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ABSTRACT

This paper presents a life cycle cost model for systems subject to multiple dependent degra-

dation processes and environmental influence. Different from most existing studies that assume

an infinite time horizon for cost analysis, we evaluate the life cycle cost within a finite hori-

zon. The system is subject to multiple degradation processes, among which the dependence is

described via copula. In addition to the stochastic dependence of the degradation processes,

the health condition of the system is influenced by the operating environment. The environ-

mental influence on the system condition lies in two aspects: It accelerates or decelerates the

degradation processes and meanwhile leads to a random failure threshold. System reliability

considering multiple dependent degradation processes and environmental influence is assessed
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as the first step, followed by the life cycle cost analysis. A numerical example is presented to

illustrate the proposed model.

KEY WORDS: Life cycle cost analysis; multiple degradation processes; stochastic depen-

dence; copula; reliability analysis

1 Introduction

Life cycle cost analysis involves a number of elements, such as cost of initial construction, mainte-

nance, operation, and many other actions, over the specific service life of a system. As reported in

reliability-based optimization, the three most significant elements of such cost analysis are the cost

of construction, benefits from system service and economic losses due to failures or performance

degradation (Rosenblueth and Mendoza, 1971). In terms of economic losses due to failures, cost

estimation uncertainty mainly arises from the intrinsic degradation process, for instance, estima-

tion uncertainty of the degradation path and the associated parameters, as well as the impact of the

operating environment.

Continuous improvements of product reliability have prompted the development of degrada-

tion modelling. With the increase of product lifetime, obtaining failure data in a feasible period

is difficult, which impedes the application of traditional failure-data-based reliability models. On

the other hand, with the advances in inspection and monitoring technologies that can effectively

provide information on the system health condition, degradation modelling is widely adopted as

an alternative (Lu and Meeker, 1993; Liu, Yeh, Xie and Kuo, 2017). In the area of reliability and

maintenance optimisation, stochastic-processes-based degradation models have gained populari-

ty, because of their flexibility in characterising performance deterioration and interpreting failure

mechanisms (Liu, Wu, Xie and Kuo, 2017; Liu, Liang, Parlikad, Xie and Kuo, 2017; Zhai and

Ye, 2017; Do et al., 2019). In the literature, numerous degradation processes have been proposed,
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among which, the Wiener, gamma and inverse Gaussian processes are most widely used to charac-

terise the system deterioration, owing to their attractive mathematical property and clear physical

interpretation (Ye and Xie, 2015).

Despite the efforts on degradation modelling, an implicit assumption of such studies is that the

system is subject to a single degradation process. However, as modern systems become increasing-

ly complex for performing multiple functions, there usually exist multiple performance indicators.

Each performance indicator may imply an underlying degradation process (Zhao et al., 2018; Gao

et al., 2019; Yang et al., 2018). Therefore, bivariate or multivariate stochastic models are preferred

to describe the degradation process of such complex systems. Examples of multiple degradation

processes can be found in electronic products, heavy machine tools and piping systems (Peng et al.,

2016; Pandey et al., 2011). For example, as regards the piping system used for heat transfer in nu-

clear power plants, the pipe thickness is reduced by corrosive flows and various parts of such pipes

become corroded. In addition, the corrosion processes are highly dependent, because the corrosive

water usually flows through these parts. For such systems, a single degradation process fails to

accurately characterise the underlying corrosion mechanism.

In literature, several studies have been conducted on reliability analysis and maintenance decision-

making for systems with multiple degradation processes. Liu et al. (2013) developed a condition-

based maintenance policy for a degrading system with multiple failure modes, where average

availability and long-run cost rate are formulated as the objective function. Liu et al. (2014) fur-

ther investigated the criticality measures for a multi-component system with multiple degradation

processes. Moreover, several reliability models were established considering multiple dependen-

t competing failure processes in previous works (Song et al., 2014; Jiang et al., 2012; Ye et al.,

2011; Wang et al., 2011; Hong et al., 2014; Riascos-Ochoa et al., 2016). Notably, copula methods

have played an increasingly important role in describing interdependence among the degradation

processes. Pan et al. (2013) addressed the issue of parameter estimation for a system subject to a

bivariate Wiener process, using copula method to characterise the dependence of the degradation
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processes. Peng et al. (2016) proposed a bivariate degradation model based on an inverse Gaus-

sian process and copulas and implemented a two-stage Bayesian method for parameter estimation

under incomplete degradation observations. Wang and Pham (2012) developed a reliability model

considering multiple dependent competing failures and employed time-varying copulas to fit the

dependence relationship among the degradation processes.

