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Abstract: The Niger Delta is the most climate-vulnerable region in Nigeria. Flooding events are
recorded annually in settlements along the River Niger and its tributaries, inundating many towns and
displacing people from their homes. In this study, climate change impacts from extreme meteorological
events over the period 2010–2099 are predicted and analyzed. Four coupled model intercomparison
project phase 5 (CMIP5) global climate models (GCMs) under respectively concentration pathways
(RCP4.5 and RCP8.5) emission scenarios were used for climate change predictions. Standardized
precipitation indices (SPI) of 1-month and 12-month time steps were used for extreme event assessment.
Results from the climate change scenarios predict an increase in rainfall across all future periods and
under both emission scenarios, with the highest projected increase during the last three decades of
the century. Under the RCP8.5 emission scenario, the rainfall at Port Harcourt and Yenagoa Stations
is predicted to increase by about 2.47% and 2.62% while the rainfall at Warri Station is predicted to
increase by about 1.39% toward the end of the century. The 12-month SPI under RCP4.5 and RCP8.5
emission scenarios predict an exceedance in the extreme wet threshold (i.e., SPI > 2) during all future
periods and across all study locations. These findings suggest an increasing risk of flooding within
the projected periods. The finding can be useful to policymakers for the formulation and planning of
flood mitigation and adaptation measures.

Keywords: global climate model (GCM); respectively concentration pathways (RCP); coupled model
intercomparison project phase 5 (CMIP5); standardized precipitation index (SPI)

1. Introduction

The industrialization of developed and developing countries increases the concentration of
greenhouse gases (GHGs), which enhances climate variability [1]. Climate change has become an
enormous challenge for developmental planning in many countries, especially for developing countries
like Nigeria. The IPCC report [2] shows that an increase in the frequency of extreme rainfall is likely
to occur in most areas during the 21st century with different emissions scenarios. Recent studies
by [3,4] reported that human activities played a leading role in increasing climate change impacts.
The projected results of these changes include flooding, damage to crops, soil erosion, adverse effects
on surface and groundwater quality, water scarcity, water contamination, disease outbreak, loss of
properties, disruption of the settlement, and other socio-economic challenges [5].

Floods are the result of weather events occurring at variable time frequencies in many areas
around the world [6]. Many cities are hotspots of risk from extreme weather events, which is growing
due to a combination of climate change and anthropogenic activities [7]. Different regions in Nigeria
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are seasonally affected by flood, which significantly alters both the national and regional economic
development depending on its severity. Studies in Nigeria [8–11] reported that flood displaces more
people in the country than any other natural disaster, with an estimated 20% of the population at
risk. The impacts are recognized more by vulnerable communities, who often build homes along the
floodplains, causing millions of people to relocate, destroying their businesses, and polluting water
resources, which increase the risk of diseases [8,12].

The Niger Delta part of Nigeria is the most vulnerable part of the country to impacts of climate
change [13,14]. Flooding events are recorded annually in the coastal Niger Delta states located along
the River Niger and its tributaries [13]. Devastating floods often inundate two-thirds of the coastal
communities in the Niger Delta region for at least a quarter of each year [13,15–18]. Studies on the
vulnerability of communities in three Niger Delta States [15,16] reported that a total of 1110 towns are
at risk of being inundated and about 7,120,028 people risk displacement. It has, therefore, become
very vital to study the impact of climate change on extreme weather events to predict the possible
occurrence of associated risks, which can assist in the planning and management of such incidents.
One of the significant effects of climate change is the variation of rainfall. As high rainfall may result in
flood, its deficit may lead to drought. Therefore, the prediction of variation in future rainfall trends is
necessary for assessing the impact of climate change.

