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Anomaly detection for large span bridges during operational phase using structural health 1 

monitoring data 2 

 3 

Abstract 4 

In view of the limitation of damage detection in practical applications for large scale civil structures, a practical method 5 

for anomaly detection is developed. Within the anomaly detection framework, wavelet transform and generalized Pareto 6 

distribution are adopted for data processing. In detail, to reduce the influence of thermal responses on signal fluctuations 7 

induced by anomaly events, wavelet transform is employed to separate thermal effects from raw signals based on the 8 

distinguished frequency bandwidths. Subsequently, a two-level anomaly detection method is proposed, i.e., 9 

threshold-based anomaly detection and anomaly trend detection. For the threshold-based anomaly detection, the 10 

threshold for anomaly detection is determined by generalized Pareto distribution analytics, corresponding to a 95% 11 

guarantee rate within 100 years. Moreover, the threshold is periodically updated by incorporating the latest monitoring 12 

data to model the increase of traffic volumes and gradual degradations of structures. For the anomaly trend detection, the 13 

moving fast Fourier transform is adopted for discussion. Finally, the mid-span deflection of Xihoumen Suspension 14 

Bridge is selected as the index to validate the effectiveness of the proposed methodology. Two types of anomaly events 15 

are assumed in the case study, i.e., the overloading event and structural damage. The two-level anomaly detection is 16 

implemented. It is indicated through the case study that the proposed anomaly detection approach (without the influence 17 

of temperature) is able to detect three 100-ton overloaded vehicles and damages in main cables. However, the assumed 18 

cases subject to 100-ton vehicle and damages in stiffening girders are hardly detected by using the deflection index, 19 

owing to the sensitivity of the index to each anomaly event. In the future studies, a structural health monitoring-based 20 

multi-index anomaly detection system is promising to ensure the operational and structural safety of large span bridges. 21 

Key words: large span bridges; structural health monitoring; anomaly detection; wavelet transform; generalized Pareto 22 

distribution, moving fast Fourier transform 23 

1. Introduction 24 

Large span bridges are usually in the critical locations within the modern traffic networks, which play a key 25 

role in regional economic development [1-3]. Meanwhile, these bridges are facing diverse threats resulting 26 

from their own structural failures and aggressive operational environments [4-6]. Owing to the scale of large 27 

span bridge structures as well as the concealment of threats, anomaly detection is a crucial task for large-scale 28 

civil structures. For instance, the I-35W bridge over the Mississippi River in Minneapolis, Minnesota, 29 

collapsed suddenly on August 1st, 2007, as a result of inadequate thickness of the gusset plates and high mean 30 

stress [7]. Thus, it is of critically importance to study practical anomaly detection methodology for large span 31 

bridges to ensure a safe operation. 32 

In view of the availability of robust and inexpensive remote sensing technologies, structural health 33 

monitoring (SHM) systems are frequently devised to monitor bridge performance and provide real-time 34 

condition screening [8-11]. In China, almost all the large span cable-supported bridges are equipped with 35 

SHM systems. The abundant monitoring data provide solid foundation for the investigations of anomaly 36 

detection. 37 

Damage detection has been broadly studied over the past few decades. Vibration-based damage detection 38 

is one of the most popular techniques, where the basic principle is that damages within the structure will 39 

impact the structural dynamic parameters (e.g., frequency) derived from vibration monitoring data [12, 13]. In 40 
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general, the vibration-based methods are divided into two categories, namely, tradition-type and modern-type 1 

[14]. The tradition-type is mainly based on the structural vibration characteristics such as variation of natural 2 

frequencies or mode shapes [15-18]. The modern-type makes use of signal-processing techniques or artificial 3 

intelligence, including wavelet-based approaches, neural networks, etc. [19-23]. Cross et al. [24] introduced 4 

the concept of cointegration, a tool for analytics of non-stationary time series, as a promising approach for 5 

damage detection by using the index of frequency. Although vibration-based damage detection methodology 6 

has been successfully applied to mechanical and aerospace engineering fields, challenges still exist in civil 7 

engineering since dynamic parameters are significantly influenced by noise, environmental variations, etc. 8 

Changeable operating environments (e.g., temperature) introduce problems to the research of structural 9 

damage detection, especially for large scale structures. Xu and Wu [25] proved that changes in dynamic 10 

characteristics due to temperature may be greater than that induced by damages. Peeters et al. [26] also 11 

emphasized the importance in distinguishing the temperature effects from real damage events. 12 