Although several attempts have been made for cost analysis considering multiple degradation

processes, these mainly focus on the asymptotic cost rate (cost per unit time). The reason for its

popularity is that the asymptotic cost rate can be simply computed with the renewal cycle theorem,

which states that the long-run cost rate equals the expected cost in a renewal cycle divided by the

expected length of a renewal cycle. The asymptotic criterion assumes that the system can operate

in an infinite time horizon. However, in practice, the application of this asymptotic property is

questionable for most engineering systems, which exhibit a finite operating horizon (Qiu et al.,

2018; Sánchez-Silva et al., 2016). In addition, with the rapid development of technology, many

products (e.g.,electronic products) are updated frequently and assuming an infinite usage horizon

is unrealistic. Therefore, we propose to investigate the damage cost under the framework of a finite

life cycle. Previous life-cycle studies mostly focus on shock models or a single degradation pro-

cess. For example, Pandey et al. (2011) analysed the maintenance cost of a degrading system over

a finite horizon. The adopted the gamma process to describe the degradation process and obtained

both expectation and variance of the cost for future decision-making. Pandey and van der Weide

(2017) developed a stochastic renewal process model to estimate the life-cycle damage cost for a

structural system, proposing a a renewal decomposition method to solve a range of renewal cycle

issues. Frangopol (2011) presented an overview of life-cycle management and optimisation under

aleatory and epistemic uncertainties. Caballé and Castro (2017) proposed a reliability model for

finite life-cycle systems subject to degradation and shock. Yet in that work, the authors considered

only one degradation process. Sanchez-Silva et al. (2011) investigated the life-cycle performance

of structures considering multiple sources of degradation. However, in that work, the authors took
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account of the combination of progressive degradation and sudden events, while the influence of

multiple continuous degradation processes warrants further investigation. In addition, many factors

of the operating environment, such as temperature, humidity and pressure, may impose an impact

on the degradation process (Gebraeel and Pan, 2008; Liu et al., 2014). Operating in an extreme

environment may aggravate the deterioration and reduce the lifetime of the system. Therefore,

it is important to take into account the environmental influence when performing life-cycle cost

analysis. However, study on life-cycle cost analysis in presence of multiple degradation processes

and environmental influence remains wide open.

In this study, we aim to investigate the life-cycle cost of a system under multiple degradation

processes and environmental influence. The life-cycle cost in this study refers to the total cost

incurred owing to service loss, system damage and restoring operations of the failed system. Al-

though several previous studies have considered the multiple degradation processes for life-cycle

cost analysis, they have not addressed the influence of multiple continuous degradation process-

es and the operating environment. We aim to fill the research gap by providing a comprehensive

life-cycle cost analysis framework for systems with multiple dependent degradation processes and

environmental influence. We use gamma process to model the degradation process and characterise

the dependence via copula. We investigate the evolution of system reliability as a first step, which

establishes the basis for life cycle analysis. In addition to obtaining the expected life cycle cost,

we also investigate the variance to provide additional insights for financial planning and capital

budgeting.

The remainder of this paper is organised as follows: Section 2 presents the reliability model

incorporating the dependent degradation processes and environmental influence. Life cycle cost

analysis is performed in Section 3. Section 4 provides a numerical example to illustrate the pro-

posed model. Finally, concluding remarks and future research are provided in Section 5.
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Nomenclature

I Number of degradation processes

Xi(t) ith degradation process, i ∈ {1,2, ..., I}

Ga(t;αi,βi) Gamma process with shape parameter αi and scale parameter βi

Ti Time to failure of the ith degradation process

ζi Failure threshold of the ith degradation process

C(•) Copula function

c(•) Copula density function

K(t) Total discounted cost in time interval (0, t)

Si ith renewal cycle

ρ Discount rate

Ci Cost at the ith renewal cycle, with mean µc and standard deviation σc

N(t) Number of renewal cycles in time (0, t)

Tf Time to failure of the system

E[K2(t)] Second moment of the discounted cost

Var(K(t)) Variance of the discounted cost

Λ(t) Renewal function, Λ(t) = E[N(t)]

FX1,X2,...,XI(x1,x2, ...,xI; t) Joint distribution of the degradation levels

R(t) System reliability function

2 System reliability modelling

In this section we investigate system reliability considering multiple dependent degradation pro-

cesses and environmental influence. As a first step we analyse the individual degradation processes

and obtain the marginal lifetime distribution with respect to these processes. Copulas are employed
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subsequently to describe the dependence among the degradation processes. Then we step forward

to investigate the environmental influence by introducing the covariates and random failure thresh-

olds. Compared with other modelling approaches, the incorporation of covariates and random

failure thresholds makes it more flexible to incorporate external influences.

