of missing data are laid out
in Section III. Properties of missing data and its effects on
forecast error are presented and discussed in Section IV, while
Section V contains the conclusions.

II. METHODOLOGY

Linear regression is a powerful and flexible approach widely
used in time series forecasting and central to several of the
methods in this work. The target variable to be predicted, y,

is modelled as a weighted sum of input variables z;, zo, ...z,
linear in the weights b;,

y=bo+bix1 +bax2 + ..byTN +€ (D

where ¢ is an error term to account for any random noise
component in the model. This may be written in vector form
as

y=XB+e , 2

where [ contains all the parameters; these are estimated using
sets of known inputs and outputs, typically to minimise some
function of €. The dimensions of y and X are then increased
by stacking input/output rows in X and y. Now each row in
X represents a single set of inputs corresponding to the output
in the same row in y (labelled s1, s2..5,), and each column in
X contains all the instances of the same variable (e.g. x1)

1 o Ty bo Y1

1 a7? by 152
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In time series analysis, inputs may be lagged versions of
the output variable so that, for example, x1 = y;_1: this is
known as autoregression. Vector autoregression extends the
model to include multiple outputs (forecasts at multiple sites)
and allows for dependencies between sites within the forecast
model. For k forecast outputs, 5 becomes an (/N x k) matrix
and the dimensions of y become (n X k).

A. Classification of Missing Data

The general properties of missing data seen in wind power
time series are presented, with the proportion of missing data
broken down by origin. The distributions of lengths of missing
periods are also found. Although a definitive classification of
data as MNAR is generally not possible [24], physical contex-
tual justification along with the missing indicator method [25]
is used to test for the likelihood of MNAR data. This method
involves adding a binary indicator variable into a regression
model to encode whether the original variable is present or
missing for every time step. A missing indicator is included
for every input and a linear regression using one lag at each
site is performed. The model is then formulated as

y=XpBx+2ZpBz, (3)

where Z is the matrix of indicators, with one for each
element in X. Missing elements in X are filled with zeros.
Coefficients in [z that are significantly different from zero
imply that the mean of the missing data points is not equal
to that of the non-missing data. Therefore, the observed and
unobserved data follow different distributions and the data
for this variable can be said to be MNAR at the chosen
significance level. The proportion of site forecasts for which
the indicator variable is significant then gives a suggestion
of the likelihood that variable displays MNAR missing data.
As well as indicating that missing and non-missing cases
follow different distributions, a significant coefficient for the
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indicator variable suggests the output y has some dependence
on whether the value is missing, which is a significant factor
in the performance of different mitigation methods [26].

B. Missing Data Scenarios

Data may be missing from the training dataset in both the
X and Y matrices, compromising parameter estimation in the
model training process, or input data required to generate
a forecast may be missing, compromising the production
of operational forecasts. In addition to the ideal case with
no missing data, the following missing data scenarios are
simulated to evaluate the effect of different types of missing
data on forecast performance:

« Missing training data: Five levels of missing training data

are synthesised, mimicking patterns seen in real datasets

« Missing spatial forecast inputs at a single time instance,

i.e. the columns in X for multiple sites with the same
time lag are missing

« Missing temporal forecast inputs from a single location:

the columns in X for multiple lags from a given target
site are missing
The structure of the forecasting method, including the missing
data mitigation methods detailed below, is shown in Fig. 1.
The following methods for dealing with missing data are by
no means exhaustive, but represent a range of approaches.

Missing Training Data: In addition to complete case anal-
ysis (where rows with any missing data in the training set are
dropped [18]), three other approaches for managing missing
training data are tested. The first alternative is the application
of inverse probability weights to correct the bias in complete
case estimation. Two other imputation-based methods are
tested; mean imputation is a simple approach while the more
involved multiple imputation technique takes relationships
with other variables in the data into account.

