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Abstract Current practical approaches for probabilistic seismic performance assessment of structures rely on the concept of 10 

intensity measure (IM), which is used to decompose the problem into hazard analysis and conditional seismic demand analysis. 11 

These approaches are potentially more efficient than traditional Monte-Carlo based ones, but the performance estimates can be 12 

negatively influenced by inadequate setup choices. These include, among the others, the number of seismic intensity levels to 13 

consider, the number of structural analyses to be performed at each intensity level, and the lognormality assumption for the 14 

conditional demand. This paper investigates the accuracy and effectiveness of a widespread IM-based method for seismic 15 

performance assessment, multi-stripe analysis (MSA), through an extensive parametric study carried out on a three-story steel 16 

moment-resisting frame, by considering different setup choices and various engineering demand parameters. A stochastic ground 17 

motion model is employed to describe the seismic hazard and the spectral acceleration is used as intensity measure. The results 18 

of the convolution between the seismic hazard and the conditional probability of exceedance obtained via MSA are compared 19 

with the estimates obtained via Subset Simulation, providing a reference solution. The comparison gives useful insights on the 20 

influence of the main parameters controlling the accuracy and precision of the IM-based method. It is shown that with the proper 21 

settings, MSA can provide risk estimates as accurate as those obtained via Subset Simulation, at a fraction of the computational 22 

cost. 23 

 24 
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 26 

1. Introduction 27 

Seismic risk analysis aims to assess the probability of a structural system attaining an unsatisfactory performance at least once 28 

within a reference time frame. Probabilistic approaches for seismic risk assessment can be grouped in two classes (Bazzurro et 29 

al. 1998; Franchin et al. 2012; Bradley et al. 2015): 1) direct, simulation-based approaches; 2) conditional, IM-based approaches 30 

(where IM stands for Intensity Measure).  31 

The first class consists of methods based on the observation of the system response to samples drawn from the probability 32 

distribution of the random inputs (e.g. earthquake characteristics, structural model). These include Monte Carlo simulation 33 

(Rubinstein and Kroese 2017) and the more efficient variance reduction techniques, such as Importance Sampling (Jayaram and 34 

Baker 2010) and Subset Simulation (Au and Beck 2003). These methods require a ground motion model from which earthquake 35 

samples are generated. Although their usage is limited mainly to the research field, they generally represent the most robust mean 36 

for estimating the seismic risk of any complex, even strongly nonlinear system. Their main limit is the high number of numerical 37 

analyses needed. 38 

The methods belonging to the second class have been developed in the last 20 years since the seminal works of (Cornell et al. 39 

2002). The main purpose of these methods is to make seismic risk estimation a more practice-oriented and computationally 40 

affordable task. A conference paper by (Cornell 2005) clarifies the rationale behind the IM-based approaches, which rely on the 41 

definition of a specific parameter, named Intensity Measure (IM), describing the ground motion intensity at the site of the 42 

structure. By introducing the IM, the estimation of the seismic demand hazard, expressing the mean annual frequency (MAF) of 43 

exceeding different values of the Engineering Demand Parameter (EDP) of interest, is split into two separate probabilistic steps. 44 

The first one is the seismic hazard assessment, which often uses empirical ground motion prediction equations (GMPEs) to 45 

provide a statistical description of the IM (e.g., (Bozorgnia et al. 2014)). The second one consists in the evaluation of the seismic 46 

demand conditional to specific values assumed by the IM. A set of recorded ground motions, accounting for the seismic record-47 

to-record variability, is considered as input for performing the structural analyses at different IM levels. Different methods can 48 

be used (Mackie and Stojadinović 2005; Jalayer and Cornell 2009) to carry out this task, the most diffused ones being incremental 49 
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dynamic analysis (IDA) (Vamvatsikos and Cornell 2002), cloud analysis (Mackie and Stojadinović 2005; Tubaldi et al. 2016), 50 

and multiple-stripe analysis (MSA) (Mackie and Stojadinović 2005; Bradley 2013a). The results of the two steps of the analysis 51 

are convolved together to obtain the unconditional demand hazard curves, which is the same result that could be obtained by 52 

applying a direct simulation-based approach. The main differences between the two approaches are summarized in Table 1.  53 

 54 

Table 1 Main features of IM-based and simulation-based probabilistic approaches. 55 
 56 

Simulation-based IM-based 

 research-oriented 

 no need of any intensity measure (no 

conditioning) 

 large number of simulations (structural 

analyses) required 

 robust and confident tool for seismic risk 

estimation 

 requires a stochastic model for describing 

the seismic input. 

 practice-oriented 

 need the choice of an intensity measure for 

conditioning purposes 

 potentially requires a reduced number of 

structural analyses if IM is efficient 

 potentially biased if IM is not sufficient 

and ground motion records are not 

representative of the hazard 

 can be applied using recorded ground 

motions, but in this case the accuracy 

cannot be checked 

 57 

It is noteworthy that the discussion on conditional versus non-conditional methods dates back to 20 years ago (Bazzurro et al. 58 

1998). While many research efforts have been devoted to the development of conditional-based approaches (e.g., (Bradley 2013a; 59 

Gehl et al. 2015)), very few studies have focused on their accuracy and have carried out comparisons of the seismic demand and 60 

risk estimates obtained with the direct simulation-based ones. Among these, (Bradley et al. 2015) tested different methods for 61 

evaluating, through a conditional approach, the peak displacement response of a nonlinear single-degree of freedom (SDOF) 62 

system. The results obtained using a plain Monte Carlo simulation-based direct approach were used as reference solution. 63 

Franchin et al (Franchin et al. 2012) used the Importance Sampling method to validate some IM-based approaches (i.e., IDA and 64 

cloud analysis), but this study again considered only a single EDP (i.e., the maximum drift angle of a reinforced-concrete frame) 65 

and focused on quite high MAFs of limit state exceedance, up to 10-3 1/year. These validation studies require resorting to a 66 

stochastic seismic input model rather than using GMPEs for the hazard analysis together with real ground motion records for the 67 

structural response analysis.  68 

This paper aims to provide an in-depth evaluation of the efficiency and accuracy of the MSA-based conditional approach 69 

combined with the widely employed spectral acceleration at the system fundamental period (Sa(T)) as IM (Shome et al. 1998; 70 

Jalayer and Cornell 2009), assuming that a stochastic ground motion model can provide an accurate representation of the site 71 

seismicity. In particular, the objective of the study is to assess the influence of the main setup choices and values of the parameters 72 

controlling the method, such as: the number of IM-levels (IM-stripes); the number of ground motion samples per stripe; the 73 

technique adopted for the computation of the conditional demand model; the size of the whole IM range investigated, hence the 74 

truncation of the IM hazard curve.  75 

It is worth noting that although several metrics for IM are available, in this paper Sa(T) is employed for two main reasons: 1) 76 

Sa(T) is widely used not only by researchers but also by practitioners  (Porter 2016)(Shome et al. 1998; Jalayer and Cornell 2009);   77 

2) the outcomes of the present work provides useful insights on the expected level of accuracy and precision with conditional 78 

approaches, even if the IM chosen is not the most appropriate for the specific case analysed. Details on the sufficiency and 79 

efficiency of other, more advanced IMs can be found in the relevant scientific literature (see e.g. (Dávalos and Miranda 80 

2019a)(Kazantzi and Vamvatsikos 2015)(Eads et al. 2015)). The use of these IMs will be also object of future specific 81 

investigations. 82 

For the purpose of the present study, a three-storey moment-resisting frame, often considered for investigating the efficiency of 83 

seismic response control devices (Gupta and Krawinkler 1999; Barroso and Winterstein 2002; Ohtori et al. 2004; Dall’Asta et 84 

al. 2016; Scozzese et al. 2019), is analysed, and seismic demand hazard curves are developed for various EDPs, namely the 85 

interstory drifts, absolute accelerations, residual drifts, base shears, and relative displacements. First, a nonlinear SDOF model 86 

of the frame is considered, allowing to perform a significant number of analyses in short time and assess the accuracy and 87 

precision obtained by varying the controlling parameters in a sufficiently wide range. After this parametric investigation, a multi-88 

degree-of-freedom (MDOF) model of the frame is analysed, to evaluate whether the findings also hold for a case in which higher 89 

order modes may affect some EDPs of interest.  90 
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Subset Simulation (Au and Beck 2003) is used in the direct approach to obtain a set of reference reliable solutions and thus 91 

quantify the estimation errors obtained using the MSA-based conditional approach. The comparison between the two approaches 92 

allows investigating the influence of the parameters and the various choices controlling the application of the conditional 93 

approach and to provide useful information on their optimal setup. A single source model is used to describe the seismic scenario, 94 

and the Atkinson-Silva ground motion model (Atkinson and Silva 2000) is used to generate synthetic earthquake samples at the 95 

site of interest. The use of a stochastic ground motion model overcomes the issue of the lack of real ground motions consistent 96 

with the site seismic hazard, in particular at high IM levels. In order to obtain information about the statistical precision of the 97 

estimates, multiple independent simulations are performed for each system and EDP analysed. The numerical solutions are 98 

summarized by considering the average demand hazard curves and the coefficients of variation of the results. This permits to 99 

evaluate the potential bias (hence the expected accuracy) and the precision of the solution, compared to the reference one.  100 

Although limited to a single case study, the outcomes of the present investigation provide, along with (Franchin et al. 2012; 101 

Bradley et al. 2015), useful insights into the convergence and accuracy properties of conditional approaches, thus helping to 102 

exploit in an optimal way their potentialities.  103 

 104 

2. Methodology 105 

This section briefly describes the probabilistic tools examined in this paper, namely the unconditional approach (Subset 106 

Simulation), used to provide the reference solutions, and the conditional approach (MSA). The starting point for both the 107 

approaches is the definition of the seismic scenario, which requires a characterization of the potential seismic sources in terms 108 

of the probability distribution of the moment magnitude M and epicentral distance R. In this work, a  single source is considered, 109 

and a stochastic ground motion model (Atkinson and Silva 2000) is employed to simulate the propagation of the waves from the 110 

source to the site, as detailed in Subsection 3.1. The output of both the unconditional and conditional approaches is �����, i.e., 111 

the MAF of exceedance of different values d of the demand parameter D (random variable), also denoted as EDP in the literature. 112 