2.1 Individual degradation process without environmental influence

Consider a system subject to I degradation processes. Let {Xi(t), t > 0} denote the ith degra-

dation process, i ∈ {1,2, ..., I}. It is assumed that without environmental influence, each degra-

dation follows a stationary gamma process, with shape parameter αi and scale parameter βi,

Xi(t)∼Ga(t;αi,βi). We consider the homogeneous Gamma process as it is one of the most widely

used stochastic processes that are applied in degradation modelling. In addition, employment of

the homogeneous Gamma process makes it accessible to analytical results for system reliability

evaluation and life cycle cost analysis. It is well known that gamma process exhibits the property

of independent increments. Between two time epochs t and l (t > l), the degradation increment,

∆Xi(t− l) = Xi(t)−Xi(l), follows a gamma distribution, with the probability density function (pdf)

and cumulative distribution function (cdf) as

f∆Xi (x; t− l) =
βi

αi(t−l)

Γ(αi(t− l))
xαi(t−l)−1e−βix (1)

and

F∆Xi (x; t− l) =
γ (αi(t− l),βix)

Γ(αi(t− l))
(2)

where γ(αi(t− l)) is the lower incomplete gamma function. Without loss of generality, the initial

degradation is assumed to be 0, Xi(0) = 0, ∀i ∈ {1,2, ..., I}. The system fails when any of the

degradation levels Xi(t) exceeds the associated threshold ζi. Denote Ti as the time to failure in
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terms of the ith degradation process. For an individual degradation process, the cdf of Ti is given

as

FTi(t) = P(X(t)≥ ζi) =
∫

∞

ζi

fXi (x; t)dx =
Γ(αit,βiζi)

Γ(αit)
(3)

where Γ(αit,βiζi) is the upper incomplete gamma function. The associated pdf is expressed as

fTi(t) =
αi

Γ(αit)

∫
∞

βiζi

(log(z)−ψ(αit))zαit−1e−zdz (4)

where ψ(y) = Γ′ (y)/Γ(y) is the digamma function.

2.2 Modelling system reliability with copula

Traditionally, a commonly used method for dependence modelling is via a multivariate distribu-

tion, which, however, suffers the limitation of intractability. As an alternative, in this section, we

use copula functions to describe the joint distribution of the degradation processes. Dependence

modelling via copula exhibits several advantages over other approaches (Wang and Pham, 2012;

Nelsen, 2007). A copula function allows us to separately model the marginal distributions and the

structure of dependence, in which the marginal distributions can be of any form without restriction.

In addition, copula functions remain invariant under increasing and continuous transformation,

which provides more flexibility to describe the joint distribution.

Denote (X1(t),X2(t), ...,XI(t)) as the I-dimensional random vector of the degradation levels at

time t and their joint distribution as FX1,X2,...,XI(x1,x2, ...,xI; t), i.e.,

FX1,X2,...,XI(x1,x2, ...,xI; t) = P(X1(t)≤ x1∩X2(t)≤ x2∩ ...∩XI(t)≤ xI)
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The joint distribution can be expressed in the form of a copula function,

FX1,X2,...,XI(x1,x2, ...,xI; t) =C(FX1(x1; t),FX2(x2; t), ...,FXI(xI; t)) (5)

where C : [0,1]I→ [0,1] is the copula function. Based on Sklar’s theorem, since FXi(xi; t) is contin-

uous, the copula function C is unique (Nelsen, 2007). The associated pdf of the joint distribution

is given as

fX1,X2,...,XI(x1,x2, ...,xI; t) =

c(FX1(x1; t),FX2(x2; t), ...,FXI(xI; t))
I

∏
i=1

fXi(xi; t)
(6)

where c(•) is the copula density function,

c(FX1(x1; t),FX2(x2; t), ...,FXI(xI; t)) =
∂C(FX1(x1; t),FX2(x2; t), ...,FXI(xI; t))

∂FX1∂FX2...∂FXI

Knowing the marginal distributions will not automatically lead to the optimal fit of a copula.