Considering the limitation of vibration-based damage detection methods, researchers explored 13 

static-based characteristics for structural damage detection. Posenato et al. [27] took advantages of strains to 14 

detect damages using two statistical methods, i.e., moving principal component analysis and robust regression 15 

analysis. Wu et al. [28] presented a damage detection method for concrete continuous girders using 16 

spatially-distributed long-gauge strain sensing. Chen et al. [29] proposed an effective method for structural 17 

damage detection based on the measurements of stay cable force and structural temperatures. Yu et al. [30] 18 

applied the continuous wavelet transformation to process deflection data for damage detection. Zhu et al. [31] 19 

presented a temperature-driven moving principle component analysis method using strain measurements to 20 

detect structural anomalies. Similar to the vibration-based damage detection, environmental factors also 21 

weaken the effectiveness of the static-based approach. Yarnold and Moon [32] developed a damage detection 22 

method considering the influence of temperature, where the measurements of strain and displacement were 23 

used for discussion. Compared with the vibration-based SHM approach, the results indicated that the 24 

temperature-based approach was more sensitive for the events examined. Kromanis and Kripakaran [33] 25 

proposed a regression-based methodology to generate numerical models between distributed temperatures and 26 

responses collected during a reference period, which will support evaluation of bridge response to diurnal and 27 

seasonal changes in environmental conditions. Zhu et al. [34] presented a feature extraction method to 28 

uncover the temperature effects on girder strains, which combined mode decomposition, data reduction, and 29 

blind source separation. Xu et al. [35] proposed a practical multivariate linear-based model for modelling and 30 

separation of thermal response from the girder deflection monitoring data. Ren et al. [36] used regression 31 

analysis to simulate the thermal effects within cable force measurements of a cable-stayed bridge. 32 

Considering the complicacy of bridge structures and harsh environments, there is still a substantial gap 33 

for both vibration- and static-based damage detection methodologies when applied in practical engineering. In 34 

this regard, the gap includes (1) indexes for damage detection may be significantly contaminated by noise; (2) 35 

signal fluctuation induced by structural damages may be covered by that due to environmental factors (e.g., 36 

temperature); (3) indexes for damage detection may not be much sensitive to localized damages; and (4) 37 

anomalous signals may result from those anomaly events rather than structural damage. Zong et al. [37] 38 

concluded that the structural damage detection techniques based on SHM measurements are mostly at the 39 

stage of laboratory, and difficult to realize the early damage detection for large span bridges. 40 

Considering the requirements of engineering applications, this paper explores to extend damage detection 41 
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to anomaly detection. The objective of anomaly detection is to find patterns in dataset that do not confirm to 1 

the expected behaviors [38]. These nonconforming patterns may result from instant damages or accidents 2 

during operation stages. For instance, the anomaly event could be overloaded vehicles passing through the 3 

bridge, in addition to structural damages. As discussed earlier, thermal effects act as a hindrance for data 4 

interpretation. Wavelet transform is used to separate thermal effects from the raw monitoring signals based on 5 

the periodicity of temperature loads. Based on the training dataset corresponding to normal operational 6 

scenarios, the threshold for anomaly detection is determined by using generalized Pareto distribution (GPD) 7 

analytics. Furthermore, the energy-based method for anomaly trend detection is proposed by using moving 8 

fast Fourier transform (MFFT). Aiming to validate the effectiveness of the proposed methodology, a numerical 9 

model is created, and 5 cases (i.e., 3 anomaly events and 2 structural damage cases) are simulated on it. 10 

2. Methodology 11 

The general flowchart of the anomaly detection methodology in this paper is shown in Fig. 1. Raw signals 12 

from SHM systems are first pre-processed, including de-noising, gross error detection and missing data 13 

imputation. The pre-processing procedure could refer to our previous work [8]. Subsequently, thermal 14 

response separation is implemented to obtain qualified signals for the following discussion. Finally, a 2-level 15 

anomaly detection is carried out. For the first level anomaly detection (i.e., threshold-based anomaly 16 

detection), GPD is used to determine the threshold based on the training dataset subject to normal behaviors. 17 

Moreover, the threshold is updated with the latest monitoring data to model the increase of traffic volumes and 18 

gradual structural degradations. For the second level anomaly detection (anomaly trend detection), the MFFT 19 

is adopted to obtain the time and frequency domain information. 20 

 21 

Fig. 1 Outline of the methodology 22 

2.1 Thermal response separation 23 

Methods regarding thermal response modelling have been well studied in recent years [39-43]. The wavelet 24 
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transform technique is one of the most popular tools in this research area. 1 