 113 

2.1 Reference solution via unconditional approach 114 

The evaluation of the demand hazard according to the unconditional approach can be formalized as follows: 115 

����� = �̅����� (1)

where �̅ denotes the MAF of occurrence of at least one event within the range of intensity levels of interest, which is a function 116 

of the recurrence law for the seismic source, and ����� = 	[� > �] is the probability of exceedance of the demand d, given the 117 

occurrence of an earthquake of any intensity.  118 

Obviously, in order to generate a demand hazard curve, ����� must be estimated for different values of the demand, up to very 119 

low exceedance probabilities. In this study, the demand hazard curves are estimated via Subset Simulation. The basic idea behind 120 

this advanced simulation technique is to express the rare-event probability ������ in terms of the product of larger conditional 121 

probabilities, by introducing intermediate exceedance events corresponding to lower threshold values d1<d2<…<dl.  122 

Several improved versions of Subset Simulation have been proposed in the literature, such as Subset Infinity (Au and Patelli 123 

2016), whose algorithm is made available in OpenCOSSAN library (Patelli 2017). However, for the purposes of this work the 124 

original version (Au and Beck 2003; Au and Wang 2014) of the method is employed, since improving the efficiency of the 125 

simulation approach is out of scope of the paper. This relies on the Markov Chain Monte Carlo algorithm and the Metropolis–126 

Hastings sampler to efficiently and adaptively generate samples conditional on the intermediate failure regions and thus gradually 127 

populate from the frequent to rare event region.  128 

Assuming a fixed value p0 for the conditional probabilities of exceedance of the various thresholds, each time a set of nsim samples 129 

is generated through the Metropolis–Hastings algorithm (standard Monte Carlo simulation for the first threshold), and the 130 

corresponding demand threshold di is simply evaluated as the (1-p0)nsim-th largest value. The exceedance probability of the i-th 131 

threshold, computed by carrying out i-times the product of the same probability p0, is p0
i, for i=1, 2, ..., l, and the lowest obtained 132 

value of the failure probability is p0
l.  133 

The results obtained by Subset Simulation (Au and Beck 2003) are practically unbiased and on average they converge to the 134 

reference results furnished by the robust direct Monte Carlo simulation. For this reason, the demand hazard curves evaluated via 135 

Subset Simulation can be used as reference solutions against which the estimates obtained through the conditional approach are 136 

compared.  137 

 138 

 139 

 140 
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2.2 MSA-based conditional approach 141 

The conditional approach for demand hazard assessment decomposes the estimation of ��(d) into two steps. The first one is the 142 

evaluation of the hazard function �IM(im), i.e., the MAF of exceeding the value im of the intensity measure IM. As discussed 143 

before, the seismic hazard analysis is not performed by using empirical ground motion prediction equations (GMPEs) but rather 144 

via a simulation approach, using a stochastic ground motion model. In particular, the IM hazard curve IM is built via Subset 145 

Simulation, by solving the same problem of Eq. (1) with the IM in place of the generic demand parameter D. 146 

Once the seismic hazard has been characterised, the second step of the conditional approach consists in building the probabilistic 147 

demand model (Tubaldi et al. 2016; Freddi et al. 2017). This model links the generic demand D with the IM through the function 148 ��|����|���, denoting the probability of exceeding the demand value d conditional to the seismic intensity level im. Finally, as 149 

a result of the Total Probability Theorem, the mean annual rate of exceedance D (d) can be estimated by solving the following 150 

convolution integral between the seismic hazard function IM and the conditional demand function ��|��: 151 

����� = � ��|����|����� |����| 
 

(2)

For the sake of clarity, a flow-chart summarising the main steps of demand hazard estimation according to the IM-based approach 152 

with stochastic ground motion samples is provided in Fig. 1. 153 

The integral of Eq. (2) can be computed numerically by employing standard integration rules (i.e., rectangle, trapezoidal) or 154 

more sophisticated approaches that have been proposed recently (Bradley et al. 2009). In this study, the standard trapezoidal rule 155 

is used to solve the integral of Eq. (2), while MSA is employed to build the ��|�� function, which requires performing a number 156 

of nonlinear dynamic structural analyses at discrete IM levels. On this regard, it is worth noting that the application of Subset 157 

Simulation for seismic hazard analysis provides a partitioning of the IM domain into IM intervals with increasing amplitude. 158 

This is a consequence of the shape of the hazard curve and of the choice of a fixed value p0 for the conditional probabilities of 159 

exceedance, resulting in an equal spacing in the logarithmic scale between the MAFs of exceedance of adjacent IM levels. 160 

Moreover, Subset Simulation automatically performs hazard disaggregation (Bazzurro and Cornell 1999) in the sense that the 161 

seismological features of the earthquake samples generated for the different IM thresholds and exceedance probabilities change 162 

coherently with the seismic hazard level. This simplifies the selection of the ground motion records to be used for MSA. In fact, 163 

nsim records are required to perform MSA at each of the nIM IM levels, and these records can be taken from those generated 164 

through Subset Simulation at each IM interval. If Subset Simulation is carried out by considering a large number of samples for 165 

each IM interval, it is possible to find many records with intensities close to the target ones, and thus record scaling to achieve 166 

the target IM can be avoided (as in the present case).  167 

The convolution between hazard and fragility functions is performed by using the same number of IM levels (nIM) adopted for 168 

the hazard curve discretisation, similarly to many probability-based seismic assessment studies (Vamvatsikos and Allin Cornell 169 

2002) (Iervolino et al. 2018) (Scozzese et al. 2018b). Having evaluated the structural response through the nsim∙nIM simulations, 170 

it is possible to build the demand model ��|����|��� with the so-called “empirical approach”, which can be mathematically 171 

written as follows (Pinto et al. 2004): 172 

��|����|��� ≅ 1���� � ����|����� !

�"#
 (3)

where ����|��� is an indicator function, equal to one if dk > d for the k-th record at IM=im and zero otherwise. Alternatively, the 173 

conditional demand model ��|����|��� can be estimated via “parametric approach”, e.g. assuming a lognormal distribution of 174 

the demand value d conditional to the seismic intensity level im. This is a common assumption accepted by the research 175 

community (Shome and Cornell 1999; Aslani and Miranda 2005; Bradley et al. 2010) and quite useful for achieving closed-form 176 

risk estimates. Alternative distributions of the structural demand have also been proposed in the literature (Romão et al. 2011). 177 

Unless stated otherwise, the “empirical approach” is used to estimate the demand model ��|����|��� in the following of the 178 

paper.  179 

It is noteworthy that another method widely employed in performance-based earthquake engineering (PBEE) for seismic 180 

response assessment is incremental dynamic analysis (IDA). The main difference of IDA compared to MSA is that it employs a 181 

single ensemble of nsim records, which are scaled to increasing amplitude levels, generally up to the attainment of collapse 182 

condition. Although still widely used, concerns have been raised on IDA by various authors, in particular about the legitimacy 183 

of scaling a single set of records over a wide range of IMs (Lin and Baker 2013)(Bradley 2013b)(FEMA 2005). 184 

MSA partially overcomes this problem, although recourse to scaling becomes unavoidable when natural ground motions are 185 

used. This drawback may be overcome by employing a conditional mean spectrum method (Baker and Cornell 2006)(Kwong 186 
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and Chopra 2016)(Lin et al. 2013) for record selection. However, it may still be difficult to find records for high intensity levels 187 

(corresponding to very large magnitudes) without scaling. The alteration induced by records scaling is widely discussed and 188 

analysed in the literature (Der Kiureghian and Fujimura 2009)(Lin et al. 2013)(Jalayer and Beck 2008)(Dávalos and Miranda 189 

2019b).  190 

It is noteworthy that the problem of scaling is overcome by using a stochastic earthquake input, despite other sources of 191 

approximation might be introduced by this way.  192 

 193 

 194 
Fig. 1 Flow-chart illustrating the steps for demand hazard estimation via the unconditional approach. 195 

 196 

2.3 Assessment of the conditional approach 197 

The efficiency and accuracy of the conditional approach may be significantly affected by the setup choices and values assigned 198 

to the parameters controlling MSA. These are: the number nIM of IM-levels (IM-stripes); the number of ground motion samples 199 

per stripe nsim; the way ��|�� is estimated (via empirical or parametric approach); the size of the whole IM range investigated, 200 

as controlled by the lowest value of vIM(im) attained by the IM hazard curve (hereafter denoted by �̂). 201 

The influence of these parameters on the efficiency and accuracy of the MSA-based conditional method is assessed in the next 202 

sections by analysing first the SDOF system and then the MDOF model. 203 

For each system, a set of EDPs is monitored and the demand hazard curves obtained via conditional method are compared to the 204 

reference curves obtained via Subset Simulation. The sensitivity to the various controlling parameters listed above is carried out 205 

by starting from a default setting of the conditional method, and by modifying one single parameter at a time. Multiple 206 

independent runs are performed for both the conditional and the unconditional approaches.  207 

For each EDP the results are presented in terms of both average demand hazard curves and coefficients of variation (COVs).  208 

The comparison between the average hazard curves allows assessing the potential bias of the conditional approach.  209 

In particular, by introducing the inverse function of ��, denoted as ����, this bias can be quantified through the normalized 210 

measure of the difference between the reference and the conditional mean demand functions:  211 

%���� = 100 ��'(��� − �*+,����*+,���   (4)

where �*+,��� refers to the average demand estimated via Subset Simulation, ��'(��� represents the same quantity estimated 212 

via MSA-based conditional approach. The normalised differences of Eq. (4) are evaluated at fixed values of , namely 10-2, 10-213 
3, 10-4, 10-5, 10-6 1/year. High absolute values of %� denote significant bias in the estimates of the conditional approach, and 214 

positive sign indicates that the conditional method yields an overestimation of the demand compared to the unconditional one. 215 

Obviously, the bias cannot be eliminated by increasing the number of simulations or by changing the values of the other setup 216 

parameters controlling the probabilistic approach. Besides the normalized measures above and as synthetic descriptor of the bias, 217 

the root mean square errors (RMSEs) are also provided, based on the estimates of eD at the aforesaid five MAF levels: 218 

RMSE = 1001∑ [%�����] 45�"# 5  

 
 (5)