Inverse probability weighting estimates the probability of a
given row in the training data being complete using logistic
regression [19]. Due to the importance of variable selection for
this model, principal component analysis was used to ensure
no linear dependencies between inputs. The non-missing data
are then weighted in the final model estimation by the inverse
of their probabilities of being complete. This ensures instances
(rows in X) with a low probability of being complete are
given a higher weighting, so that rows which are more likely
to be similar to the missing rows contribute more to the model
fitting, with the intention of correcting the bias introduced by
retaining only complete rows. However, significant informa-
tion loss, especially at high missing data proportions, is still
associated with this method.

Mean imputation involves simply replacing all missing
values with the mean of that variable. In the case of normalised
data where all columns have zero mean and unit variance,
this is equivalent to filling all missing values with zeros.
This method is simple to implement and preserves all of
the available information, but artificially reduces the standard
errors associated with imputed variables as well as altering the
inter-variable dependencies.

Multiple imputation may be achieved by any method that
allows for selection of the missing value from a probability
distribution or even a group of possible values. Here the
Markov Chain Monte Carlo method of Schunk [22] is fol-
lowed. All missing values are first initialised with the mean of
that variable before columns in X are iterated over, estimating
new values for the missing points in each column in turn. For
each iteration, a linear model taking all other columns as inputs
is used to estimate the conditional mean and variance of the
missing data. The new imputed variable is then a random draw
from a gaussian distribution with the given mean and variance,
with censoring where necessary: for power variables the dis-
tribution is censored at zero and rated power for example. The
iterative process is repeated until the average distance between
imputations stabilises. Imputations are repeatedly generated to
create multiple separate pseudo-complete datasets. All further
analysis (in this case the fitting and evaluation of a forecasting
model) is carried out separately on all the imputed datasets,
with the results from each combined to give a final result
which accounts for the additional variation due to uncertainty
in the missing values.

Missing Input Data: Missing input data occurs when incom-
ing data feeds with the most recent information are down, or
latencies mean data from site are not yet available by the time
a new forecast must be issued: these latencies may vary with
time so the exact combination of available forecast inputs also
changes. A new forecast cannot be generated without adapting
the model in some way; for each different case of missing data,
two approaches to deal with missing inputs are considered.
In the first approach, alternative models are fit which do not
require the missing value(s) and in the second, missing data
are filled with estimates.

In the first approach, named the ‘re-train’ method, the linear
model is re-configured and re-trained without the missing
forecast input(s) (columns are dropped from X'). The models
used are computationally efficient enough that re-training a
model whenever any forecast inputs are missing is a feasible
approach. While the re-trained model loses some (potentially
informative) input variables, it does not rely on estimated
input values. In the second approach (the ‘impute’ method),
a regression model is fitted to predict the missing value(s)
using the remaining available forecast inputs. The original
forecasting model with all forecast inputs is then used. This
requires an extra precursor model in addition to the main
forecasting model which will change depending on the specific
combination of inputs missing at a given time, but again this
is only a modest computational burden. This additional model
can never exactly replicate the values of the missing forecast
inputs - they will always be estimates - so it is expected that
this process will decrease the skill of the final forecast.

III. DATA AND CASE STUDY

Dataset A comprised wind speed and power time series from
30 European wind farms, with missing data, with a mean site
capacity of 41.8 MW and a range of 129.8 MW. Two years
of 10-minute resolution data was re-sampled to 30-minute
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X, Y training arrays

with top 100 features
a) Complete case i
b) Inverse probability
weights
¢) Mean imputation Missing values
d) Multiple in X or Y?
imputation
(Case 1)
a) ‘Re-train’ method
b) ‘Impute’ method | Y€S Any forecast
) inputs missing?
(Cases 2-5)
No
Train model on X, Y
Cross validation for
forecast evaluation
Fig. 1. Flowchart of the process for identifying and dealing with missing

data within forecasts. Multiple methods a), b), c) were applied to find the
optimal approach for each stage. Cases refer to the figures and discussion in
section IV-B.

resolution in line with the time resolution used in the case
study. This data was used to analyse levels and patterns of
missing data seen in wind time series, allowing replication of
these patterns in dataset B.