The wavelet transform is developed from the Fourier transform. Compared with the Fourier transform, 2 

the wavelet transform has advantages in analyzing local characteristics both in time and frequency domain, 3 

and dealing with non-stationary signals. The continuous wavelet transform of a time-domain signal  f t  is 4 

expressed as 5 

   
1

,f

t b
W a b f t dt

aa






 
  

 
  (1) 

where a and b are scaling and shift parameters of the wavelet function  t , respectively. However, the 6 

discrete wavelet transform is much more frequently applied in engineering applications, which is given as 7 

     /2, 2 2j j

f

n

W j k f n n k      (2) 

where  f n  is a discrete sequence,  n  the wavelet function, and 
   - /2 -

2 2
j j

n k   are scaled and shifted 8 

versions of  n  with values of j (scaling coefficient) and k (shifting coefficient). 9 

Combination of the discrete wavelet transform and filters (i.e., wavelet-based multi-resolution analysis) 10 

is able to decompose signals into various resolution scales. The data with coarse resolution, termed as 11 

approximations, contain information regarding low frequency components and retain the main features of raw 12 

signals, while the data with fine resolution (i.e., details) retain information of the high frequency components 13 

and reflect detailed features of the original signals. The approximation signal  jA n  at the jth resolution level 14 

is computed as 15 

   , ,j j k j k

k

A n a n




   (3) 

where ,j ka  is the approximation coefficient, and ,j k  is called the scaling function. The detail signal  jD n  16 

is then demonstrated as 17 

   , ,j j k j k

k

D n d n




   (4) 

where ,j kd  is the detail coefficient, and ,j k  is the wavelet basis function. The original signal can be 18 

reconstructed using the approximation at the Mth resolution level and all the details starting from the first level 19 

until the Mth level, which is 20 

     , , , ,

1

.
M

M k M k j k j k

k j k

x n a n d n
 

  

      (5) 

The first term represents the approximation at level M and the second term represents the details at and below 21 

level M. A schematic representation of the wavelet-based multi-resolution analysis pyramid structure is shown 22 
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in Fig. 2. 1 

Signal x(n)

A1 D1

A2

...

AM

D2

DM

...

Details

Approximations Level 1
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Level M

...

 2 

Fig. 2 Pyramid structure of the wavelet-based multi-resolution analysis 3 

Thermal actions have substantial periodicity, including the period of 24 hours for diurnal thermal actions 4 

and the period of 1 year for seasonal thermal actions [44, 45]. Thus, both the two types of thermal effects are 5 

supposed to be confined within a specific bandwidth in frequency domain. Based on the definition of the 6 

wavelet transform, each signal decomposition corresponds to a certain bandwidth. Therefore, thermal 7 

response separation is realized by calculating the level corresponding to the bandwidth of thermal effects, then 8 

setting the coefficient values of the determined signal decompositions as zero at reconstruction. 9 

2.2 Threshold-based anomaly detection 10 

2.2.1 Determination of threshold 11 

To realize quasi-static anomaly detection, it is required to consider the responses from all known loads (e.g., 12 

temperature loads, traffic loads and so on) [46]. In view of the complicacy of operating conditions for large 13 

span bridges, the existing technology cannot identify the space-time distribution of vehicle loads effectively. It 14 

is difficult to separate responses due to random vehicle loadings from the monitoring data. Thus, vehicle 15 

loadings are treated as random variables in this paper, which are addressed by using the statistical method. It is 16 

assumed that under normal operation scenarios, the response of vehicle loadings within a certain time window 17 

satisfies the distribution of determined statistical parameters (i.e., mean and variance). The structural anomaly 18 

detection is based on the rationale that when an anomaly event occurs during operation stages, the monitoring 19 

value of its structural response will substantially exceed the normal range. Thus, anomaly detection in 20 

structural analysis is simplified to outlier identification in digital signal processing. 21 

In general, the anomalous data are defined as those signals outside the threshold. Extreme value analysis 22 

(EVA) is widely used to predict the threshold. For example, Liu et al. [47] took advantages of the EVA to 23 

determine the extreme deflection values for condition evaluation of suspension bridges. The EVA is a 24 

supplement to the normal distribution, which is used to model the tail data of the normal distribution. 25 