The cost of climate change adaptation can significantly be reduced through adequate policies
and flood control investment plans. There is, therefore, a need for systematic studies of indices that
are useful for continuous monitoring of high-risk associated with future extreme weather events.
The standardized precipitation index (SPI) [19,20], although developed for drought monitoring, can be
successfully applied for flood monitoring purposes [6,21–23]. SPI can also serve as an indicator for the
development of soil-saturation conditions, leading to flooding potential.

General circulation models (GCMs) are essential tools for assessing the impact of climate change
on a range of human and natural systems [24]. Simulations at these inner scales are of considerable
interest to hydrologists in assessing the possible impact of climate change on water resources and
extreme weather events [25]. Different climate models have been used globally for climate impact
assessment studies. Climate models, particularly the GCMs, provide an essential source of information
for constructing scenarios of climate change and providing such information at a higher spatial
resolution. GCMs are based on physical laws and physical-based empirical relationships and are
mathematical representations of the atmosphere, ocean, and land surface processes [24].

Though few researchers [13,15–18] have studied the vulnerability of the Niger Delta States to
flooding, no study has investigated the spatial and temporal variations of future extreme weather
events in the context of climate change. In this study, the spatiotemporal variations in rainfall over
the Niger Delta, for the observed period (1980 to 2005) and the predicted period (2010 to 2099) under
RCP4.5 and RCP8.5 were investigated for extreme events. The results help in the analysis of extreme
weather events as part of the strategies in climate change impact mitigation.

2. Description of the Study Area

The study area is comprised by three states in the Niger Delta part of Nigeria namely the Delta,
Bayelsa, and Rivers States (Figure 1), which are geographically located at a latitude of 4.15◦ N and a
longitude of 6.01◦ E, and covers an area about 29,100 km2. It is a low lying coastal area that is drained
by the Kwa-Ibo, Imo, Bonny, and Aba Rivers and their tributaries.
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Figure 1. Location of the study area in Nigeria. 

The study area is classified as an equatorial climate toward the southern coast and subequatorial 
climate toward the northern tropical rainforest [26]. The altitude of the area under the influence of 
high coastal tides results in flooding, especially during the rainy season [27]. The area is characterized 
by typical tropical dry seasons (November to February) and wet season (March to October) with a 
mean annual rainfall increasing from 2000 mm around the northern fringe to about 4500 mm around 
the coastal margin [28]. Recent studies reported that during the last 20 years [13], a trend of increase 
in precipitation, flood frequencies, maximum and minimum temperature were observed over the 
years in the Niger Delta due to global warming, which show a clear sign of climate change with a 
variable future climate over the region [16–18,29].  

The mean monthly temperatures are high up to 26.7 °C around March/April and as low as 24.4 
°C during July/August giving a small annual range of 2.7 °C. The relative humidity of the area is 
relatively high, often reaching 90% and are associated with warm, wet southwesterly winds blowing 
inland most of the year whereas dust-laden, warm and dry northeasterly winds occasionally reach 
the coast for small periods of the year [30]. 

3. Materials and Methods 

3.1. Meteorological Datasets 

The datasets used in this study are daily rainfall time series datasets obtained from the Climate 
Research Unit (CRU) for the historical periods of 1980 to 2005 over the Niger Delta part of Nigeria 
due to the scarcity of reliable long time records of hydroclimatological stations in the area. The CRU 

Figure 1. Location of the study area in Nigeria.

The study area is classified as an equatorial climate toward the southern coast and subequatorial
climate toward the northern tropical rainforest [26]. The altitude of the area under the influence of
high coastal tides results in flooding, especially during the rainy season [27]. The area is characterized
by typical tropical dry seasons (November to February) and wet season (March to October) with a
mean annual rainfall increasing from 2000 mm around the northern fringe to about 4500 mm around
the coastal margin [28]. Recent studies reported that during the last 20 years [13], a trend of increase in
precipitation, flood frequencies, maximum and minimum temperature were observed over the years in
the Niger Delta due to global warming, which show a clear sign of climate change with a variable
future climate over the region [16–18,29].