The case study is based on dataset B, which includes ten
sites with a complete dataset at half-hourly resolution. A
VAR model was used to test the effect of different types
of missing data, with errors evaluated through 5-fold cross-
validation. Input variables comprised 60 lags (representing 30
hours) of both power and wind speed, two-hourly mean and
standard deviation measures, and monthly and diurnal dummy
variables to account for seasonality and day/night variations.
LASSO regularisation was used to perform feature selection
as a precursor step to the model fitting [27], with the top
100 features kept as inputs for the final model. The optimum
regularisation parameter value for each fold combination is
found through nested cross validation prior to forecast training
and testing, using only the most significant features.

Forecasts are evaluated using normalised Mean Absolute
Error (NMAE), where MAE is divided by site capacity in order
to compare sites of different sizes. For all the missing data
cases, a 2.5-hour ahead horizon is used as statistical forecasts

tend to outperform both persistence and numerical weather
model based methods on this time scale.

The missing data patterns observed in dataset A were repli-
cated in dataset B in the case study to allow comparison to the
complete data case. Although the creation of MNAR missing
data patterns has been studied [28], the methods focus on
datasets with a small number of variables or where the ‘rules’
for missingness can be simply simulated. The availability of a
‘real’ dataset from which to replicate missing patterns allowed
for a nearest neighbours approach. The two pairs of most
correlated sites between datasets A and B were found using
the R? correlation coefficient and then used to calculate the
Euclidean distance between power values in Y in datasets A
and B. For each row in Y in dataset B, the most similar row
(nearest neighbour) for the two most correlated sites in Y
in dataset A was found. The missing data pattern from the
corresponding row in X in dataset A was then reproduced
in that input/output pair of dataset B to give the ‘closest’
reproduction of missing data, labelled ‘medium’. Datasets with
deliberately higher and lower levels of missing data were
created following the same procedure but using a different
number of nearest neighbours, picking the highest or lowest
missing data pattern within this subset as the one to replicate
(Table I). An approach using the probability of missing data
in a certain variable given the output power was also tested
but resulted in all input/output pairs containing missing data,
leaving no training data for the complete case analysis. This is
perhaps due to the lack of dependency between missing data
across variables in this method.

TABLE I
MISSING DATA CREATED IN THE COMPLETE DATASET. ‘KNN’ GIVES THE
NUMBER OF NEAREST NEIGHBOURS SELECTED FROM AND ‘% ROWS WITH
MISSING DATA’ INDICATES THE REDUCTION IN SIZE OF THE AVAILABLE
DATASET WHEN USING COMPLETE CASE ANALYSIS.

KNN | Missing Data % | % Rows With Missing Data
Low 3 1.36% 42%
Low-Medium 2 2.48% 56%
Medium 1 6.15% 76%
Medium-High 2 9.57% 94%
High 3 11.65% 99%

A. Model assumptions

We employ a preliminary step to select out the most
informative 100 features which allows fast calculation of the
final step of model training and testing with a set value of the
regularisation parameter. However, re-running only the final
step of model training and testing when different inputs are
missing requires two assumptions:

1) Missing a small number of the top 100 features makes
negligible difference to the final forecast error
2) the optimum regularisation parameter is the same.

When the complete model process was re-iterated with
missing data present, an improvement in error of 0.02%
was seen compared to re-running only the final step, with a
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significantly longer computation time. As such, retraining only
the final model without repeating the feature selection process
is justified in the presence of missing data. Forecasts with a
longer horizon display very little difference in error (0.001%)
between a model trained specifically for that horizon and one
using the features and regularisation parameter optimised for
a l-step-ahead forecast. Both scenarios result in a change in
the optimum regularisation parameter of more than 20% but in
both cases this clearly has a negligible impact on final forecast
error. The coefficients affected most by regularisation are those
with small magnitude, which by definition will also be the ones
with the smallest impact on the final forecast.