The block maximum method is a typical EVA method in practical applications [48]. The block maximum 26 

model is built up by 3 steps: (1) dividing all observations into k groups on average; (2) extracting the 27 

maximum value in each group for discussion; and (3) performing distribution analysis using the extracted 28 

maximum data. However, the block maximum model only focuses on the largest data and ignores the 29 

remaining data in the group. Considering that the block maximum model cannot make full use of the extreme 30 

value information, the Pareto distribution analysis is adopted to determine the threshold for structural anomaly 31 
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detection. The Pareto distribution analysis takes advantages of data that are larger than a defined limiting 1 

value. 2 

If the distribution function of the random variable X is 3 

 

1/

1 1 , 0

; , ,

1 exp , 0

x

G x
x

    
      

  
    

  
      

 (6) 

then, it is called that variable X obeys GPD, where the support is 0
x  




 for 0   and 0 1/
x 

   


 4 

for 0  ,   is the position parameter,   the scale parameter, and   the shape parameter. 5 

The regular steps to determine the quantile estimates at T-year return period are as follows: 6 

(1) Determination of the limiting value. When Pareto distribution is used to fit the excess quantity, it is a 7 

critical challenge to determine the limiting value. If the limiting value is high, the number of out-of-sample is 8 

small resulting in a severe variance of estimators; on the other hand, if the limiting value is low, the excess 9 

quantity differs significantly from the GPD leading to a biased estimator. The average excess function e(u) of 10 

the GPD is a linear function of the excess quantity u. For a given sample, the average excess function of the 11 

sample greater than the limiting value should fluctuate around a straight line. The limiting value can be 12 

determined by focusing on the slope change characteristics of e(u) after a certain limiting value u0. The point 13 

where the slope remains constant can be used as the limiting value. 14 

(2) Parameter estimation. Based on the existing sample data, the parameters of the GPD model are 15 

estimated. The common estimation methods include maximum likelihood estimation, probability moment 16 

estimation, L moment method. 17 

(3) Quantile value estimation. Within a T-year return period, the quantile p corresponding to a certain 18 

guarantee rate Pr is 19 

1 PrTp    (7) 

The corresponding quantile value xp is 20 

 0

ˆ
1 1

ˆp

u

n
x u p

N

  
     

    

 (8) 

where ̂  is the scale parameter estimate, ̂  the shape parameter estimate, n the number of samples, and Nu the 21 

number of data that exceed the limiting value. 22 

According to JTG D60-2015, the design actions are defined as the quantile value corresponding to the 23 

95% guarantee rate with a reference period of 100 years. In order to keep consistent with the design actions at 24 

the probability level, the threshold used for structural anomaly detection is defined as the quantile value 25 

corresponding to the 95% guarantee rate with a reference period of 100 years. 26 

2.2.2 Threshold updating 27 

With the development of social economy and travel demand, traffic volumes of bridges are bound to rise with 28 

time. Moreover, structural gradual degradations will weaken the stiffness of structures. Although maintenance 29 
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activities are implemented on these gradual degradations, the condition of the bridge can hardly resume to its 1 

initial state. The increase of both the traffic volumes and structural unrecoverable degradations will influence 2 

the level of structural response gradually. The effectiveness of anomaly detection will be significantly reduced 3 

by using lagged thresholds under current service status, which will lead to false detection. For instance, the 4 

thresholds of the girder deflection at mid-span of Xihoumen Suspension Bridge (XSB) in 2010, 2014 and 5 

2017 are -0.463m, -0.605m and -0.811m, respectively. One could refer to the case study section for the 6 

detailed calculation process. If the threshold of deflection in 2010 (-0.463m) is used for anomaly detection in 7 

2014, false abnormalities will be frequently detected owing to the increase of traffic volume and gradual 8 

degradations. Moreover, the frequent false detection alarming will influence the confidence of owners to the 9 

detection results. Thus, it is essential to upgrade the threshold periodically by using the latest monitoring data. 10 

The threshold updating flowchart is shown in Fig. 3. In this paper, it is suggested to annually update threshold. 11 

The specific period for threshold updating depends on the practical requirements. 12 

 13 

Fig. 3 Flowchart of the threshold updating 14 

The threshold determined by using GPD is from the statistic point of view, rather than the structural 15 

safety and serviceability analytics. There exists a limit for thresholds regarding to structural serviceability 16 

concerns. For example, according to JTG/T H21-2011, the most unfavorable deflection at mid-span of a 17 

suspension bridge is 1/500L, where L is the main span length of the bridge. For the studied XSB with a main 18 

span of 1650m, the limit is calculated as 3.3m subject to structural serviceability. When the threshold 19 

determined by GPD reaches the limit defined by the code (i.e., 3.3m in this study), special inspections and 20 

rehabilitations are recommended to carry out to guarantee the performance of the structure. 21 