The statistical precision of the conditional approach is quantified by the values of two different COVs: the COVs of the demand 219 

estimates d() at fixed MAF levels  (namely 10-2, 10-3, 10-4, 10-5, 10-6 1/year), and the COVs of the MAF of exceedance ��(d) 220 

at fixed demand levels. Obviously, higher values of the COVs obtained via the conditional method compared to those obtained 221 

via the unconditional approach denote less precision of the method or, in other words, a less confident estimate of the demand 222 

hazard curve for the EDP at hand. 223 

 224 

 225 
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3. Case study description  226 

This section describes the case studies considered for evaluating the effectiveness of MSA and for assessing the influence of the 227 

various setup parameters on the efficiency and accuracy of the method. Subsection 3.1 provides details on the seismic scenario 228 

and stochastic ground motion model considered in the study, whereas Subsection 3.2 describes the structural system properties 229 

and relevant monitored EDPs.  230 

 231 

3.1 Seismic scenario and stochastic ground motion model  232 

Similarly to (Au and Beck 2003; Jalayer and Beck 2008; Vetter and Taflanidis 2012), the seismic scenario is described by a 233 

single source model, characterized by two main random seismological parameters, namely the moment magnitude M, and the 234 

epicentral distance R. A Gutenberg-Richter recurrence law (Kramer 2003) (Eq. 6) is used to describe the magnitude-frequency 235 

relationship of the seismic source:   236 

����� = 10�789��. (6)

in which the parameter a accounts for the mean number of earthquakes expected from the seismic source, while the parameter b 237 

is a regional seismicity factor governing the proportion of small to large earthquakes. The assumed recurrence law, bounded 238 

within the range of magnitudes of interest [m0, mmax], leads to the following probability density function (PDF) of the moment 239 

magnitude (Kramer 2003; Au and Beck 2003): 240 

:���� = ; %8<��8�=�
1 − %8<��!>?8�=� (7)

being = b* loge(10), m0 the magnitude value below which non-significant effects are expected on the structures, and mmax the 241 

physical upper bound of the magnitudes expected from the source. In this application, as well as in (Au and Beck 2003), it is 242 

assumed m0 = 5, mmax = 8, a = 4.5 and b=1. With these parameters, the annual rate of exceedance �̅ of earthquakes of any 243 

magnitude between m0 and mmax is equal to 0.316 1/year. 244 

The epicentral distance is modelled according to the following PDF: 245 

:*�@� = A 2@@�7C  �: @ < @�7C
0       EFℎ%@H�I%   (8)

which is obtained under the hypothesis that the source produces random earthquakes with equal likelihood anywhere within a 246 

distance from the site rmax = 50 km, beyond which the seismic effects are assumed to become negligible (Au and Beck 2003). 247 

The soil condition is described by a deterministic value of the shear-wave velocity parameter VS30 = 310 m/s, representative of 248 

average soil condition (Boore and Joyner 1997). 249 

The Atkinson-Silva (Atkinson and Silva 2000) source-based ground motion model is used to describe the attenuation from the 250 

source to the building site. This model, combined with the stochastic point source simulation method of (Boore 2003), is 251 

employed to generate ground motion samples conditional to the samples of M, R. Fig. 2 illustrates the ground motion total 252 

radiation spectrum A() (i.e., the Fourier spectrum), and the time-envelope function e(t), obtained for different earthquake 253 

moment magnitudes m (5, 6.5, 8) and a fixed epicentral distance r=20 km. The ground motions record-to-record variability is 254 

simulated through the following two quantities: a Gaussian white noise process and a lognormal scale factor of the radiation 255 

spectrum. In particular, for each earthquake sample a Gaussian white noise signal is generated and, after being windowed through 256 

the envelope-functions e(t) (Fig. 2b), its normalized frequency spectrum is applied to the target radiation spectrum (Fig. 2a), thus 257 

providing the variability of the energy content within the frequency domain. Such variability is further amplified by the 258 

lognormally-distributed multiplicative factor of the radiation spectra, mod, characterised by a unitary median value and a standard 259 

deviation ln = 0.5, as proposed by (Jalayer and Beck 2008). The resulting overall variability provided by the model is shown in 260 

Fig. 3a, in which the spectra of three earthquake samples corresponding to the same pair of magnitude and distance (i.e., m = 6.5 261 

and r = 20 km) are depicted in different colours. It can be observed how the Fourier spectral amplitudes differ sample-by-sample, 262 

with peaks randomly distributed over the frequencies, although on average the trends are fully defined once the input parameters 263 

are fixed (M, R, VS30, mod). For the sake of completeness, the acceleration time series corresponding to the three aforesaid spectra 264 

are also plotted in Fig. 3b. 265 

Once the seismic scenario is defined, the hazard curve can be built by applying Subset Simulation. It is recalled that the choice 266 

of the IM affects the quality of the demand estimates with the conditional approach, in terms of accuracy (or bias, referring to 267 

the closeness of the estimate to the reference value) and precision (referring to the variability of the estimates, hence related to 268 
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the demand dispersion for a given IM). While the accuracy is more related to the sufficiency of the IM, the precision depends on 269 

its efficiency (Luco and Cornell 2007). In this study, the spectral acceleration at the fundamental period of the system, Sa(T), is 270 

used as IM. 271 

Fig. 4 plots the IM hazard curves obtained from multiple runs of Subset Simulation (20 independent simulations) and the 272 

corresponding average curve. The computational effort required to build the hazard curve is very low, since structural analyses 273 

must be performed on a damped linear elastic SDOF system (with period T = 1.0 s and damping ratio ) by monitoring 274 

only a single demand parameter (i.e., Sa(T)). The value of the period used for conditioning the IM is 1.0 s, as well as the value 275 

of the fundamental period of the MDOF model.  276 

 
a) b) 

Fig. 2 a) Radiation Fourier spectra and b) time-envelope functions for r = 20km and different M values. 277 

 
a) b) 

Fig. 3 a) Radiation Fourier spectra and b) acceleration time series for three different stochastic simlations with m = 6.5 and r = 20 km. 278 

 279 

Fig. 4 Hazard curves for Sa(T) corresponding to multiple runs of Subset Simulation and average hazard curve. 280 

 281 

3.2 Structural system properties  282 

The structural system considered in this study consists in a 3-storey steel moment-resisting frame building, designed within the 283 

SAC Phase II Steel Project, and widely used as benchmark structure in several other works concerning structural response control 284 

(Gupta and Krawinkler 1999; Barroso and Winterstein 2002; Ohtori et al. 2004; Dall’Asta et al. 2016; Scozzese et al. 2019). The 285 

frame was designed for gravity, wind, and seismic loads in order to conform to local code requirements in Los Angeles, California 286 

region. As shown in Fig. 5, the whole structural system consists of perimeter moment-resisting frames and internal gravity frames 287 
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with shear connections, while the structural model for analysis purposes is a two-dimensional frame representing one half of the 288 

structure in the north–south direction. The main geometrical details and the size of the steel members (wide-flange sections are 289 

used for both columns and beams) are shown in Fig. 5. Further details concerning the structural geometry and loads can be found 290 

in (Ohtori et al. 2004). 291 

The finite element model of the system is developed in OpenSees (McKenna 1997)(Mazzoni et al. 2006) following the approach 292 

described in (Dall’Asta et al. 2016) and briefly recalled below. A distributed plasticity approach is adopted (Yu et al. 2013; Seo 293 

et al. 2014; Scozzese et al. 2018a), with nonlinear force-based elements and fiber sections with Steel02 uniaxial material 294 

(elastoplastic constitutive law with smooth elastic-to-plastic transition). An elastic fictitious P-delta column is introduced to 295 

account for the nonlinear geometrical effects induced by the relevant vertical loads, including those carried by the inner gravity 296 

frames that are not explicitly modelled. A corotational transformation is used to describe the large-displacement small strain 297 

problem. The strength and deformability of panel zones are neglected. A Rayleigh modelling of the elastic damping properties 298 

is used, by assigning a 2% damping ratio at the first two vibration modes. 299 

Periods of the first three vibration modes Ti and related percentages of participating mass pi are summarised in Table 2. The 300 

capacity curve of the frame, obtained from a pushover analysis performed by considering a lateral load patter proportional to the 301 

first modal shape, is shown in Fig. 6 in terms of base shear Vb normalized by the self-weight W and roof drift angle (i.e., the top 302 

displacement divided by the height). Because of the adopted modelling strategy, no sign of softening behaviour is observed, and 303 

thus the collapse can only be conventionally defined as the attainment of 0.1 limit drift value (maximum abscissa value shown 304 

for the capacity curve in Fig. 6). More refined modelling approaches might be adopted to account for both strength and stiffness 305 

degradation of the structural elements (Lignos and Krawinkler 2010) and thus explicitly simulate the global collapse of the 306 

building, however this is out of the scope of the present work. 307 

 308 

 
a) b) 

Fig. 5 a) Plan (thick lines highlight moment-resisting frames) and b) elevation of the 3-storey steel frame. 309 

 310 

 311 

 312 

 313 

Table 2 Vibration periods for the 3-storey steel moment-resisting frame 314 

 315 

Mode Ti [s] pi [%] 

1 

2 

3 

0.995 

0.325 

0.173 

82.717 

13.571 

3.708 

 316 

  317 
Fig. 6 Capacity curve in terms of base shear Vb normalized by the self-weight W and roof drift angle (top displacement divided the height). 318 

  319 

In order to investigate wide ranges of choices in the setup of MSA, a simplified model of the structure is considered. This consists 320 

in a nonlinear SDOF system with fundamental period T1, yielding force per unit mass Vy/m, post-elastic stiffness ratio kp/k, and 321 

the damping ratio . The values assumed for these properties, reported in Table 3, are chosen such that the dynamic behaviour 322 

of the SDOF system represents that of the steel moment resisting building described above. More precisely, the SDOF model, 323 

AA

N
3.96m

3.96m

3.96m

9.15 m9.15 m9.15 m9.15 m

W21x44W30x116

W21x44

W21x44W24x68 W24x68 W24x68

W30x116

W33x118

W30x116

W33x118 W33x118

W
1

4
x2

5
7

W
1

4
x3

1
1

W
1

4
x6

8
 (
w

e
a

k
 a

xi
s

)

W
1

4
x2

5
7

W
1

4
x3

1
1

A - A



9 

 

