RCC_MDPCA {RCCM}

R Documentation

Retained Component Criterion for the Moving Dynamic Principal Component Analysis

Description

The RCC_MDPCA criterion is a new tool to determine the optimal number of components (i.e. MDPCs) to retain for the Moving Dynamic Principal Component Analysis (MDPCA). This criterion balances between the following two desires, reducing the dimension of the data and increasing the accuracy of the final results of MDPCA; See Alshammri and Pan (2019). Notice that the following libraries are needed to be installed before using the mcov function: library(nlme); library(MDPCA)

Usage

RCC_MDPCA(x,w,l)

Arguments

x

a T-by-m data matrix, where the rows are "T" time points, and the columns are "m" variables

w

window width (i.e. window length) that used in the calculation of MDPCA

l

number of lagged series to be included in the calculation of MDPCA

Note

The size of w depends on the degree of stationarity of the data. Small window sizes are suitable for data that exhibit strong non-stationarity. For stationary data, a window of size "w=T-l" is used.

Author(s)

Fayed Alshammri

References

Examples

##The data matrix X is a non-stationary time series with m=6 and T=1500.
m=6;T=1500

Generate x_t
X=mat.or.vec(m,T)
for(i in 1:2) X[,i]=a1[(i+1):T]
for(i in 3:4) X[,i]=a2[(i-1):(T+i-2)]
for(i in 5:6) X[,i]=a3[(i-3):(T+i-4)]
X=t(X)
X=ts(X)

##calculate and plot the RCC_MDPCA values of x after applying MDPCA with w=100 and l=2.
myresults=RCC_MDPCA(X,100,2)

myresults

[Package RCCM version 0.1.0 Index]