The mean monthly temperatures are high up to 26.7 ◦C around March/April and as low as 24.4 ◦C
during July/August giving a small annual range of 2.7 ◦C. The relative humidity of the area is relatively
high, often reaching 90% and are associated with warm, wet southwesterly winds blowing inland most
of the year whereas dust-laden, warm and dry northeasterly winds occasionally reach the coast for
small periods of the year [30].

3. Materials and Methods

3.1. Meteorological Datasets

The datasets used in this study are daily rainfall time series datasets obtained from the Climate
Research Unit (CRU) for the historical periods of 1980 to 2005 over the Niger Delta part of Nigeria
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due to the scarcity of reliable long time records of hydroclimatological stations in the area. The CRU
datasets are observation-based gridded rainfall and temperature datasets, which are widely used
globally because of their extensive spatial and temporal coverage [31–33]. A study by [34] found the
CRU datasets to be the best-fit datasets that replicate the distribution patterns, spatial, and temporal
variability of the Niger Delta’s observed hydroclimatological datasets.

3.2. Coupled Model Inter-Comparison Project Phase 5 (CMIP5) General Circulation Models (GCM) Datasets

In this study, four GCMs of the ISI-MIP (Inter-Sectoral Impact Model Inter-comparison Project)
(Table 1) and two carbon emission and historical scenarios (RCP4.5 and RCP8.5) for the years (2010–2099)
were extracted at a grid resolution of 0.5◦ × 0.5◦ for the study area coordinates consistent with the
observed climate datasets. These GCMs were selected based on their better performance over the
Niger Delta in a study conducted by [35].

Table 1. Coupled model inter-comparison project phase 5 (CMIP5) general circulation models used in
the study at 0.5◦ × 0.5◦ grid.

Models Institute

ACCESS1-3 CSIRO (Commonwealth Scientific & Industrial Research Organization,
Australia), and BOM (Bureau of Meteorology, Australia)

MIROC-ESM AORI, NIES and JAMSTEC
MIROC-ESM-CHEM AORI, NIES and JAMSTEC

NoerESM1-M Norwegian Climate Centre

The RCP4.5 and RCP8.5 emission scenarios were selected for this study, as these two scenarios are
assumed to provide a possible complete range of impact. The RCP4.5 denotes the common pathway
scenario depicting good agreement with the latest lower greenhouse gas emissions policy by the global
community. In contrast, RCP8.5 denotes the business-as-usual scenario, consistent with a future with
no change in climate policy on emissions reduction [36]. Therefore, as many studies recommend using
ensemble results of several climate change models [37], the ensemble of the four best performing
GCMs [35] was used in this study.

3.3. Bias Correction

Raw GCM outputs typically contain biases when compared with observations [38]. In this study,
the CRU dataset for the periods 1980 to 2005 was used to correct the biases in the historical raw GCMs
(1980–2005), which were then used to validate the bias-corrected GCM outputs. The differences in
mean and variability between the raw GCM outputs and the observed CRU datasets were later used
to correct the biases in the projected raw GCMs (2005–2099). The easiest and most common bias
correction method, which is the multiplicative method, was adopted to correct the biases in the daily
time series rainfall from the four GCM outputs [33,39,40]. In the multiplicative bias correction method,
a multiplicative correction factor for each month is used, and the modified daily rainfall is expressed in
Equation (1):

Pcorrectedi j = PGCMi j ∗

Pre f erence jk

PGCM jk

(1)

where P is the rainfall (mm day−1); P is the long-term mean rainfall; and i, j, k are the day, month, and
year counters, respectively.

3.4. Meteorological Drought Assessment

The methodology adopted in this study consists of applying the standardized precipitation index
(SPI) to investigate the susceptibility of the selected meteorological stations to flooding events. SPI was
developed to identify meteorological flood and drought events from precipitation time series data for
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monitoring and evaluation of extreme events [19,20]. A wet period for a time scale i is defined as the
period during which the SPI is continuously positive and reaches a value of +1 or higher [19]. SPI
is calculated by taking the difference in monthly precipitation (xi) from the monthly mean (x), then
divided by the standard deviation (σ) [21].