IV. RESULTS AND DISCUSSION

The patterns and levels of missing data seen in real time
series are presented before a set of missing data scenarios
are evaluated in the case study, including testing methods to
mitigate information loss.

A. Analysis of real missing data

For wind turbines, any measurements taken during non-
routine operation may be considered invalid or missing as
they are not representative of the unconstrained behaviour
that data analysis is generally aiming to capture, i.e. power
production may not match what the wind farm or turbine is
normally capable of in those wind conditions. As such, three
main sources of missing data were identified: data missing
in the raw time series due to sensor measurement, recording
or communications failures; missing periods due to site-wide
maintenance works; and curtailments (when controller action
is taken to limit power output). The shutdown of individual
turbines may be compensated for by renormalising site power
production and so is not considered as missing data. The
proportion of time points in the series affected by each of these
missing sources was found separately (Table II) in addition
to the combined effect. Fig. 2 shows the levels of missing
data seen at the sites analysed. Although the majority of sites
displayed low levels of missing data with medians of 2.70%
and 1.57% for power and wind speed respectively, it can be
seen that a number of sites have far higher levels of over 30%
missing data.

TABLE I
MEAN MISSING DATA PROPORTIONS BY TYPE. THE TOTAL PROPORTION
OF MISSING DATA IS LESS THAN THE SUM OF EACH INDIVIDUAL TYPE DUE
TO OVERLAP IN MISSING TIME POINTS.

Power | Wind Speed
Raw Data 5.32% 4.86%
Maintenance | 0.57% 0%
Curtailments | 2.89% 0%
Overall 5.71% 4.86%

The maximum observed length of missing data extended to
29 days for both wind speed and power. The mean length of
a period of missing values is 3.0 hours, with a mean length
of non missing periods (i.e. mean time between instances of
missing data) of 48 hours. These long sections of missing data

Wind-
Speed

L

Power -

15 20 25

% Missing Data

w
w
ot

Fig. 2. Percentages of missing data seen overall in power and wind speed
variables for a group of 30 wind farms. The dashed purple line represents the
mean value.

0 20 40 80
% of Forecasts Where Variable Was Significant

Fig. 3. Percentage of forecasts where the original variable is classed as MNAR
by the missing indicator test. Dashed purple line represents the mean.

suggest the mechanism causing missing data is not completely
random. The distributions of missing data for power and wind
speed are also similar as the dominant cause of missing data
is raw points missing, which affects both variables.

Planned maintenance activities are often scheduled for times
with lower wind speeds and any work on a turbine will have
an associated maximum safe wind speed over which activities
will be cancelled; this suggests a correlation between times
of missing data due to planned maintenance and the value
of missing variables, making the data missing not at random.
Wind farm sites may be more likely to be curtailed close to
rated power from grid restraints limiting power flows; again
this would cause an MNAR data pattern from curtailments. In
addition to the physical justifications given above, an MNAR
pattern was tested for using the missing indicator method
for each site wind speed and power variable. The percentage
of the time the corresponding missing indicator variable was
classed as significant was found (Fig. 3). On average across all
variables, the missing indicator was significant in the forecast
60.8% of the time. This suggests it is likely the MNAR data
pattern applies to both wind speed and power measurements
across the majority of sites studied. Any model that ignores
MNAR missing data will under-represent behaviour seen under
missing data scenarios in the training dataset and therefore
might be expected to perform worse under these conditions.

B. Case study: effect of missing data on forecast error

As a benchmark to compare worsening in performance due
to missing data, the forecast model with no missing inputs
was evaluated and compared to a simple persistence model.
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Fig. 4. Model error relative to the persistence model, at varying forecast hori-
zons, when no data is missing. Improvement is calculated as (NMAEpersistence
- NMAEvVAR)/NMAE pergistence X 100 so that a lower VAR error results in a
higher (positive) improvement value. Error bars represent the variation over
different sites.