In fact, numerous joint distributions can be derived for given marginal distributions. Therefore,

we first need to select a suitable function before applying copulas for modelling the dependence.

In the literature, several parametric families have been developed for the modelling purpose, a-

mong which the most widely used ones are the Elliptical family (e.g., Gaussian and t copulas)

and Archimedean family (e.g., Clayton, Gumbel, Frank and Joe copulas)(Wu, 2014). Figure 1

illustrates the pdf plots of Clayton and Gumbel copulas.

If the Gaussian copula is adopted, the joint distribution can be obtained as

FX1,X2,...,XI(x1,x2, ...,xI; t) =

ΦI(φ
−1(FX1(x1; t)),φ−1(FX2(x2; t)), ...,φ−1(FXI(xI; t)))
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Figure 1: Sketch of Clayton and Gumbel copulas

where φ(•) is the cdf of the standard normal distribution, and ΦI(•) is the cdf of a multivariate

normal distribution with mean 0 and covariance matrix ΣΣΣ. The associated pdf is given as

fX1,X2,...,XI(x1,x2, ...,xI; t) =
I

∏
i=1

fXI(xI; t)|ΣΣΣ|−1/2exp{−A(ΣΣΣ− I)AT

2
}

where A is an I-dimensional vector,

A = [φ−1(FX1(x1; t)),φ−1(FX2(x2; t)), ...,φ−1(FXI(xI; t))]

Following the Clayton copula, we can have the joint distribution as

FX1,X2,...,XI(x1,x2, ...,xI; t) = max((
I

∑
i=1

FXi(xi; t)
−η − I)−1/η ,0)

where η ∈ [−1,0)∪ (0,∞). The above two copula functions are presented for illustration purpose.

One may refer to Nelsen (2007) for more copula functions. Given the initial degradation level
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Xi(0) = 0, ∀i ∈ {1,2, ..., I}, the system reliability at time t is given as

R(t) = P(sup
s≤t

X1(s)≤ ζ1,sup
s≤t

X2(s)≤ ζ2, ...,sup
s≤t

XI(s)≤ ζI)

=C(FX1(ζ1; t),FX2(ζ2; t), ...,FXI(ζI; t))

(7)

2.2.1 Estimation of copula parameters

Let xi j be the degradation measurement for the ith degradation process at time t j. Denote X ∈ RI×J

as the data matrix, X = [xi, j], for i = 1,2, ..., I and j = 1,2, ...,J. Let ∆Xi, j = Xi, j−Xi, j−1 denote

the degradation increment for the ith degradation process between two consecutive measurements.

Let ∆t j= j− t j−1 be the time interval between two consecutive measurements. Owing to the inde-

pendent increment property of the gamma process, we have

∆Xi, j ∼ Ga(∆t j;αi,βi)

The likelihood function can then be obtained as

L(θθθ) =
J

∏
j=1

f∆X1, j,∆X2, j,...,∆XI, j(∆x1, j,∆x2, j, ...,∆xI, j;∆t j) (8)

where θθθ contains the marginal distribution parameters (αi,βi) for i = 1,2, ..., I, and the copula

parameter η , θθθ = [η ,α1,β1,α2,β2,...,αI,βI]. Based on the joint distribution in Eq (6), we can

rewrite the log-likelihood function as

l(θθθ) =
J

∑
j=1

c(F∆X1, j(∆x1, j;∆t j),F∆X2, j(∆x2, j;∆t j), ...,F∆XI, j(∆xI, j;∆t j))

+
J

∑
j=1

I

∑
i

f∆Xi, j(∆xi, j;∆t j)

(9)

Maximum likelihood estimation (MLE) is employed to evaluate the parameters. However,
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since the number of parameters increases rapidly with dimensions, direct estimation using stan-

dard approaches such as maximum likelihood and moment estimation, may be impossible be-

cause of numerical difficulties (Renard and Lang, 2007). A common practice is to estimate the

parameters of marginal distributions separately as a first step, and then estimate the copula param-

eters with the estimated marginal parameters, which is referred to as two-stage statistical infer-

ence for copula parameters (Wang and Pham, 2012). The marginal distribution parameters (αi,βi)

can be estimated separately with the degradation data (Pan et al., 2011; Wang et al., 2015). Let