 

built in OpenSees (McKenna 1997)(Mazzoni et al. 2006) using the bilinear Steel02 constitutive law (with smooth transition from 324 

the elastic to the inelastic field),  has a response under lateral forces consistent with the one of the MDOF system. 325 

 326 

Table 3 Properties of the SDOF system 327 

 328 

T 

[s] 

Vy/m 

[m/s2] 

kp/k 

[-]



[-] 

1.00 4.21 0.01 0.02 

 329 

4. Parametric study results for nonlinear SDOF system   330 

In this section, an extensive parametric study is carried out on a nonlinear SDOF system to assess the influence of the various 331 

parameters governing the MSA-based conditional method. The reference solution obtained via Subset Simulation (Au and Beck 332 

2003) is presented and discussed in Subsection 4.1. In Subsection 4.2, the solution obtained with the conditional approach is 333 

presented. Successively, the parametric study is performed, by considering the default setting of the method and by changing 334 

one single parameter at a time. The obtained results are illustrated in Subsections 4.3-4.6. Three demand parameters are 335 

considered to describe the seismic performance of the SDOF system: the maximum displacement demand u, providing indirect 336 

information on the structural damage; the maximum absolute force per unit mass Vb/m, which also corresponds to the maximum 337 

absolute acceleration and thus provides indirect information on the response of (acceleration-sensitive) non-structural 338 

components and foundations; the maximum residual displacement ures, a parameter providing insights on post-earthquake retrofit 339 

costs and interventions (Ruiz-García and Miranda 2006). 340 

 341 

4.1 Risk estimation with Subset Simulation: reference solution 342 

The reference solutions in terms of demand hazard curves for the EDPs of interest are evaluated via Subset Simulation. The 343 

number l of simulation levels, the actual value of p0, as well as the number of simulations per level nsim must be set based on the 344 

specific reliability problem to be solved. In the present study, p0 = 10%, l=7, and nsim=500 are assumed to achieve a reliable 345 

estimate of the risk up to very low MAF of exceedances, in the range 10-5- 10-6. This is the range of values that according to 346 

Eurocode 0 should be targeted in designing a structure (Eurocode 0 2002). 347 

It is noteworthy that the values of p0 and l assumed here to derive the reference demand hazard curves are different from those 348 

considered in the next Section, where Subset Simulation is used within the framework of the conditional approach to build the 349 

IM hazard curves. According to the current setup, 3500 analyses are required by a single Subset Simulation. A total of 20 350 

independent runs of Subset Simulation are carried out for each demand parameter. Although significant savings in terms of 351 

computational cost are achieved with respect to classic Monte Carlo simulation, the number of analyses required in this work is 352 

still quite high, even for a SDOF system.  353 

The demand hazard curves for the monitored EDPs are plotted in Fig. 7. The curves obtained for the various independent runs 354 

of Subset Simulation are shown with grey dotted lines, and the corresponding average demand hazard curves are shown with 355 

black solid lines. As expected, the various EDPs exhibit different trends of the demand hazard curves. In particular, the maximum 356 

normalised force (Fig. 7b) has a sharp change of slope in correspondence of the yield point. This is due to the low hardening 357 

behaviour of the system following yielding, which limits the increase of forces and thus of the absolute accelerations.  358 

The curve of the residual displacements (Fig. 7c) follows a different trend, and non-negligible values, higher than 10-3 m, are 359 

attained for D < 0.002 1/year. The presence of non-null residual displacements (though very small) for D ≥ 0.002 1/year is due 360 

to the constitutive law considered for the SDOF system, with a smooth transition from the elastic to the inelastic field.  361 

The confidence of the estimates obtained via Subset Simulation is quantified by the COVs of ��(d) and d(), shown in Fig. 8. 362 

As a general result, the COVs of ��(d) span from 0.2 to 0.8, with higher values corresponding to lower MAF of exceedances. 363 

The COVs of d() are always lower than 0.4, and their trends of variation with the MAF are irregular and strongly depend on 364 

both the shape of the hazard curve of the specific demand parameter D, and on D itself. For instance, the COVs of d() for ures 365 

are higher than for the other demand parameters.  366 

Both the mean demand hazard curves and the COVs given here are assumed as reference solutions and they are used to test the 367 

results obtained with different setups of the MSA-based conditional approach. 368 
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a) b) c) 

Fig. 7  Reference demand hazard curves obtained averaging 20 independent runs of Subset Simulation. 369 

 370 

  

a) b) 

Fig. 8 Reference COVs of a) KL(d) and b) d(K) from Subset Simulation for different EDPs. 371 

 372 

4.2 MSA-based conditional solution: controlling parameters and reference setup 373 

This subsection evaluates the efficiency and accuracy of the MSA-based conditional method. The results presented here are 374 

obtained by using the “default setting” of the conditional method, which consists of: 375 

 IM hazard curves bounded in a range of MAF values between KM = 0.316 1/year and KN =3∙10-7 1/year; 376 

 IM hazard curves discretised into a number of intervals equal to 20, which corresponds to a number of levels (IM-stripes) 377 

of analysis equal to nIM=21; 378 

 a different set of nsim = 20 stochastic acceleration time series is selected at each IM-level, reflecting the change of spectral 379 

content and duration with the seismic intensity level (see Appendix A for details on the IM-hazard curve generation via 380 

Subset Simulation), for a total of 420 nonlinear dynamic analysis per each MSA simulation.  381 

It is worth noting how the whole number of simulations is slightly higher compared to those usually carried out in practical 382 

applications of probability-based seismic assessment  (Vamvatsikos and Allin Cornell 2002) (Iervolino et al. 2018) (Bradley 383 

2013a)(Scozzese et al. 2018b). In these applications, indeed, 200 simulations or less are carried out, without providing any 384 

explanation about the choice and the level of accuracy achieved in the risk estimation. A schematic illustration of the main 385 

parameters governing the problem (listed above) is provided on the IM hazard curve of Fig. 9a. The results obtained by modifying 386 

the default setting are illustrated in the next subsections.  387 

In order to assess the accuracy of the conditional approach, 20 independent conditional analyses are carried out, each performed 388 

by using a different IM hazard curves (an example of IM hazard curve from a single replicate among the 20 ones is shown in Fig. 389 

9b) and a different set of earthquake samples. The demand hazard curves resulting from the analyses are plotted in Fig. 10 in 390 

grey dotted lines, together with the mean demand hazard curve (red dashed line) and the reference solution obtained by averaging 391 

the results obtained via Subset Simulation (presented in the previous subsection). 392 

The bias of the conditional approach is quantified numerically through the error eD (presented before, see Eq. (4)), providing a 393 

normalized measure of the distance between the demand hazard curves according to the two approaches at fixed values of D 394 

(namely 10-2, 10-3, 10-4, 10-5, 10-6 1/year). The percentage error values eD are collected in Table 4, together with the root mean 395 

square error (RMSE) values (see Eq. (5)). In general, the values of eD in Table 4 are always lower than 5% for all the EDPs and 396 

MAF levels monitored, with the exception of the error for the residual displacement ures at D = 10-2 1/year, which is equal to 397 

11.53%. The low error values demonstrate the unbiasedness of the conditional estimator with the adopted analysis setting, which 398 

can also be appreciated in Fig. 10, showing that the mean demand hazard curves according to the two approaches are practically 399 

coincident.  400 
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The statistical precision of the conditional method is assessed through the COVs of ��(d) and d(), whose values illustrated in 401 

Fig. 11 have been obtained from the 20 independent runs of the conditional approach, for all the demand parameters considered. 402 

The dispersion of the results is comparable to that of the results obtained with the unconditional approach for D values higher 403 

than 10-4 1/year. For lower values of D, the COVs of the conditional approach are higher than the reference ones and increase 404 

for decreasing D values. In particular, the COVs of ��(d) increase for decreasing MAFs of exceedance as a consequence of the 405 

higher dispersion of the response contributing to the exceedance of the threshold d. On the other hand, the COVs of d() do not 406 

follow a regular trend but they are strongly influenced by the specific demand parameter D analysed. Apart from the differences 407 

in value, the trends of the COVs for the conditional approach are in agreement with those obtained with the unconditional 408 

approach. In particular, the trends of the COVs of d() for the normalised force (see Fig. 11b, bottom chart) show a sudden 409 

reduction of the demand dispersion following the system yielding. A rapid increase of the residual displacements is observed 410 

once this condition has been attained. 411 

To summarize the obtained results, the default setting of the parameters controlling the numerical solution with MSA provides 412 

demand hazard curves that are on average unbiased, with a precision globally comparable to that of the unconditional approach. 413 

In light of this, the method setup presented here can be assumed as the reference one for what concerns the conditional solution. 414 

In the next subsections, the influence of the various parameters controlling the accuracy of the conditional approach is assessed 415 

through an extensive parametric study, in which the default setting presented here is changed by varying one single controlling 416 

parameter at a time. In particular, the parameters governing the discretisation of the hazard curve (i.e., the effect of nIM), the 417 

number of analyses per IM-stripe (i.e., the effect of nsim) and the IM hazard curve truncation (effect of �̂) are varied in the next 418 

subsections of the paper to investigate the convergence properties of the solution with respect to these parameters. 419 

 

a) b) 

 Fig. 9 IM hazard curve: a) schematic representation of the main parameters; b) single replicate with nIM = 21 (i.e., 20 IM intervals). 420 

   

a) b) c) 

Fig. 10  Conditional simulation replicates and corresponding average curves compared to the reference solution provided by Subset 421 

Simulation, for each EDP. Cross marks highlight the points at which the COVs of D (vertical) and of d (horizontal) are computed. 422 
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a) b) c) 

Fig. 11 Comparison of the COVs of the MSA-based conditional solution with the reference values from Subset Simulation. COVs of KL(d) 423 

and d() for the demand parameters: a) u, b) Vb/m, c) ures. 424 

 425 

Table 4 Estimation errors eD at different MAFs. 426 

 eD [%]  