The VAR model outperforms persistence at every site for all
forecast horizons 90 minutes ahead or greater, with improved
relative performance at longer forecast horizons (Fig. 4).

Five missing data scenarios were tested with multiple ap-
proaches to missing data applied to each. Fig. 1 shows the
forecasting process with missing data methods. The forecast-
ing performance of each method was compared to that of the
model where no data is missing by calculating the ‘worsening’,
that is, the percentage increase in NMAE of the model with
missing data relative to that of the model with no missing data.

Multiple simulations of each case were run, with each site in
turn (or a different combination of sites, in the case of multiple
missing sites) missing data. Overall worsening plotted is the
average worsening across all simulations.

In the first case, data missing in the training set was
considered; Fig. 5 shows the effect of the level of missing
data on forecast performance. Complete case analysis, inverse
probability weightings, mean imputation and multiple imputa-
tion were tested as mitigation methods. A greater proportion
of missing data dramatically reduces the number of complete
rows remaining in the training dataset as shown in Table I,
decreasing the accuracy of the model fit for complete case
and inverse probability weighting methods, where incomplete
rows are discarded. At 11.65% missing data, forecasts using a
complete case approach are 19% worse than when the training
dataset is complete. Correcting the bias of the complete case
approach through inverse probability weightings improved
forecasts at missing data levels of 9% or more, although care
must be taken to choose a suitable number of components
in the principal components analysis used for this. Mean
imputation displays perhaps surprisingly good performance,
given the data is MNAR: for the highest level tested of 11.65%
missing data, forecasts using mean imputation had NMAE
1.27% higher than the model with no missing data. Multiple
imputation shows the best performance, with worsening of
0.72% across all missing data levels. The benefit of multiple

—*— Complete Case
——  Multiple Imputation

15- Inverse Probability Weights
——  Mean Imputation

% Worsening

ot

0 2 4 6 8

% Missing Data
Fig. 5. Case 1: Complete case analysis used on missing data in the training
set. Worsening is measured as the percentage increase in NMAE, compared

to the case with a full training dataset. Error bars represent variation across
different sites.

imputation is most pronounced at high levels of missing data,
although even modest improvements in forecast skill at lower
levels may still be valuable in some applications. Multiple
imputation also results in more consistent forecast errors
across the set of sites analysed (no individual sites showed
significantly more worsening under this method than others).
However, multiple imputation is a more complex method
to implement than mean imputation, both in the imputation
process itself and in the combining of results from the different
imputations in the final analysis. Of the methods tested, those
that utilise all the available data clearly outperform those
where incomplete cases are ignored. The increased skill of
multiple imputation likely comes from the modelling of inter-
variable relationships in the imputation process.

Cases 2-5 represent scenarios where some combination of
forecast inputs is missing, seen for example during a long
communications failure with a site. Two mitigation methods
are tested: firstly, the ‘re-train’ method involves deleting miss-
ing forecast input variables from the training matrix X and
training a new model from this. While this reduces the number
of forecast inputs in the model, no estimation of missing
measurements is needed. In contrast, the ‘impute’ method fits
a separate, precursor model using the available forecast inputs
to predict the missing one(s). This allows the original model to
be used with all forecast inputs but adds an extra modelling
step, introducing an extra source of uncertainty. Results are
plotted separately for complete sites (where all forecast inputs
from that site are available) and missing sites, where some or
all of the forecast inputs are missing.

Case 2 examines the scenario where all information for a
number of sites is missing; forecast performance at a missing
site clearly benefits from other sites with complete inputs.
Increasing the number of sites in the model may increase
the probability of a complete site similar to the missing site,
therefore improving forecast errors, illustrated in Fig. 6a. This
demonstrates the advantage of multivariate models such as
VAR in providing greater robustness to missing data through
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(a) Case 2: Impact of number of sites as inputs in VAR model on forecast
error. Forecast error improves when more sites are included in the model,
particularly for sites that are missing forecast input data.
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(c) Case 4: Impact on forecast error of an individual lag missing from
one site.
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(b) Case 3: Impact of cumulative number of lags missing from one site

on forecast error (normalised to site capacity). Forecasts at missing sites
are worse for longer missing periods.
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(d) Case 5: Impact on forecast error of number of sites with lag 1 missing.
The more sites missing data simultaneously, the worse the error.