2.3 Anomaly trend detection 22 

The aforementioned threshold-based anomaly detection method focuses on single measurement, which could 23 

not reflect the variation trend of the recorded signals. However, structural damages prefer to disturb the 24 

variation trend of the response. Herein, the MFFT algorithm is used to obtain the time and frequency 25 

information of the signal, which will help to detect anomaly trend of the measurements. 26 

Considering measurements 0 1 1
, , , Nx x x

 , and suppose that their N-point discrete Fourier transform (DFT) 27 
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F(u), u=0,1,…,N-1 is already computed. Let the data be moved one point to the right, including the new value 1 

xadd. Call the new data xnew(t), where 2 

 
 

 
 , 1 0

0

0,1,..., 21 ,

1,

0,1,..., 21 ,

1,

new

add

t N add

t Nx t
x t

t Nx

t Nx t
x x

t Nx

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  

  

   
    

  

 (9) 

where   is the Kronecker delta function. 3 

The first term on the right hand side represents the N original points x(t) rotated one position to the left. 4 

Taking the DFT and applying the Fourier shift theorem yields as 5 

    0 2
exp , 0,1,..., 1add

new

x x u
F u F u j u N

N N

    
     

  
 (10) 

This formula shows how to update a one-dimensional discrete Fourier transform by including the new point 6 

xadd and removing the x0. 7 

3. Case study 8 

3.1 Background: bridge and its monitoring system 9 

A large span suspension bridge, the XSB, is used to illustrate the effectiveness of the proposed anomaly 10 

detection method. The XSB, a cross-sea bridge in Zhoushan city, Zhejiang Province, China, lies above 11 

Xihoumen waterway, as a part of Yongzhou Expressway. It is a suspension bridge with a main span of 1650m. 12 

The superstructure deck has a 3.5m deep and 36m wide orthotropic steel box girder that accommodates two 13 

lanes in each direction. The bridge was opened to traffic on December 25, 2009, and the design vehicle speed 14 

is limited to 80km/h. 15 

The girder deflection at mid-span is selected as the index for structural anomaly detection. Compared 16 

with deflections at other locations (e.g., 1/4L), mid-span deflection measurements are more sensitive to live 17 

loads, which is commonly used to rate the short- and long-term global behavior of long span bridges [35, 47, 18 

49, 50]. The spatial information of main cables, steel box girders and towers are obtained by global position 19 

system (GPS). The deployment of GPS is shown in Fig. 4. There are four GPS used for girder alignment 20 

monitoring, eight GPS for main cable monitoring, and four for towers. The sampling frequency of GPS is 21 

20Hz, and the real-time dynamic measurement accuracy in vertical direction is ±20mm+1ppm RMS, that is, 22 

the basic error of measurements is 20mm, then the accuracy decreases by 1mm for each 1km increasing in the 23 

distance between the measuring point and the base station. The alignment of the girder at bridge construction 24 

completion moment is defined as the baseline. The deflection is the vertical distance of the interested location 25 

from the baseline, where negative values mean flexural downbows, while the positive indicates bent-up. 26 
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 1 
Fig. 4 Layout of GPS 2 

3.2 Separation of thermal response 3 

In view of the high sampling frequency of GPS (i.e., 20Hz), data resampling is implemented to improve the 4 

efficiency of data processing. For anomaly detection, mean value will produce peak clipping phenomenon, 5 

leading to omission of detection. Therefore, the minimum values of the mid-span deflection (down-warping) 6 

measurements are adopted for the following discussions. Hourly minimum mid-span deflection measurements 7 

in Jan., Apr., Jul. and Oct., 2014 as well as their temperatures are shown in Fig. 5(a). Moreover, the minutely 8 

minimum mid-span deflections and ambient temperature data during Oct. 8, 9 and 10, 2014 are plotted in Fig. 9 

5(b). The monitoring deflection data indicate significant daily and seasonal periods. With the increase of 10 

ambient temperature, the mid-span deflection goes down [51-53]. 11 

  