κ = [α1,β1,α2,β2,...,αI,βI] be the set of marginal parameters. After achieving the estimated κ ,

the copula parameters can be readily obtained as

η̂ = argmax
η

J

∑
j=1

c(F∆X1, j(∆x1, j;∆t j),F∆X2, j(∆x2, j;∆t j), ...,F∆XI, j(∆xI, j;∆t j); κ̂) (10)

2.2.2 Special case: Bivariate degradation processes

When the system is subject to bivariate degradation processes, the Frechet-Hoeffding bounds pro-

vide the upper and lower bounds of system reliability at time t (Nelsen, 2007; Wang and Pham,

2012), i.e.,

max(FX1(ζ1; t)+FX2(ζ2; t)−1)≤ R(t)

=C(FX1(ζ1; t),FX2(ζ2; t))≤min(FX1(ζ1; t),FX2(ζ2; t))

In addition, Nelsen et al. (2001) reported a tighter reliability bound and provided the limit

of reliability estimation in terms of two common dependence measures: Kendall’s tau τk and

Spearman’s rho ρs. Concerning the Kendall’s tau, we can have the upper bound as

Uτk(u,v) = min(u,v,
1
2
(u+ v−1+

√
(u+ v−1)2 +1+ τk))
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and the lower bound as

Lτk(u,v) = max(0,u+ v−1,
1
2
(u+ v−

√
(u− v)2 +1− τk))

where u, v are the cdfs of marginal random variables, and

τk = 4
∫ ∫

I2
C(u,v)dC(u,v)−1

The reliability bounds with respect to Spearman’s rho are expressed as

Uρs(u,v) = min(u,v,
u+ v−1

2
+ϕ(u+ v−1,1+ρs))

and

Lρs(u,v) = max(0,u+ v−1,
u+ v

2
−ϕ(u− v,1−ρs))

where

ρs = 12
∫ ∫

I2
C(u,v)dudv−3

ϕ(a,b) =
1
6

((
9b+3

√
9b2−3a6

)1/3
+
(

9b−3
√

9b2−3a6
)1/3

)
Let u = FX1(ζ1; t) and v = FX2(ζ2; t). We can have the reliability bounds as

Lτk(FX1(ζ1; t),FX2(ζ2; t))≤ R(t)≤Uτk(FX1(ζ1; t),FX2(ζ2; t)) (11)

with respect to Kendall’s tau, and

Lρs(FX1(ζ1; t),FX2(ζ2; t))≤ R(t)≤Uρs(FX1(ζ1; t),FX2(ζ2; t)) (12)
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with respect to Spearman’s rho.

2.3 Reliability analysis considering environmental influence

In this section, we consider the influence of the operating environment on the degradation processes

and failure mechanism. It is assumed that the system is subject to multiple correlated degradation

processes, in which the parameters of the degradation processes are usually estimated from test data

by experiments (e.g., accelerated degradation test). When the system is put in use, the operating

environment is different from that in experiments, which will exert influence on the degradation

behaviours, especially the degradation rate. The environmental effect is hence used to distinguish

the field use from experimental testing.

Environmental changes may accelerate or decelerate the deterioration process, and their influ-

ence is usually modeled as covariates (Deloux et al., 2009; Zhao et al., 2010). Given that the initial

degradation level is 0, Xi(t) = 0 for i ∈ {1,2, ..., I}, the pdf of the degradation level at time t is

given as

fXi(t) (x;αi(t),βi) =
βi

αi(t)

Γ(αi(t))
xαi(t)−1e−βix (13)

where αi(t) is a time-dependent shape parameter. The environmental influence can be successfully

characterised by choosing an appropriate αi(t); usually, αi(t) is given in the exponential or power-

law form. Note that different choices of αi(t) may comprise the stationary independent increment

property, which turns out as a non-stationary gamma process (Van Noortwijk, 2009). If αi(t) is

linear, then the degradation process is reduced to the stationary gamma process as shown in Eq (1).