D �D = 10-2 �D = 10-3 �D = 10-4 �D = 10-5 �D = 10-6 RMSE [%]

u 2.871 3.082 4.920 3.481 1.321 7.472 

Vb/m 4.200 0.702 0.494 0.740 1.042 4.471 

ures 11.532 -0.631 1.930 3.912 2.270 12.553 

 427 

4.3 Effect of the IM discretization 428 

This subsection examines how the IM discretization, and thus the number nIM of IM levels at which the analyses are performed, 429 

affects the demand hazard curve estimation for the different EDPs. The IM-curves with the default cut-off value of the MAF at 430 �̂ = 3 ∙10-7 (≈ 10-7) are used. This time, two further discretisation modes are tested, corresponding to nIM = 6 (Fig. 12a) and nIM = 431 

11 (Fig. 12b) IM levels, in addition to the one already investigated in the previous section (nIM =21, Fig. 12c).  To assess the 432 

influence of the IM discretization, the rest of the settings controlling the application of the conditional approach are kept fixed. 433 

The average of the 20 demand hazard curves resulting from the conditional approach is plotted, for each EDP, by coloured 434 

hatched lines in Fig. 13; the reference average solution provided by Subset Simulation is also shown with a black solid line. The 435 

deviation between the conditional and the reference solutions is measured by the errors reported in Table 5, together with the 436 

overall RMSEs. 437 

According to the results shown in Fig. 13 and the values collected in Table 5, the discretization with only 6 IM levels (orange 438 

dashed lines) results in some level of bias in the demand hazard curves for all the monitored EDPs. This is quantified by the high 439 

values of the estimation errors of Table 5, showing that the demand is almost always overestimated by more than 80%.  440 

With 11 IM levels (red dashed lines), the accuracy of the conditional approach starts improving notably, with the risk of 441 

exceedance generally overestimated by 20%- 30%. Significant errors are still observed at higher rates of exceedance. It is worth 442 

noting that the estimation errors have generally a positive sign, and moreover, a poorer IM hazard curve discretisation leads to 443 

higher levels of seismic risk overestimation. 444 

For what concerns the effect of the number of IM levels on the results dispersion, a comparison in terms of COVs of ��(d) and 445 

d() is presented in Fig. 14 for all the demand parameters. In most of the cases, the COVs reduce by increasing the number of 446 

IM levels, although few exceptions can be found, in particular regarding the COVs from the analyses on 6 IMs (orange bars in 447 

Fig. 14). By increasing the IM discretisation, the COVs become closer to those of the reference setting (nIM =21), with a rate of 448 

convergence particularly high by passing from 6 to 11 IM levels, and a reduced rate by passing from 11 to 21 IMs. 449 
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a) b) c) 

Fig. 12 IM hazard curve discretised in: a) 6, b) 11 and c) 21 IM levels. 450 

 451 

   
a) b) c) 

Fig. 13 Influence of the number of IM levels on the biasedness of the average demand hazard curves. 452 

 453 

   
a) b) c) 

Fig. 14 Comparison of the COVs of the conditional solution with the reference values from Subset Simulation. COVs of D(d) and d() for 454 

the demand parameters: a) u, b) Vb/m, c) ures. 455 

Table 5 Estimation errors eD at different MAFs. 456 

  eD [%]  

D Approach �D = 10-2 �D = 10-3 �D = 10-4 �D = 10-5 �D = 10-6 RMSE [%] 

u 

6 IMs 109.219 16.730 36.862 33.727 19.880 122.883 

11 IMs 34.190 6.676 10.466 7.763 7.511 37.944 

21 IMs 2.871 3.084 4.922 3.475 1.321 7.470 

Vb/m 

6 IMs 93.918 2.812 2.801 4.797 5.486 94.284 

11 IMs 36.024 1.484 0.916 1.248 2.273 36.159 

21 IMs 4.199 0.701 0.493 0.739 1.038 4.471 

ures 

6 IMs 108.051 120.817 55.463 20.225 19.535 173.605 

11 IMs 21.410 26.993 12.800 5.342 -1.526 37.171 

21 IMs 11.527 -0.632 1.927 3.910 2.269 12.546 

 457 

 458 

 459 
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4.4 Effect of the number of samples per IM stripe 460 

This subsection examines how the number of structural analyses performed at each IM level affects the demand hazard curve 461 

estimation. For this purpose, the IM-curves with �̂ ≈ 3∙10-7 discretized in 21 IM levels are used (default setting), whereas the 462 

number of analyses per IM level (i.e., per IM-stripe) is varied as follows: 1 single analysis (for a total amount of 1x21=21 463 

simulations), 5 analyses (for a total amount of 5x21=105 simulations), 10 analyses (10x21=210 simulations), 20 analyses 464 

(20x21=420 simulations, which corresponds to the default setting of the conditional solution), and 30 analyses (30x21=630 465 

simulations). As in the previous investigations, 20 independent runs of MSA analysis are carried out for each case to assess the 466 

statistical precision of the method. A graphical comparison between the average demand hazard curves form MSA and the 467 

reference method is provided in Fig. 15, whereas Table 6 reports the values of eD at different MAF levels. 468 

The results show that a single sample per IM-stripe (grey dashed lines) might be not sufficient to estimate accurately the demand 469 

hazard for values of the MAF of exceedance lower than 10-4, and this is because the record-to-record variability can’t be properly 470 

accounted. However, it is worth noting that, the mean demand hazard curve of the EDP maximum displacement u is correctly 471 

estimated even with one single analysis per IM, as long as the system response is essentially elastic. This is due to the high 472 

efficiency of the conditional parameter (IM) in describing the response in terms of the demand parameter u. In fact, the analysed 473 

system consists in a nonlinear SDOF system with period 1.0s, and hence the conditioning IM and the demand parameter are 474 

coincident until the yielding displacement is attained (on average for D ≈ 10-3). Once the system experiences significant inelastic 475 

deformations, the IM becomes less efficient, and this results in a strong bias of the average demand curve of u for �D < 10-3. 476 

It is sufficient to increase to 5 (light blue dashed lines) the number of analyses per IM level to improve the accuracy of the 477 

estimator, with a reduction of more than 10% on the RMSE values (Table 6) with respect to the previous case with a single 478 

analysis per IM level.  479 

With 10 samples per level (green dashed lines), the accuracy of the conditional approach increases notably: the RMSE values 480 

are at least halved compared to the case of 5 analyses per IM level.  481 

With 20 samples per level (red dashed lines) the match between the MSA curves and the reference ones is almost perfect, as 482 

already discussed in the previous section concerning the conditional approach with default setting.  483 

No significant improvements are instead observed for higher number of samples (orange dashed line in Fig. 15). 484 

Fig. 16 shows the COVs of ��(d) and d(�) for the different number of analyses and the various EDPs considered. In general, the 485 

COVs reduce passing from the case with 1 sample to the case with 30 samples per IM level. However, it is not possible to identify 486 

a common pattern between the trends of the COVs for the various EDPs considered, except for the already observed tendency 487 

that the COVs of �D(d) increases for decreasing values of the MAF of exceedance. 488 

With one sample per IM, the values of the COV for the maximum displacement demand u are similar to the ones obtained with 489 

the default settings of the conditional method, but this is only for MAFs of exceedance �D ≥ 10-3 such that the system response 490 

is elastic. For �D < 10-3, due to the lower efficiency of the IM, the response dispersion notably increases and the COVs attain 491 

values up to three times higher than the reference ones. Very high COVs are also observed for the other EDPs when one single 492 

sample is used. 493 

   
a) b) c) 

Fig. 15 Influence of the number of analysis per IM level on the biasedness of the average hazard curves. 494 
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a) b) c) 

Fig. 16 Effect of the number of analyses per IM level on the COVs of the conditional approach and comparison with the reference values 495 

from Subset Simulation. COVs of KD(d) and d(K) for the demand parameters: a) u, b) Vb/m, c) ures. 496 

Table 6 Estimation errors eD at different MAFs. 497 

  eD [%]  

D Approach �D = 10-2 �D = 10-3 �D = 10-4 �D = 10-5 �D = 10-6 RMSE [%] 

u 

nsim = 1 -10.146 -6.680 -5.067 -7.188 -20.330 25.262 

nsim = 5 0.636 2.496 2.403 1.168 -0.094 3.712 

nsim = 10 2.230 3.450 4.243 3.190 2.303 7.096 

nsim = 20 2.871 3.084 4.922 3.475 1.321 7.470 

nsim = 30 3.836 3.324 5.221 3.385 2.077 8.294 

Vb/m 

nsim = 1 -8.554 -3.086 -0.405 -0.894 -3.217 9.695 

nsim = 5 1.783 0.735 0.326 0.351 0.416 2.030 

nsim = 10 3.732 0.821 0.408 0.775 1.280 4.124 

nsim = 20 4.199 0.701 0.493 0.739 1.038 4.471 

nsim = 30 5.043 0.687 0.522 0.678 1.152 5.288 

ures 

nsim = 1 11.257 -25.013 -24.551 -22.003 -28.991 51.766 

nsim = 5 16.987 -9.644 -9.822 0.989 -8.407 23.446 

nsim = 10 16.658 -2.679 -4.726 3.783 -0.427 17.931 

nsim = 20 11.527 -0.632 1.927 3.910 2.269 12.546 

nsim = 30 12.912 0.557 2.804 3.992 1.185 13.864 

 498 

4.5 Effect of the lognormality assumption for estimating OL|PQ�R|ST� 499 

The conditional demand model ��|����|��� has been estimated so far via empirical approach (Eq. (3)).  500 

In this subsection, the efficiency and accuracy of the “parametric approach” is investigated by considering it in combination with 501 

the interpolation strategy for ��|����|���  proposed in (Bradley 2013a). In particular, the author suggests computing, via 502 

statistical inference techniques, the values of the lognormal distribution parameters (i.e., the lognormal mean and the standard 503 

deviation) of the EDP in correspondence of the IM levels at which MSA is performed. Piecewise linear interpolation is then used 504 

to describe the ��|����|��� function for the other IM values. The default setting of the conditional approach is used to perform 505 

the analyses, i.e., IM-curves with �̂ = 3∙10-7 discretized in 21 IM levels with 20 samples each.  506 

A comparison in terms of demand hazard curves (the mean of 20 independent runs) is provided in Fig. 17, where the results of 507 

the “empirical approach” are shown by red dashed lines, and the ones from the “parametric approach” by blue dashed lines. It 508 

can be observed that the parametric approach provides curves in very close agreement with the reference ones, for all the demand 509 

parameters except for the residual displacement (Fig. 17c), for which a biased trend is shown, suggesting that the lognormal 510 

function cannot adequately represent the probabilistic distribution of this parameter.  511 
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a) b) c) 