(a) Hourly minimum deflections and temperatures in 

four months 

(b) Minutely minimum deflections and temperatures in 

three days 

Fig. 5 Minimum deflections and temperatures in two time scales 

The wavelet transform is applied to separate thermal response from the recorded measurements based on 12 

the distinguished frequency bandwidth of each signal decomposition. In general, the periods of diurnal and 13 

seasonal actions are 24 hours and 365 days, respectively. Minutely minimum deflections during three days as 14 

shown in Fig. 5(b) are taken as the example to demonstrate the wavelet-based thermal response separation 15 

process. Based on the frequency bandwidth division rule as shown in Fig. 6, the raw monitoring deflection 16 

data are decomposed into 17 levels. The energy spectrum of each detailed layer is shown in Fig. 7. The 10th 17 

detail layer (D10) subject to a period of approximate 24-hour contains the largest weights of energy compared 18 

with others since the diurnal thermal response lies on the 10th layer. Seasonal thermal response is recognized 19 

as the approximation signal component (A17) based on the distinguished frequency bandwidth. In detail, the 20 

decomposition (A17) contains signals whose periods are around 365 days, which fits the period of seasonal 21 

response. The wavelet basis function is set as DB8 in this case according to trials and errors. As a result, the 22 
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diurnal and seasonal sub-signals are demonstrated in Fig. 8(a) and Fig. 8(b), and the signals after thermal 1 

response separation are shown in Fig. 8(c). 2 

 3 

Fig. 6 Frequency bandwidth division rule 4 
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Fig. 7 Energy spectrum of each detailed layer 6 

 7 

Fig. 8 Typical sub-signal after wavelet transform 8 

Hourly minimum deflection measurements in Jan., Apr., Jul. and Oct., 2014 (as shown in Fig. 5(a)) are 9 

processed by using the wavelet transform. The resampling frequency is 1/3600Hz. The reconstructed signals 10 

are shown in Fig. 9, excluding the effects of thermal actions. 11 
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 1 

Fig. 9 Thermal response separation for seasonal monitoring data 2 

3.3 Determination of threshold 3 

After obtaining the reconstructed signals, the GPD is applied to determine the threshold for anomaly detection. 4 

According to the definition of the Pareto distribution, only the data smaller than the limiting value (in this case) 5 

are used for the following discussion. The first step is to determine the limiting value. The relationship 6 

between the mean excess quantity and the limiting value is shown in Fig. 10. Based on the rule that the 7 

average excess function of the sample smaller than the limiting value should fluctuate around a straight line, 8 

the limiting value is set as -0.02m in this case. The reconstructed deflection data smaller than -0.02m are used 9 

for GPD fitting analysis. The estimated shape parameter and scale parameter are ˆ=-0.0993  and ˆ =0.0795 , 10 

respectively, which are calculated by MATLAB platform by using the maximum likelihood estimation. With the 11 

determined shape and scale parameters, the probability density function is shown in Fig. 11. Considering the 12 

reference period of the bridge (100 years), the threshold of the mid-span deflection is -0.605m according to Eq. 13 

(8), which corresponds to 95% guarantee rate within 100 years. 14 

 15 

Fig. 10 Relationship between the mean excess quantity and the limiting value 16 
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Fig. 11 Probability density function 2 

3.4 Threshold updating 3 

With the advance of social economy, the traffic volume is constantly increasing, intensifying the stiffening 4 

girder under-warping. Moreover, structural gradual degradations will weaken the stiffness of the girder, 5 

leading to larger deformations. In all, the threshold derived from the GPD will vary with time. Thus, it is 6 

urgent to update the threshold with the latest monitoring data to ensure the effectiveness of the proposed 7 

structural anomaly detection. 8 

Following the steps of GPD analytics, the thresholds of the mid-span deflection in 2010, 2014 and 2017 9 

are calculated and listed in Table 1. With the increase of the traffic volume and decrease of the girder stiffness, 10 

the absolute value of mid-span deflection increases with the time. However, the thresholds in the three years 11 

are all far smaller than the limit value 3.3m. Therefore, the monitoring deflections under normal operation 12 

conditions are way smaller than the limit, which indicate that current monitoring deflections will not influence 13 

the serviceability of the bridge. 14 

Table 1 Thresholds of the mid-span deflection in 2010, 2014, and 2017 15 

Year Threshold (m) 

2010 -0.463 

2014 -0.605 

2017 -0.811 

3.5 Result discussion 16 

3.5.1 Threshold updating 17 

Aiming to highlight the necessity of threshold updating, the threshold calculated by deflection data in 2010 is 18 

used for structural anomaly detection in 2014. The sampling data in Fig. 12 are monitored by GPS under 19 

normal bridge operating state in 2014. For the mid-span deflection measurements in 2014, two detections 20 

occur when using the threshold in 2010 (-0.463m) as shown in Fig. 12. In fact, no anomaly events were 21 

observed at the detection instants, which indicates false alarms. The false detections are mainly caused by the 22 
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increase of traffic volumes between 2010 and 2014, which enhances the magnitude of the mid-span deflection. 1 