In addition, variations of the operating environment may affect the failure threshold. When

operating in a changing environment, the system may fail before or after reaching the fixed failure

threshold. In other words, the failure threshold can be random. Assume that the failure threshold
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ζi is an exponentially distributed random variable, i.e.,

fζi(s) =
1
λi

e−s/λi

The system fails when the degradation level hits the random threshold. For the ith degradation

process, the cumulative distribution of the failure time can be obtained as

FTi(t) = P(Xi(t)≥ ζi)

=
∫

∞

0
P(Xi(t)≥ s|ζi = s) fζi(s)ds

=
1

λiΓ(αi(t))

∫
∞

0
γ(αi(t),sβi)e−s/λids

(14)

The assumption of an exponentially distributed random variable is made for mathematical sim-

plicity. The method can be applied for other distributions as well. In Eq (14), the cumulative

distribution of failure time can be obtained by replacing the pdf of the exponentially distribut-

ed random variable with the corresponding distribution. For a general distribution of the failure

threshold, numerical methods can be used to compute the distribution of failure time. For the expo-

nentially distributed failure threshold, by applying the Lindeberg-Feller central limit theorem, the

failure distribution can be approximated as (Paroissin and Salami, 2014; Park and Padgett, 2005)

FTi(t)≈ 1− (1+1/(βiλi))
−αi(t) (15)

The approximation of Eq (15) significantly reduces the computational burden of the failure distri-

bution. Subsequently, system reliability can be obtained by using copulas, i.e.,

R(t) =C(1−FT1(t),1−FT2(t), ...,1−FTI(t)) (16)

Note that Eq (16) constructs the copula function with respect to the failure time distribution of each
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degradation process instead of the distribution of degradation increments. This is due to the fact

that system reliability is determined by both the random failure threshold and the property of the

non-stationary gamma process, while the degradation data in isolation fails to provide enough in-

formation for the reliability evaluation. Eq (15) and (16) indicate that we can evaluate the marginal

distribution of the failure time for each degradation process, and then obtain the overall system

reliability using copula.

3 Life cycle cost analysis

This section presents the life cycle cost analysis with the renewal-cycle-based approach, which is

the most widely used method for cost analysis in a finite horizon. Compared with Monte Carlo

simulation, the renewal-cycle-based approach used in this paper can provide analytical expression

for the expectation and variance of the cost. Moreover, the proposed approach is computationally

efficient through the numerical example.

It is assumed that the system is perfectly maintained upon each failure. After maintenance,

the system operates from the initial degradation level 0, which constitutes a renewal cycle. The

assumption of as good as new maintenance policy is used for two reasons. One is for mathematical

simplicity. Based on the assumption of ”as good as new” maintenance policy, the renewal cycle

can be obtained, which is the interval between two failures/maintenance actions. It is quite diffi-

cult to have an analytical life-cycle cost for an imperfect maintenance. The other reason is that for

some systems where replacement/overhaul is allowable, such as electronic products, or pipelines,

it is reasonable to assume ”as good as new” after each maintenance/replacement. Many literatures

have assumed the as good as new?model in maintenance, and imperfect repair can definitely be a

good point for future research. It should be noted that the assumption of ”as good as new” inter-

vention policy is applicable for specific systems where replacement or an overhaul is allowable.

For systems like bridge, it is not so appropriate to have the ”as good as new” assumption, since we
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will never replace a bridge. We have to be very careful when making this assumption.

The cost consists of two items: cost due to failures and the maintenance cost. Denote C f as

the failure cost and Cm the maintenance cost each time a failure occurs. The cost due to failure

is associated with the degradation processes while the maintenance cost is largely determined by

the decision makers. Here we assume that the maintenance cost is a fixed value. For the failure

cost, since the failure cost is highly dependent on the failure mechanism and the severity of failure,

which may vary each time, it is more appropriate to model the failure cost C f as a random variable

instead of a deterministic value. Let Cs denote the cost associated with the maintenance and failure-

induced cost, Cs =Cm +C f , with the mean µc and standard deviation σc.

We consider a discounted life-cycle cost, since the time value of money reflects the discounting

for a future expense. It is true that for a finite horizon, the life cycle cost can be evaluated without

discounting. The discounting model is more flexible than the non-discounting model. When the

discounting parameter is close to 0, then the discounting model is able to achieve similar perfor-

mance as the non-discounting model. Our model can be applied to the non-discounting case by

setting the discount parameter to 0. Let K(t) denote the total cost in time interval (0, t). Let Si be

the time where the ith renewal cycle ends, and the sequence {S0,S1,S2, ...} be the renewal process,

where S0 is the origin of the process. K(t) can be expressed in terms of Si as

K(t) =
∞

∑
i=1

Cie−ρSi1{Si≤t} (17)

where Ci is the cost at the ith renewal cycle, ρ (ρ > 0) is the discount rate and 1{•} is the indicator

function. In the following, we investigate the expectation and variance of the life cycle cost K(t).