Fig. 17  Effect of the lognormal assumption for computing the conditional function ��|��. 512 

 513 

In order to investigate further this aspect, the Shapiro-Wilk test is used to assess the goodness of the lognormality assumption 514 

for the conditional demand in terms of this specific demand parameter. Such test provides the probability (pSW) of rejecting, at 515 

the 5% significance level, the null hypothesis that the logarithmic values of the samples follow a normal distribution, when this 516 

is hypothesis is true. Hence the lognormality assumption is rejected whenever pSW < 5%. However, it is worth noting that pSW 517 

values higher than 5% do not rigorously prove that the response parameters follow a lognormal distribution, but only provide 518 

evidence that the null hypothesis (of the samples coming from a normally distributed population) cannot be rejected and hence 519 

the lognormality assumption might hold for the available samples (Tubaldi et al. 2015). In this sense, the pSW-values summarised 520 

in the following tables are used to identify the cases in which the lognormal assumption weakly fits the EDP|IM distributions. 521 

Fig. 18(a-c) show, in form of bar-plot, the percentage pSW-values stemming from the ��|����|���  distributions of three 522 

independent conditional simulations (run 1, 10, 16). In the figures, the pSW-values obtained at each of the 21 IM levels are 523 

illustrated. Moreover, the significance percentage threshold of 5.0% is highlighted by a horizontal red dashed line in order to 524 

ease the identification of the cases in which the lognormality assumption is rejected, i.e., with pSW-values < 5.0%. It can be 525 

observed that there are several cases in which the assumption is rejected. Thus, the Shapiro-Wilk test confirms that the lognormal 526 

distribution is not suitable to describe the distribution of this specific demand parameter.  527 

For sake of completeness, the lack of fit of the lognormal distribution is also displayed in Fig. 19, where the empirical (black 528 

solid line) and parametric (red dashed line) cumulative distribution functions (CDFs) ��|�� are compared for the same three 529 

simulation runs discussed above (i.e., run 1, 10, 16). In particular, these plots refer to the CDFs computed at the 17th IM level of 530 

MSA, corresponding to a low value of pSW in the Shapiro-Wilk test. 531 

It is worth noting that the unsuitability of the lognormal fitting for the Ures parameter observed here is in contrast with the findings 532 

of a previous study (Ruiz-García and Miranda 2006). However, it shall be noted that in (Ruiz-García and Miranda 2006) the 533 

authors used the Kolmogorov-Smirnov (KS) statistical test to evaluate the lognormality assumption. This test differs from 534 

Shapiro-Wilk test, the latter being adopted in the present study mainly because of its generally acknowledged better performance 535 

for small sample sizes (Shapiro and Wilk 1965). Nevertheless, despite it may be wise to carefully adopt the lognormal assumption 536 

for the “less common” demand parameters, the issue concerning Ures should deserve a deeper investigation. 537 

 538 

   
a) b) c) 

Fig. 18 Shapiro-Wilk pSW values [%] of the lognormality test performed on the ��|����|��� function of the demand parameter ures. Plots 539 

from three of the 20 simulation runs: a) 1, b) 10, c) 16. 540 
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a) b) c) 

Fig. 19 Empirical vs parametric ��|�� of ures at the 17th IM level for three of the 20 simulations: a) 1, b) 10, c) 16. 541 

 542 

Finally, the influence of the number of analyses at each IM level on the demand hazard estimates obtained via the parametric 543 

evaluation of ��|�� is assessed. This investigation is similar to the one carried out in the previous Subsection 4.4, with the only 544 

difference that the conditional demand is herein estimated parametrically. Fig. 20 shows the demand hazard curves obtained by 545 

varying the number of structural analyses per IM level as follows: 5, 10, 20, and 30 analysis per IM level. It is observed that 5 546 

analyses per IM level might be not sufficient to reach a proper statistical characterization of the function ��|��, which introduces 547 

a source of bias on the demand hazard curves. With 10 analyses per IM the estimation errors are notably reduced, and 30 analyses 548 

per IM provide no remarkable improvement with respect to the case with 20 analyses per IM level. Thus, a number of 10 analyses 549 

per IM (for a total of 210 simulations) is sufficient to obtain a good estimation of the demand hazard. This is valid for all the 550 

EDPs, except for the already discussed residual displacements ures. 551 

   
a) b) c) 

Fig. 20 Influence of the number of analysis per IM-stripe on the accuracy of the lognormal assumption. 552 

 553 

4.6 Effect of the IM hazard curve truncation 554 

In theory, the convolution integral in Eq. (2) should be defined over an infinite domain of possible IM values, but in practice an 555 

upper bound for IM should be introduced to solve numerically the problem. The effect of the lower bound is not considered 556 

herein, since the value �̅ = 0.316 1/year of the MAF of exceedance of the IM is high enough that no significant earthquakes are 557 

excluded from the analysis. This subsection assesses the influence of the choices concerning the upper bound of the IM hazard 558 

curve (identified by the MAF value �̂� on the demand hazard estimate. For this purpose, all the controlling parameters are kept 559 

fixed to the default values of the conditional method, except for the cut-off value �̂ of the IM hazard curve and the number of IM 560 

levels. For what concerns �̂, besides the default value �̂= 3∙10-7, the following ones are investigated: 1.5∙10-4 (≈ 10-4), 9.6∙10-6 (≈ 561 

10-5), 1.2∙10-6 (≈ 10-6). The corresponding IM hazard curves derive from the reference one (obtained by performing Subset 562 

Simulations with p0 = 0.5 and l = 20) by retaining, respectively, only the first 12, 16 and 19 IM levels, hence there is no need to 563 

recompute the hazard curves for each of the analysed cases. As a consequence, although the total number of IM levels considered 564 

is different, the same IM levels and the same sets of ground motions are used (up to the truncation level) to perform MSA in all 565 

of the cases analysed. The number of dynamic analyses performed per IM level is equal to 20, as in the default case. 566 

In Fig. 21, for each demand parameter and for each case of IM-curve truncation, the average of the 20 demand hazard curves 567 

obtained through the conditional approach (in coloured hatched lines) are compared to the reference average solution provided 568 

by Subset Simulation (in black solid line). Moreover, in order to quantify the level of bias of the expected value of the conditional 569 

estimator, the percentage estimation errors deriving from the conditional simulations with respect to the reference solutions 570 

provided by Subset Simulation are reported in Table 7, together with the RMSE values. It can be observed that the IM truncation 571 

at �̂ ≈ 10-4 (grey dashed line) leads to unreliable values of the risk of exceedance below D = 10-3, with estimation errors attaining 572 

values around 60% and the RMSE values varying from 12%- to 72% depending on the EDP. The IM truncation at �̂≈ 10-5 (green 573 

dashed line) instead, is found to be sufficient to achieve reliable estimates of the demand hazard up to MAFs around D = 10-4 - 574 
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10-5. For lower D values, the errors become larger than 15%, and the RMSE values vary from 6%- to 27%, depending on the 575 

EDP.  576 

Finally, the demand hazard curves obtained with an IM hazard curve truncation at �̂≈ 10-6 (red dashed line) as well as those with 577 �̂ = 3∙10-7 (blue dashed line) show a very good match with the reference curves, even at the lower MAF of exceedance, i.e., D 578 

< 10-5. The estimation errors are always lower than 5%, with two exceptions only, in which, however, the errors do not exceed 579 

the 12%. The RMSE values, in these cases, vary from 4%- to 12%, depending on the specific demand parameter. The results 580 

presented above can be explained as follows: the mean annual rate of exceedance of the largest demand thresholds d is mainly 581 

influenced by earthquakes with high IM levels, hence truncating the IM hazard curve at too low IM levels implies neglecting 582 

such contribution and this leads to the underestimation of the seismic risk. To support this explanation, and also to verify the 583 

limits of the numerical integration, a disaggregation of the seismic demand hazard (Baker et al. 2005) is carried out. Fig. 22 584 

shows the disaggregation of the hazard curve of the maximum displacement with respect to the IM levels. More precisely, four 585 

different threshold values of the demand parameter are selected, corresponding to the following values of the MAF of exceedance 586 

D (evaluated on the reference mean conditional solution): 10-3, 10-4, 10-5, 10-6 1/year. For each threshold d() (with the abovesaid 587 

D), the IM levels contributing to the probability of exceedance P [D > d()] are displayed in form of histogram, with one plot 588 

for each D. According to the disaggregation presented in Fig. 22, the IM hazard curve with 12 IM levels (i.e., truncated at �̂ ≈ 589 

10-4, grey dashed line in Fig. 21a) can be used to properly characterize the demand hazard up to D = 10-3, because the IM levels 590 

mainly contributing to this part of the demand hazard curve are from 13 below. The IM levels from 13 to 18 (Fig. 22a) provide 591 

a negligible contribution. According to the disaggregation results given in Fig. 22b, the major contribution to the MAF of 592 

exceedance D =10-4 comes from the IM levels from 12 to 16, and this explains why the IM hazard curve with 16 IM levels (i.e., 593 

truncated at �̂ ≈10-5, green dashed line in Fig. 21a) is able to characterize well the demand hazard up to D = 10-4. According to 594 

the disaggregation of Fig. 22c, the major contribution to the risk of exceedance of d() with D = 10-5 comes from the IM levels 595 

from 15 to 19, and this explains why the IM hazard curve with 19 IM levels (i.e., truncated at �̂ ≈ 10-6, red dashed line in Fig. 596 

21a) is able to estimate with accuracy the demand hazard up to D = 10-5. On the other hand, the same IM hazard curve yields a 597 

slight underestimation around D = 10-6 and below, and this can be explained by looking at Fig. 22d, where it can be observed 598 

how the contribution to the risk provided by the disregarded  IM levels 20 and 21 is actually non-negligible.  599 

 600 

   
a) b) c) 

Fig. 21 Influence of the IM hazard curves truncation on the biasedness of the demand hazard curves. 601 

 602 

Table 7 Estimation errors eD at different MAFs. 603 
  eD [%]  