SPI =
xi − x
σ

(2)

Positive SPI values show higher precipitation than the mean, while negative values indicate less
than mean precipitation [41]. In this study, the SPI index was calculated for time scales of 1-month
and 12-month rainfall series for each of the selected locations. One-month SPI plots are very similar
to a time series plot displaying the percentage of average rainfall for 30 days and reflect short-term
conditions. A 12-month SPI indicates long-term rainfall patterns that represent a comparison of the
precipitation for 12 consecutive months and that recorded in the same 12 consecutive months during
all the previous years of available data [22]. In this study, the SPI package in R [42] was used for the
computation analysis. Wet dynamics were graphically analyzed for each scale, each RCP emission
scenario, and all the projected durations and each location. The definition of the SPI values in drought
characterizations are summarized in Table 2.

Table 2. Categories for standardized precipitation index (SPI) values [19,22].

Drought Category SPI Value

Extremely wet 2.00+
Very wet 1.50 to 1.99

Moderately wet 1.00 to 1.49
Near normal −0.99 to 0.99

Moderately dry −1.00 to −1.49
Severely dry −1.50 to −1.99

Extremely dry −2.00 and less

3.5. Performance Assessment of the Models

The performance evaluation of the developed models was carried out using three statistical
indicators: root mean squared error (RMSE); coefficient of correlation (R2); and the Nash–Sutcliffe
efficiency (NSE) [43]. RMSE is considered as a robust measure of accuracy [44,45].

RMSE =

√√
1
n

n∑
i=1

(
hoi − hpi

)2
(3)

The coefficient of determination (R2) is an indicator of the strength of the relationship between
the observed and simulated values, which is considered more accurate if it is approximately equal to
one [43].

R2 =


∑n

i=1

(
hpi − hp

)(
hoi − ho

)
√
[(
∑n

i=1

(
hpi − hp

)2
)(

∑n
i=1

(
hoi − ho

)2
)]

 (4)

The Nash–Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative magnitude
of the residual variance compared to the measured data variance. NSE also indicates how well the
plot of the observed versus simulated data fits. NSE ranges between −∞ and 1, with NSE = 1 being
the optimum value. Values between 0 to 1 are viewed as an acceptable level of performance, whereas
values of 0.0 indicate that the mean observed value is a better predictor than the simulated value,
which indicates unacceptable performance [44].
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NSE = 1−


∑N

i=1

(
hoi − hpi

)2∑N
i=1 (h0i − ho)

2

 (5)

where hoi is the observed precipitation at the ith time; hpi is the predicted rainfall at the ith time; ho

is the mean of the observed rainfall levels; hp is the mean of the predicted rainfall, and n is the total
number of observations.

4. Results and Discussion

4.1. Performance Assessment of GCM Ensemble

The performance of the four GCM ensemble models during the historical period (1980–2005) was
assessed using the root mean square error (RMSE), coefficient of correlation (R2), and Nash–Sutcliff
efficiency (NSE). The results obtained are summarized in Table 3, and the mean monthly distribution
of observed and ensemble rainfall in Figure 2a–f shows that the ensemble model performed very well
in depicting the observed CRU datasets at each of the three study locations. The statistical indicators
showed a low RMSE with high NSE and R2 values across all of the study locations, which indicate that
the model is fit for simulations/projections of the area’s future rainfall.

Table 3. Performance assessment of rainfall in the general circulation model (GCM) ensemble.