When the threshold in 2014 is employed, no false detection is observed. Thus, threshold updating could avoid 2 

false detection to enhance the effectiveness of the proposed anomaly detection approach. 3 

 4 

Fig. 12 Detection results by using threshold in 2010 and 2014 5 

3.5.2 Overloading detection 6 

To demonstrate the advantages of the proposed detection methodology, anomaly detection using raw 7 

deflection signals is carried out, which is commonly applied in practical engineering. The raw deflection data 8 

involving thermal effects in 2014 are processed by using GPD directly as discussed earlier, and the calculated 9 

threshold is -1.506m in this case. In consideration of the difficulty in collecting anomalous data samples, three 10 

events (i.e., two anomaly events and one normal event) are simulated to validate the effectiveness of the 11 

anomaly detection method, which are 12 

 Case 1: involving three 100-ton overloaded vehicles in the normal traffic flow at T1, which should be 13 

detected as an anomaly event; 14 

 Case 2: adding a standard 55-ton vehicle to the normal traffic flow at T2, which should not be 15 

detected; 16 

 Case 3: a 100-ton overloaded vehicle passing through the bridge at instant T3, which is supposed to 17 

be detected. 18 

The initial FE model for the XSB was developed on the software platform MIDAS/CIVIL 2010. Beam 19 

and truss elements were used to model the girders and cables. A total of 899 nodes and 896 elements were 20 

built up in the entire model. The model updating process was conducted to make both the dynamic and static 21 

responses in line with the actual ones. In brevity, the model updating procedure will not be introduced herein. 22 

Based on the modified finite element (FE) model of the XSB, the mid-span deflections subject to Cases 1 and 23 

2 are obtained as shown in Fig. 13. 24 
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Fig. 13 Deflections under Cases 1 and 2 calculated by using the FE model 2 

A significant gap is observed in the monitoring deflections between the winter and summer as shown in 3 

Fig. 14(a), resulting from the seasonal temperature difference. In Case 1, three 100-ton overloaded vehicles 4 

travel through the bridge simultaneously at T1 in the winter. The response of the mid-span deflection does not 5 

reach the threshold as shown in Fig. 14(a), resulting in an omission. In Case 2, a 55-ton standard vehicle goes 6 

through the bridge at T2 in the summer. The response of the deflection exceeds the threshold as shown in Fig. 7 

14(a), leading to a false detection. Both the omission in the winter and false detection in the summer are 8 

attributed to the thermal effects, which are sometimes larger than the response induced by vehicle loadings 9 

and will cover the fluctuations caused by anomaly events. Thus, the effectiveness of the anomaly detection 10 

method is significantly influenced by thermal effects. 11 

The proposed anomaly detection methodology takes advantages of structural response that is 12 

pre-processed to separate out thermal response. The detection results are shown in Fig. 14(b) by using 13 

mid-span deflection measurements in 2014. The Case 1, i.e., three 100-ton overloaded vehicles travelling 14 

through the bridge simultaneously at T1, is detected successfully to indicate the abnormal operating state, 15 

while the Case 2, i.e., a 55-ton standard vehicle through the bridge at T2, is judged as normal operating 16 

condition. Compared with the anomaly detection results derived from the raw monitoring data as shown in Fig. 17 

14(a), the effectiveness of the anomaly detection approach has been greatly improved by separating thermal 18 

effects from the structural response. 19 

Case 3 is simulated as a 100-ton overloaded vehicle passing through the bridge at instant T3. The 20 

deformation of the mid-span section is 0.347m (downward) subject to the Case 3 through the FE model 21 

simulation. We fail to detect the overloading event as shown in Fig. 14(b). It is concluded that the 22 

effectiveness of the proposed overloading detection method is not only influenced by the weight of the 23 

overloaded vehicle but also the other vehicle loads on the deck simultaneously. The existence of other vehicles 24 

will introduce errors in overloading detection results. 25 
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(a) Anomaly detection using raw deflection data (b) Anomaly detection using the proposed method 