Variance is an important factor in life cycle cost evaluation, because the expectation alone may

suffer high uncertainty without indicating the variance. The concept of renewal decomposition

is employed to calculate the expectation and variance of the life cycle cost (Pandey and van der

Weide, 2017). The renewal decomposition refers to the basic property of renewal process that a
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probabilistic replica of the original process repeats after each renewal. In the present study, the

degradation processes of the system renew at each failure/maintenance.

nS1nS 


2nS 


2S1S0S t

nS1nS  1nS 3S2S1S0S t

1

1

Figure 2: Description of renewal decomposition (original and shifted renewal process)

Figure 2 shows an original and a shifted renewal process in interval (0, t) with the number of

renewals N(t). As shown in Figure 2, if the process is observed at the first event S1 = τ1, it is then

shifted within the interval (S1,S1 + t). Let the occurrence time of the shifted renewal process be

S̃i. We have S̃i = Si+1− τ1. The number of renewal cycles in the shifted process is then given as

Ñ(t) =
∞

∑
i=1

1{S̃i≤t}

It can be concluded that the distribution of N(t) is identical to Ñ(t). In addition, the shifted

process is independent of the observation time τ1. With the two properties, the discounted total

cost K(t) of Eq (17) can be decomposed at the time of first renewal cycle, S1 = τ1, which leads to

K(t) =C1e−ρτ11{τ1≤t}+
∞

∑
i=1

Ci+1e−ρSi+11{S̃i≤t−τ1} (18)

Let

K̃(t) =
∞

∑
i=1

Cie−ρ S̃i1{S̃i≤t}
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It follows that

K(t) =C1e−ρτ11{τ1≤t}+ e−ρτ1K̃(t− τ1) (19)

The expected discounted cost can be formulated as

E[K(t)] = z(t)+
∫ t

0
e−ρsE[K̃(t− τ1)]dFTf (s) (20)

where Tf is the time to failure of the system, Tf = min{T1,T2, ...,TI}, FTf (t) = 1−R(t), and

z(t) = E[C1e−ρτ11{τ1≤t}]

By solving the above integral equation, we can have the expected discounted cost as

E[K(t)] = z(t)+
∫ t

0
z(t− s)e−ρsdΛ(s) (21)

where Λ(t) is the renewal function,

Λ(t) = E[N(t)] = FTf (t)+
∫ t

0
Λ(t−u)dFTf (u)

The renewal function can be numerically solved by the RS-method following definition of the

Riemann-Stieltjes integration (Xie, 1989).

Since the expectation of life-cycle cost can be similar for a degradation process with high

volatility and that with low volatility, it fails to characterize the stochasticity of the degradation

processes. Variance, to some extent, can characterize the volatility of the cost, which contributes

to the decision makings, such as allocating budgets and developing maintenance policies. For

example, in the mean-variance?based utility framework, the decision makers are able to evaluate

the cost together with the associated risk, which provides more alternatives in terms of the risk
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attitudes of the decision makers.

Based on Eq (19), the second moment of the discounted cost can be obtained as

E[K2(t)] = E[(C1e−ρτ11{τ1≤t}+
∞

∑
i=1

Ci+1e−ρSi+11{S̃i≤t−T1})
2]

= χ(t)+
∫ t

0
e−2ρsE[K2(t− s)]dFTf (s)

(22)

where

χ(t) = E[(C2
1 +2C1K̃(t− τ1))e−2ρτ11{τ1≤t}]

Similarly, by using renewal decomposition, the solution of Eq (22) can be obtained as

E[K2(t)] = χ(t)+
∫ t

0
e−2ρs

χ(t− s)dΛ(s) (23)

Combining Eq (21) and Eq (23), we can have the variance of the discounted cost as

Var(K(t)) = E[K2(t)]−E[K(t)]2

= χ(t)+
∫ t

0
e−2ρs

χ(t− s)dΛ(s)

− (z(t)+
∫ t

0
z(t− s)e−ρsdΛ(s))2

(24)

If the cost item Cs is independent of the system failure time Tf , the expectation of the discounted

cost is reduced to

E[K(t)] = µc

∫ t

0
e−ρsdΛ(s) (25)

and the second moment is given as

E[K2(t)] = (µ2
c +σ

2
c )
∫ t

0
e−2ρsdΛ(s)+2µc

∫ t

0
e−2ρsE[K(t− s)]dΛ(s)
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Then the variance is expressed as