Location RMSE NSE R2

Port Harcourt 78.49 0.59 0.84
Yenagoa 62.29 0.74 0.92

Warri 75.54 0.64 0.85

4.2. Observed and Predicted Rainfall Scenarios

The distribution of mean monthly observed and predicted rainfall scenarios in the study locations
are shown in Figure 2a–f, respectively. The projected models were grouped into three time periods of
2010–2039, 2040–2069, and 2070–2099. The monthly distribution, as presented in Figure 2, shows that
the projected rainfall, in comparison with the observed rainfall, predicts an increasing trend across all
stations and all predicted durations. The highest increase across all three stations was projected to be
during the 2070–2099 period. In Port-Harcourt, the rainfall is projected to increase by 1.06% under
RCP4.5, and 2.47% under RCP8.5. Yenagoa is also projected to experience an increase of about 1.27%
under RCP4.5 and 2.62% under RCP8.5. In comparison, Warri Station is also predicted to experience
an increase of about 1.24% under RCP4.5, and 1.39% under RCP8.5 toward the end of the century, as
shown in Figure 3. This projected increase in rainfall confirms the report of the IPCC [25] in response
to greenhouse gases forcing, which is consistent with other parts of the world [46–49].
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4.3. Meteorological Drought Assessment

The 1-month and 12-month time-steps in the standardized precipitation index were calculated for
the base period (1980–2005) and the predicted duration (2010–2099) across the three study locations.
Results of the computed SPI for the base period is shown in Figure 4a,b. In contrast, the results of all the
projected periods divided into thirty year time periods (2010–2039, 2040–2069, and 2070–2099) across
all stations, and both emission scenarios are shown in Figures 5–7. The most striking characteristic is
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the change in frequency as the time scale changes, as shown in all figures. On the 1-month scale, the
wet frequency increases, but its duration decreases while in the 12-month time scale, the wet events
become less frequent but last longer. This trend implies that on the shorter time scales, the wet events
become more frequent but last for a short period. The figures show that extremely wet weather (i.e., SPI >

2, as classified in Table 2) is likely to occur across most of the stations, especially when using the 12-month
time steps. However, all the figures show that very wet event weather (i.e., 1.5 > SPI < 1.99, as classified in
Table 2) is expected to occur across all the study locations almost on an annual basis and all the predicted
durations using all the time steps. Using the 1-month and 12-month SPI, three well-defined extremely wet
weather events were identified in all three locations from the base period series analyzed, which depicted
three major floods associated with three of the weather events (Figure 4a,b).

Attention has not been given to flood intensity measurements and records storage in Nigeria.
Hence, no historical datasets are available to validate the findings of the historical period. However,
the findings of this study match those of the reported extreme flood incidents [9,11] in the study area
during the 1999 and 2001 rainstorms, which submerged houses, schools, markets, farmlands, and
displacement of over 425,839.5 people in Delta State between March 1999 and April 2001. Additionally,
in Bayelsa State, over 273,266 people were displaced by floods in 1999, and 382,000 people in March
2001 [10,11]. Comparisons of the reported extreme weather events across the study locations with
the computed extremely wet events (i.e., SPI > 2) during the historical period in Figure 4 confirm the
findings of the base period.Hydrology 2020, 7, x FOR PEER REVIEW 9 of 16 
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Analysis of SPI variability for the period 2010 to 2039 across the study area shows that the 1-month
SPI predicted an exceedance in extreme wet event threshold (i.e., SPI > 2) at Yenagoa Station once under
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RCP4.5 (Figure 5a) and twice under RCP8.5 (Figure 5c) during the thirty year mean. The 12-month SPI
under RCP4.5 and RCP8.5 in Figure 5b,d also predict an exceedance in extreme wet event threshold
(i.e., SPI > 2) twice during the thirty year mean, similar to the baseline period. No station predicted
the risk of severe dryness (i.e., −1.0 >SPI < 1.49) using the 1-month SPI. However, the 12-month SPI
suggests that during those periods (2010–2039), the climate at Warri and Port Harcourt Stations exceeds
the severely dry threshold (i.e., 1.5 >SPI < 1.99) once under RCP4.5 and three times under RCP8.5
(Figure 5d) for the thirty year mean period.Hydrology 2020, 7, x FOR PEER REVIEW 10 of 16 
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For the periods covering 2040 to 2069, (Figure 6a–d), the 12-month SPI under the RCP4.5 and
RCP8.5 emission scenarios projected an exceedance in the extreme wet event threshold (i.e., SPI > 2)
twice during the thirty year mean. However, no station showed a risk of severe dryness (i.e., −1.0 > SPI
< 1.49) under RCP4.5. The 12-month SPI under the RCP8.5 (Figure 6d) emission scenario predicted the
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risk of a severely dry event (i.e., −1.0 >SPI < 1.49) once during the thirty year mean and across all study
locations. Similarly, during the periods covering 2070 to 2099, the 1-month time step SPI in Figure 7a,c
under RCP4.5 and RCP8.5 projected an exceedance in the extreme wet threshold (i.e., SPI > 2) once
during the thirty year mean. However, the 12-month SPI predicted the exceedance in the extreme wet
threshold (i.e., SPI > 2) twice under RCP4.5 (Figure 7b), and three times under RCP8.5 (Figure 7d)
during the thirty year mean. The drought magnitude at the Port Harcourt and Warri Stations exceeded
the severely dry threshold (i.e., 1.5 > SPI < 1.99) once under RCP4.5 and three times under RCP8.5 for
the thirty year (2070 to 2099) mean.