Fig. 14 Overloading detection results 

3.5.3 Damage detection 1 

Considering no remarkable damage occurring on the studied bridge within the service age, simulated damage 2 

events are employed. The main cable is one of the critical components in the suspension system. Meanwhile, 3 

the condition of main cables is difficult to inspect owing to the covering layer. Herein, two cases regarding 4 

structural damages are assumed as: (1) damage case 1: a 40% reduction of Young’s modulus within the 5 

midspan section of the main cables; and (2) damage case 2: a 40% reduction of Young’s modulus within the 6 

mid-span section of the girder. 7 

Both the field monitoring data (Aug. 16 and 17) and FE models are used for the simulation of damage 8 

detection study. The established FE model is used to model the damaged structure with a 40% reduction of 9 

Young’s modulus within the midspan section. Then, the calculation results of the FE model are integrated with 10 

the in-situ measurements at the instant T. Based on the threshold calculated earlier, the detection results are 11 

shown in Fig. 15(a). As a result, multiple anomalous signals are detected after the instant when damage was 12 

imported. In the overloading detection, the anomalous signals are confined into a short time window since the 13 

structure behaviors resume normal when the overloading vehicles pass away. However, there is a different 14 

signal pattern for damage detection. In detail, anomalous signals will be continuously detected in damage 15 

detections until the damage is corrected. Next, the spectrum is adopted by applying MFFT to the time histories 16 

with a window length of 128, and the spectrum energy is shown in Fig. 16(a). The energy of the signal subject 17 

to structural damage is higher than that corresponding to the sound condition. The reason is that the structural 18 

damages weaken the stiffness of the structure, resulting in larger fluctuation of deflection signals. The larger 19 

the amplitude is, the more energy the signal contains. 20 

The other case study is conducted herein, which introduces a 40% reduction of Young’s modulus within 21 

the mid-span section of the girder. The detection result is shown in Fig. 15(b), where the damage cannot be 22 

detected using the deflection. The detection index, i.e., mid-span deflection, is not so sensitive to the Young’s 23 

modulus of the girder compared with the main cables since the stiffness of the suspension bridge is mainly 24 

provided by main cables rather than the girder. Similarly, the spectrum energy of the signal is plotted as shown 25 

in Fig. 16(b). Similar results are drawn as shown in Fig. 15(b), omission occurred by using spectrum energy 26 

for damage detection. Based on the rationale that different parameters are sensitive to different anomaly 27 
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events, a SHM-based multi-index anomaly detection system is promising to ensure the operational and 1 

structural safety of large span bridges. 2 
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(a) Damage case 1 (b) Damage case 2 

Fig. 15 Damage detection results 

  

(a) Damage case 1 (b) Damage case 2 

Fig. 16 Spectrum energy obtained by MFFT 

The case study takes the mid-span deflection of stiffening girder of a suspension bridge as an example to 3 

verify the effectiveness of the anomaly detection method. When other structural response (e.g., strain) is 4 

selected as the index, the proposed method is still applicable. However, specific discussions regarding the 5 

influence of various factors (e.g., temperature, traffic volumes) to the index are necessary to ensure the 6 

accuracy and robustness of the anomaly detection method. 7 

4. Conclusions 8 

This paper has developed an anomaly detection method for bridges by using the wavelet transform and Pareto 9 

distribution analytics based on SHM data. The following conclusions can be drawn from this study: 10 

(1) Wavelet transform method is applied to separate thermal effects from the raw monitoring signals. 11 

Based on the periods of diurnal thermal actions (24 hours) and seasonal thermal actions (365 days), the 12 

wavelet transform-based sub-signals corresponding to the diurnal thermal effects and seasonal ones are 13 

determined and separated from the raw monitoring signals. 14 
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(2) In view of the limitations of the block maximum method, the GPD is used to predict the threshold 1 

for structural anomaly detection. Since the design reference period of large-scale bridges is generally 100 2 

years, the threshold is defined as the statistical value corresponding to the 95% guarantee rate within the 3 

reference period. Moreover, the threshold is required to be updated using latest monitoring data to consider the 4 

increase of traffic volumes and degradations of the structure. 5 

(3) Deflection at mid-span of the XSB is selected as the index to validate the effectiveness of the 6 

proposed anomaly detection method by using the data generated from an FE model. The absolute value of the 7 

threshold increases with the operating time owing to the increase of the traffic volume and degradation of the 8 

structure. Through the investigations of overloading and damage detections, it is concluded that the proposed 9 

anomaly detection method considering thermal effects has more accuracy and robust performance in anomaly 10 

detection when compared with the approaches using raw monitoring data. 11 
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