Fig. 6. Worsening is measured as the percentage increase in NMAE, compared to the case with no missing data. The legend in (a) applies to all subfigures.
‘missing sites’ show the average forecast error worsening at sites where some or all forecast inputs are missing, while ‘complete sites’ shows the worsening

at sites whose forecast inputs are all available.

the inter-site relationships captured. The °‘re-train’ method
consistently outperforms the ‘impute’ method, possibly due to

added error from an additional estimation step in the ‘impute’
method.

Case 3 examines the effect of the length of a missing period
at a single site; as may be expected, removing the most recent
lags makes the greatest difference to forecast error as these
lags tend to carry the highest weight in the regression model
(indicating they are the best predictors). Forecasts continue
to worsen with increasing length of missing period, but the
largest proportion of the loss of forecast skill comes from
missing the most recent information, shown in Fig. 6b. The
worsening seen at the complete sites increases very slightly

with increased missing period but is small in comparison with
that at missing sites.

Case 4 evaluates the impact of the loss of a single input
variable. This reinforces the finding of case 3 that missing
the first lag, corresponding to the most recent information,
has the largest detrimental effect on the forecast. As might be
expected, missing a single piece of information has a smaller
effect than missing several points, shown by the lower levels

of worsening in Fig. 6¢c compared to the other cases.

In Case 5 the effect of data missing simultaneously across
sites is shown by evaluating forecast performance with lag 1
missing at a number of sites. As expected, an increased number
of sites with the most recent information missing results in a
worsening of forecast performance across all sites, but notably
more so at missing sites, shown in Fig. 6d.

While these results stem from a VAR forecasting model, it is
expected that similar relationships between missing variables
and loss of forecast skill would be seen with other models.
Univariate models where each site forecast comes from its own
separate model would be expected to be less robust to missing
data, as there are no inter-site dependencies available to (at

least partially) compensate for missing values. The persistence
model is an extreme case, where a long missing period at one
site means a forecast will be based on a single piece of out-

of-date information.
V. CONCLUSIONS

The properties of missing data in real SCADA time series
have been found, before the effect of various missing data
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scenarios on forecast skill were simulated through a case study.
Real wind power data is shown to have typical median levels
of missing data of 2.70% for the power variable and 1.57%
for wind speed. However, some sites may display levels up
to 36%, greatly reducing forecast skill. Data is missing not
at random, meaning care must be taken to use an appropriate
missing data technique. The impact of missing data on wind
power forecasts in an autoregressive framework has been
demonstrated, with the most appropriate mitigation methods
identified. The key results are summarised:

« Missing training data can have a significant impact on
results if not dealt with appropriately; multiple imputation
is found to be the best of the methods considered here to
compensate for this

« If inputs to an operational forecast model are missing,
retraining the model without these inputs results in bet-
ter performance than filling the missing values using a
regression model based on available inputs

« Forecast error improves across all sites when more sites
are included in the model, with particular improvement at
sites that are missing forecast input data; therefore, spatio-
temporal models including a greater number of sites are
more robust to missing data

« Forecasts continue to worsen with increasing length of
missing period, but the largest proportion of the loss
of forecast skill comes from missing the most recent
information

While these results are from a case study using a VAR fore-

casting model, future work could extend this to other models.
It is expected the results would be similar for other models,
as the change in forecast skill is related more to the loss of
information from the missing variable(s) than the modelling
framework itself. In summary, awareness of the properties of
missing data, its potential impact on model performance and
use of suitable mitigation techniques is essential to realise that
model’s full potential.
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