D Approach �D = 10-2 �D = 10-3 �D = 10-4 �D = 10-5 �D = 10-6 RMSE [%] 

u 

�̂ ≈ 10-4 2.302 -0.389 -15.561 -35.995 -57.653 69.765 �̂ ≈  10-5 2.842 2.810 2.598 -8.040 -25.470 27.131 �̂ ≈ 10-6 2.869 3.047 4.381 0.047 -5.322 8.064 �̂ ≈ 10-7 2.871 3.084 4.922 3.475 1.321 7.470 

Vb/m 

�̂ ≈ 10-4 3.556 -0.018 -0.814 -3.860 -11.165 12.364 �̂ ≈  10-5 4.166 0.620 0.314 -0.695 -4.375 6.121 �̂ ≈ 10-6 4.198 0.692 0.474 0.473 -0.144 4.309 �̂ ≈ 10-7 4.199 0.701 0.493 0.739 1.038 4.471 

ures 

�̂ ≈ 10-4 10.968 -15.576 -23.190 -35.428 -55.480 72.345 �̂ ≈  10-5 11.495 -2.044 -1.449 -4.415 -16.708 20.906 �̂ ≈ 10-6 11.525 -0.646 1.726 2.578 -0.553 11.966 �̂ ≈ 10-7 11.527 -0.632 1.927 3.910 2.269 12.546 
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 604 

a) b) 

c) d) 

Fig. 22 IM levels contributing to exceedance of different threshold values d corresponding to fixed D values (10-3, 10-4, 10-5, 10-6 1/year). 605 

Demand parameter: maximum displacement u. 606 

 607 

5. Method validation: analysis of a MDOF steel building 608 

This last section investigates the bias and accuracy of the conditional method obtained for the MDOF model of the steel building. 609 

The dynamic behaviour of this model is more complex and realistic than that of the SDOF model, also due to the contribution 610 

of higher modes that might affect the seismic response. In Subsection 5.1, the reference solution obtained via Subset Simulation 611 

is discussed, whereas Subsection 5.2 provides details about the reference solution from the conditional method. Finally, in 612 

Subsection 5.3 the effect of the controlling parameters of the conditional approach is analysed.   613 

The five following demand parameters are considered to monitor the performance of the system and evaluate the accuracy of 614 

MSA: the maximum interstory drift ratio IDR, directly related to the damage level on both structural and non-structural 615 

(displacement-sensitive components, partition walls, etc.) elements; the maximum absolute floor acceleration A, providing 616 

indirect information on the response of acceleration-sensitive non-structural components; the maximum absolute base-shear Vb, 617 

as an indicator of the global rate of work of the whole structural system as well as the foundations; the top-floor displacement 618 

utop, as indicator of the global system deformability;  the maximum residual interstory drift ratio IDRres, providing insights into 619 

post-earthquake retrofit costs and activities. 620 

 621 

5.1 Reference solution via Subset Simulation for the MDOF system 622 

The reference solutions used to assess the efficiency of the conditional probabilistic method are provided from a direct simulation 623 

approach via Subset Simulation. A reliable estimate of the risk up to very low MAF of exceedances (in the range 10-5- 10-6) is 624 

desirable and thus the same setting adopted for the SDOF system is used here: p0 = 10%, l=7, and nsim=500, for a total amount 625 

of analyses per simulation equal to 3500. A set of 20 independent replicates of Subset Simulation is performed and then the 626 

averaged demand hazard curves are taken for each demand parameter introduced before. Unlike the case of SDOF system 627 

analysed before, performing nonlinear dynamic analyses (3500x20=70000) with the MDOF model has a quite high 628 

computational cost. 629 

The demand hazard curves for the monitored demand parameters are plotted in Fig. 23. The results obtained for independent 630 

runs of Subset Simulation are shown by grey dotted lines, and the corresponding average demand hazard curves are plotted with 631 

black solid lines. The various EDPs are characterized by different trends of the demand hazard curves, as expected. For instance, 632 

the maximum base shear (Fig. 23b) exhibits a visible change of slope due to the yielding of the structural components, which 633 

occurs gradually and this produces a smoother transition from the elastic to the plastic phase compared to the SDOF system. 634 

In the hazard curves of the residual interstory drift (Fig. 23d), small demand values are shown (drift of the order of magnitude 635 

of 0.1%) for the hazard level corresponding to D > 0.002 1/year. The presence of non-null residual drift (though very small) for 636 
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D ≈ 10-2 1/year follows from the elastoplastic constitutive law with smooth elastic-to-plastic transition used within the fiber 637 

sections of the finite element model. 638 

The confidence of the estimates is quantified by the COVs of D(d) and d(), shown in Fig. 24. The COVs of D(d) span from 639 

0.2 to 1.5, with higher values corresponding to lower MAF of exceedances. The COVs of d() are always lower than 0.4, and 640 

their trend of variation with the MAF is irregular and strongly depends on the specific demand parameter D. The comments 641 

given for the SDOF system still hold for the current case study. However, a slightly higher dispersions can be generally observed 642 

for the current model, with values of COVs of D(d) that can be above 1.0 for the case of the absolute accelerations and base 643 

shear. This increase of COVs with respect to the SDOF model is related to the effect of the higher modes, that affect more 644 

significantly these response quantities compared to the kinematic ones. 645 

Both the mean hazard curves and the COVs given here are assumed as reference solutions in the next subsection to test the results 646 

from the conditional approach.  647 

In order provide the reader with some practical information about the expected structural performance, the values of the demand 648 

parameter thresholds denoting the attainment of the main limit states are recalled below. For instance, collapse limit state for 649 

new steel buildings (FEMA-350 2000a) corresponds to IDR ≥ 0.1, which in this application corresponds to annual rates of 650 

exceedance roughly equal to 10-6 (Fig. 23a). For what concerns the maximum residual drift demand (FEMA-350 2000b) (Ruiz-651 

García and Miranda 2006), instead, this should not exceed the limit 0.01 for Life Safety and 0.05 for Collapse Prevention 652 

performance conditions; in this application such threshold values correspond to annual  rates of exceedance roughly equal to 10-653 
4 and 10-5, respectively (Fig. 23e). 654 

   
a) b) c) 

  

 

d) e)  

Fig. 23  Reference demand hazard curves obtained averaging 20 independent runs of Subset Simulations. 655 

  
a) b) 

Fig. 24 Reference COVs of a) D(d) and b) d() from Subset Simulation for different EDPs. 656 
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5.2 Reference solution via conditional approach for the MDOF system  661 

The reference conditional solution provided by the parametric study carried out in previous Section 4 consists of MSA performed 662 

at 21 IM levels with 20 analyses each, with an IM hazard curve properly truncated at �̂ ≈ 10-7. This setting is now used to validate 663 

the suitability of the method in dealing with the more complex structural system introduced above. In particular, in this 664 

Subsection the reference conditional solution for the MDOF model is discussed. In the following subsection, the influence of the 665 

main sets of controlling parameters on the demand hazard estimates for the MDOF system is assessed. In particular, the following 666 

settings and setup choices are analysed: IM curve discretisation, the number of analyses per IM level, and the use of empirical 667 

or parametric approach to estimate ��|��.  668 

Fig. 25 shows the demand hazard curves for all of the EDPs relevant to the performance of the MDOF system. The mean 669 

reference solution from the conditional approach (red dashed line) is compared with the mean reference solution provided by 670 

Subset Simulation (black solid line). The curves represent the average of 20 independent simulations. For sake of completeness, 671 

the demand hazard curves obtained with single runs of MSA are also plotted in the figure with grey dotted lines.  672 

First of all, in Fig. 25 it is possible to observe a satisfactory match between the conditional and the reference curves, which again 673 

proves the unbiasedness, on average, of the MSA estimator with the reference setting. This is also confirmed by the small 674 

estimation errors eD observed for all of the monitored demand parameters, collected in Table 8. Moreover, it is worth noting that 675 

the order of magnitude of the error values observed in this Section for the MDOF system (Table 8) is the same as for the SDOF 676 

system analysed before (Table 4). 677 

The COVs are displayed in Fig. 26. As noted for the estimation errors, a substantial similarity is also observed between the 678 

values observed for the MDOF system (Fig. 26) and those previously observed for the SDOF system (Fig. 11). As a general 679 

trend, the COVs observed for the conditional method are slightly higher than the reference ones from Subset Simulation. On the 680 

contrary and quite interestingly, the COVs of the absolute acceleration provided by the conditional approach are always 681 

comparable or even lower than those obtained via Subset Simulation.  682 

To conclude this part of the study and in light of the outcomes discussed so far, the statistical precision of the conditional method 683 

remains essentially unchanged by changing the system analysed, and the increase of complexity and in the degrees of freedom 684 

do not affect the properties of the estimator. This confirms the conditional method as suitable tool able to provide demand hazard 685 

estimates that are on average unbiased. 686 

   
a) b) c) 

  

 

d) e)  

Fig. 25 Conditional simulation replicates and corresponding average curves compared to the reference solution provided by Subset 687 

Simulations, for different demand parameter. Cross marks highlight the cases at which the COVs are evaluated. 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 
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Table 8 Estimation errors eD at different MAFs. 696 
 eD [%] 

RMSE [%] 
D �D = 10-2 �D = 10-3 �D = 10-4 �D = 10-5 �D = 10-6

IDR -2.723 0.887 3.193 3.442 2.070 5.876 

A -4.230 -0.467 -0.224 -0.490 -0.172 4.293 

Vb -0.980 -0.281 -0.240 -2.735 -4.636 5.484 

utop -3.646 0.992 4.084 4.277 3.578 7.877 

IDRres 6.732 7.681 0.124 -6.922 -4.774 11.389 

 697 

   
a) b) c) 

  

 

d) e)  

Fig. 26 Comparison of the COVs of the conditional solution with the reference values from Subset Simulation. COVs of D(d) and d() for 698 

different demand parameters: a) IDR, b) A, c) Vb, d) utop, e) IDRres. 699 

 700 

5.3 Effect of the controlling parameters of the conditional approach 701 

The influence of the most critical parameters controlling the conditional approach applied to the MDOF system is now assessed. 702 