5. Discussion

Adaptation and Planning Strategy

It is evident in several studies [13,15–18] that the Niger Delta experiences periodic vulnerability
in terms of flooding, rendering millions of people homeless by submerging their houses, schools, and
markets and destroying their farmlands, which is often attributed to climate change. The geographical
location of the study area being a low-lying part of Nigeria exacerbates the situation, causing the
area to be easily submerged during heavy rainfall events. The condition of such areas have forced
people to adapt to the frequent seasonal flooding rather than control or mitigating measures. Hence,
studies geared toward extreme weather events projections in low-lying areas are necessary. This
will create awareness for an urgent collaborative effort between government, stakeholders, and other
relevant agencies to support town planning, and in developing strategic plans for mitigating the
possible impacts of extreme weather events in the Niger Delta to prevent its long-range consequences.
Prevention of common practices such as construction in flood-prone zones should be encouraged to
ensure an adequate buffer along the river channels.

The projected increase in rainfall across the three study locations confirmed the IPCC [25] report
as well as the results in [26,35,50–52] for this region. These findings highlight that the region might be
at risk of extreme wet events, which could result in the risk of flooding within the projected periods.
These might pose a considerable threat to lives and properties, which might consequently harm the
socio-economic growth and livelihood of the region [13,15–18,29]. Therefore, routine monitoring and
measurement of water levels in rivers, streams, and dams, especially along the Niger River for potential
risk of flooding should be enforced to forestall the possible disaster. Sufficient information or warning
systems could be put in place across the years predicted by this study to educate the public against the
dangers of flooding as well as the government policies for its mitigation adaptation measures.

6. Conclusions

In determining the potential impact of climate change on extreme events in the Niger Delta part of
Nigeria, rainfall has been projected from 2010 to 2099 using an ensemble of four GCMs under RCP4.5
and 8.5 emission scenarios. The results showed an increase in the projected future rainfall scenarios
across all study locations, which suggest a wetter future in the coastal Niger Delta. The extreme
weather events at the stations were investigated using the standardized precipitation index (SPI). The
SPI index projects an extreme wet event at least once under RCP4.5 and three times under RCP8.5
for the thirty year mean across the study locations. These findings suggest high rainfall in the future
climate of this area across all of the projected durations. Hence, adequate plans for flood mitigation
should be put in place. The findings can also be useful to policymakers for the formulation and
planning of mitigation and adaptation measures for climate change.
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