In particular, based on the outcomes provided by the previous parametric study (Section 4), the following combinations of the 703 

most relevant controlling parameter are analysed and compared:  704 

 MSA performed on 21 IMs and one single ground motion sample per IM level, for a total of 21 analyses (effect of the 705 

number of analyses per IM level);  706 

 MSA performed on 6 IMs and 20 ground motion samples per IM level, for a total of 120 analyses (effect of the IM curve 707 

discretisation);  708 

 MSA performed on 21 IMs and 20 ground motion samples per IM level (for a total of 420 analyses) with demand model 709 OL|PQ build via “parametric approach” (effect of the lognormal assumption on the D|IM distribution).  710 

In all cases, the parameter νN (IM hazard curve truncation) is kept fixed at the reference value  νN = 3∙10-7.  711 

Fig. 27 shows the mean demand hazard curves corresponding to the settings listed above, together with the reference curves 712 

obtained via Subset Simulation. All the curves refer to the average of 20 independent simulations. 713 
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For what concerns the effect of the number of analyses per IM level, the mean demand hazard curves related to the case with one 714 

single ground motion sample (red dot-dashed lines) do not deviate significantly from the reference solution, although a certain 715 

level of bias can be detected, in particular at the lower rates of exceedance and for the demand parameter absolute acceleration 716 

(A). Such limited influence of this controlling parameter is mainly related to efficiency of the adopted IM and the use of hazard-717 

consistent ground motion samples that are different at each intensity level, thus overcoming potential issues of sufficiency of the 718 

adopted IM. On the other hand, a coarser discretisation of the IM hazard curve (blue dotted lines) induces a quite significant bias, 719 

corresponding to a significant overestimation of the demand hazard curves of all the EDPs. This is consistent with the results 720 

observed for the SDOF system, where the estimation errors have always positive sign. 721 

With regard to the effect of the lognormal assumption on the estimation of the demand model ��|��, the parametric estimate 722 

(green dashed lines) has a fine match with the reference solutions in terms of all the EDPs, except for the residual drift (Fig. 27d), 723 

in analogy to what was noted in Subsection 4.5, about the residual displacement parameter of the SDOF system. In this case, 724 

indeed, a significant deviation from the target curve is observed from MAF values of D ≈ 10-4 and below. 725 

For what concerns the COVs (Fig. 28), there are no patterns worth to be highlighted and the trends are those already discussed 726 

in the previous subsection concerning the reference conditional solution. However, some results deserve to be discussed. In 727 

particular, the COVs corresponding to the case with one analysis per IM level (red bars in Fig. 28) are almost always the highest, 728 

implying that the adopted IM is not efficient enough to compensate the lack of a large set of ground motion samples used to 729 

reproduce record-to-record variability effects. The COVs of D provided with the hazard curve discretised in 6 IM levels (blue 730 

bars in Fig. 28) are also slightly over the average, in particular for the demand parameters absolute acceleration and residual drift. 731 

The latter demand parameter also shows high COVs of d(), consistently with other studies on the topic (Ruiz-García and 732 

Miranda 2006). The COVs from MSA with the lognormal assumption (green bars in Fig. 28) are always comparable to the 733 

reference conditional solution shown previously in Fig. 26. 734 

   
a) b) c) 

  

 

d) e)  

Fig. 27 Conditional simulation replicates and corresponding average curves compared to the reference solution provided by Subset 735 

Simulations, for different demand parameter. 736 

 737 
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a) b) c) 

  

 

d) e)  

Fig. 28 Comparison of the COVs of the conditional solution with the reference values from Subset Simulation. COVs of D(d) and d() for 738 

different demand parameters: a) IDR, b) A, c) Vb, d) utop, e) IDRres. 739 

 740 

6. Conclusions 741 

An extensive investigation on the effectiveness of conditional approaches for demand hazard evaluation has been carried out by 742 

analysing a nonlinear single-degree-of-freedom system and a multi-degree-of-freedom model of a steel building. A conditional 743 

approach based on Multiple-Stripe Analysis (MSA) has been employed, in conjunction with the spectral acceleration as intensity 744 

measure (IM). Subset Simulation has been used for estimating the seismic hazard at the site and identifying, with a stochastic 745 

ground motion model, the set of records to be used for MSA at the different IM levels. The demand hazard estimates obtained 746 

with the conditional approach have been compared to the ones obtained using Subset Simulation. 747 

It has been shown that, overall, the conditional approach is quite accurate and computationally efficient, since it is able to provide 748 

demand hazard estimates that are on average unbiased, with a statistical precision only slightly lower than that of Subset 749 

simulation. To show this, a reference conditional solution has been considered, with MSA performed at 21 IM levels with 20 750 

analyses each, and the IM hazard curve truncated at the mean annual frequency of exceedance of �̂ ≈ 10-7 1/year. This setting 751 

provides a trade-off between accuracy and computational cost in performing probabilistic analyses on both the simple nonlinear 752 

SDOF and the more complex MDOF system. Indeed, the gain in terms of computational cost is noticeable, since the time required 753 

to perform a single run of the direct approach with Subset Simulation (7 simulation levels with 500 analyses each and a 754 

probability of exceedance governing the level-to-level transition equal to p0 = 10%, thus corresponding to 3200 analyses) is 755 

about 8 times higher than that required by the conditional approach (with a total amount of 420 analyses). 756 

The results of the study performed in this paper provide useful information about the influence of the various parameters 757 

controlling the quality of the solution achieved via the conditional approach, and their optimal choice. 758 

In particular, the following main conclusions can be drawn for the problem considered: 759 

 The number of IM levels used to perform MSA strongly affects the accuracy of the numerical integration. In general, it is 760 

observed that the degree of overestimation on the seismic demand hazard increases using coarser discretisation of the IM 761 

hazard curve. On the basis of the numerical results, a number of IM levels higher than 10 seem to be sufficient to avoid 762 

accuracy issues related to the IM discretisation. 763 
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 The number of analyses performed at each IM level influences the unbiasedness of the estimator, and at least 10 simulations 764 

(20 are recommended) should be carried out to properly characterise the record-to-record variability effects at a given IM 765 

level. MSA performed with a single sample per IM level could be sufficient in case of very efficient IMs, however, some 766 

degree of bias cannot be avoided, particularly at the lowest MAF values (i.e., lower than 10-4 1/year). 767 

 The lognormal assumption generally provides accurate results and can be used for the parametric estimation of the demand 768 

hazard of almost all the monitored demand parameters. The only exception is when the residual drifts are monitored. This 769 

is mainly due to the fact that conditional demand cannot be approximated by a lognormal distribution, particularly at the 770 

lowest MAF values (lower than D ≈ 10-4). Thus, particular care should be taken in using the widely employed lognormal 771 

assumption to model the conditional distribution of unusual demand parameters. 772 

 The choice of the upper bound for the IM hazard curve truncation affects the accuracy of the numerical integration, and a 773 

sufficiently large upper bound of the IM should be considered in order to not neglect important contributions provided by 774 

rare ground motions. In particular, an accurate characterisation of the demand hazard curves up to small failure annual rates 775 

(D ≈ 10-6) can be achieved by considering IM levels corresponding to MAF of exceedances up to KN  ≈ 10-7. 776 

 777 

Open problems and future developments 778 

Although extensive, the presented study does not cover all possible aspects concerning the subject at hand. A summary of the 779 

main open problems and limits of this work is provided below, setting the basis for future developments.   780 

 781 

 Stochastic ground motion model. The adopted stochastic model is chosen for its capability to describe record-to-record 782 

variability effects. However, the variability observed in real earthquakes is not easily reproducible, and the use of the 783 

stochastic model inevitably introduces some sources of approximation. However, it is worth recalling that, for the purpose 784 

of this study the availability of a stochastic model was essential to ensure the existence of a reference solution against which 785 

to compare the results of the IM-based conditional approach. Future works could employ alternative stochastic ground 786 

motion models available in the literature (Rezaeian and Kiureghian 2010) (Yamamoto and Baker 2013), as well as compare 787 

the seismic risk estimates provided by natural and synthetic ground motion samples. 788 

 789 

 Case study. The reference case study used in this paper can be considered as representative of a wide class of buildings; 790 

however, the analysis outcomes might not hold for different structural systems and it might be thus interesting to extend the 791 

study to a wider set of common building types (e.g., reinforced-concrete or masonry structures). Furthermore, the analysis 792 

of more complex structural systems might help to further assess the influence of the higher vibration modes on the 793 

performance of the conditional probabilistic method. On the other hand, more refined modelling approaches accounting for 794 

both strength and stiffness cyclic deterioration on structural elements might be considered to better evaluate the efficiency 795 

of conditional methods at the collapse condition.   796 

 797 

 Intensity measure. The same methodology could be employed in future analyses considering other, more efficient, IMs 798 

recently proposed in the literature, such as the average spectral acceleration (Eads et al. 2015) and the filtered incremental 799 

velocity (Dávalos and Miranda 2019a). 800 

 801 

 Demand hazard assessment. The approach followed in this study could be employed to evaluate the efficiency, accuracy 802 

and precision of other analysis methods widely employed in PBEE, such as IDA and cloud analysis, or of advanced 803 

simulation tools in alternative to Subset Simulation. 804 

 805 

Appendix 806 

The present Appendix provides some details about the construction of the IM hazard curves IM (im) via Subset Simulation (Au 807 

and Beck 2003). For this aim, Subset Simulation is performed by considering l=20 levels, each having a target intermediate 808 

exceedance probability p0 = 0.5 and nsim=500 analyses per level. Consequently, 500 ground motion samples are generated, from 809 

a stochastic ground motion model, within each of the l simulation levels, which also correspond to the intervals of discretization 810 

of the IM hazard curve obtained in output. Indeed, the hazard curve discretisation follows from the IM intermediate thresholds 811 

generated during the Subset Simulation run.  812 

To be precise, Subset Simulation provides IM hazard curves with inferior limit corresponding to the annual rate of exceedance 813 �̅ =0.316 1/year, identifying the rate of occurrence of earthquakes of any magnitude between m0 and mmax; the superior limit, 814 
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�̂ =3∙10-7 1/year, corresponds to �̅ ∙ XY�. In conclusion, by including the lower bound �̅, vIM is discretized in a total of 21 points, 815 

corresponding to nIM=21 IM levels or stripes.  816 

Among the 500 ground motion samples generated at each IM level, a subset of nsim=20 samples is selected to represent the record-817 

to-record variability effects conditional on the IM level.  818 

 819 
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