Var(K(t)) = (µ2
c +σ

2
c )
∫ t

0
e−2ρsdΛ(s)+2µc

∫ t

0
e−2ρsE[K(t− s)]dΛ(s)

−µ
2
c (
∫ t

0
e−ρsdΛ(s))2

(26)

4 Numerical example

In this section, we present an illustrative example to show the system reliability modelled by a

copula function and the life cycle cost thereafter. The system is subject to two degradation pro-

cesses, modelled by gamma processes. The Clayton copula is used to describe the dependence of

the degradations. The bivariate Clayton copula is given as

C(u,v;η) = max((u−η + v−η −1)−1/η ,0)

with the density function

c(u,v;η) =
∂C(u,v;η)

∂η
=

(1+η)(uv)−1−η

(u−η + v−η −1)
1
η
+2

To illustrate the parameter estimation procedure for the marginal distribution parameters and

copula parameters, a set of simulated data are generated as a first step. Thanks to Sklar’s theorem,

we only need to generate a sample pair (u,v) from uniform random variables (0,1) whose joint

distribution is C(u,v), and then transform the (u,v) to degradation observations (∆x1,∆x2) by the

inverse distribution function. The conditional distribution method serves for the data generation

purpose (Pan et al., 2011). Given U = u, the conditional distribution of V is expressed as

cc(v) = P(V ≤ v|U = u) =
∂C(u,v;η)

∂u

The procedure to generate the degradation observations (∆x1,∆x2) can be summarised as fol-
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lows:

1. Generate two uniform (0,1) variates u1 and v0 independently.

2. Let u2 = c−1
c (v0), where c−1

c is the quasi-inverse of cc.

3. Let ∆xi = F−1
∆Xi

(ui), i = 1,2, where F−1
∆Xi

the quasi-inverse of F∆Xi . Then (∆x1,∆x2) is the

desired degradation observations.

The true values of the degradation parameters for data simulation are set as α1 = α2 = 1,

β1 = β2 = 2, and η = 1. In total, 1,000 data sets are generated based on the generation procedure,

which are further used for parameter estimation. The time interval of the degradation observations

is set as 1.

4.1 Parameter & system reliability estimation

Maximum likelihood estimation is employed to estimate the marginal and copula parameters. The

detailed estimation procedure of the parameters is provided in Section 2.2.1. The parameters are

estimated with the simulated degradation data, of which the underlying parameters are summarised

in Table 1. Note the in the following analysis of this section, the results are obtained in terms of

the estimates. For illustration purpose, we present the 3D and contour plot of the Clayton copula

in Figure 3.

Table 1: Estimation of the parameters

Parameters True value Estimated value Relative error(%)
α1 1 1.0307 3.07
β1 2 1.8833 5.835
α2 1 1.0254 2.54
β2 2 1.9419 2.905
η 1 0.8827 11.63
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Figure 3: Pdf plot of Clayton copula with η = 0.8827
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The system fails when either of the degradation levels hits the threshold ζi = 30, for i = 1,2.

System reliability can be obtained based on Eq (7). Figure 4 presents the cdf plot of system failure

time Tf and the marginal distributions T1, T2. It can be observed that system failure occurs within

the time interval (30,80), while the mean time to failure is 50.35. To better illustrate the failure

time, we sample from the reliability distribution and plot histogram of the failure time in Figure 5.
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Figure 4: Cdf plot of system Tf , T1 and T2
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Figure 5: Histogram of sampled failure time

In addition, as previously discussed, the range of bivariate copula functions can be evaluated

by the Frechet-Hoeffding bounds, which apply to system reliability estimation regardless of the
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form of copula functions. The Frechet-Hoeffding bounds are robust for uncertainty modelling

because of their applicability to various copulas. However, the provided upper and lower bounds

are not as tight as other bounds. A tighter bound can be achieved with respect to Kendall’s tau

or Spearman’s rho, in presence of a measure of association and marginal distributions. Figure 6

shows the variation of system reliability and the associated upper and lower bounds in terms of

Kendall’s tau.
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Figure 6: Bounds of system reliability in terms of Kendall’s tau

4.2 System reliability with environmental influence

In this section we analyse the system reliability in presence of environmental influence. As previ-

ously stated, the environmental influence lies in accelerating/decelerating the degradation process

and randomising the failure threshold. We use a power-law parameter to characterise the degrada-

tion rate, αi(t) = αitω . Note that ω > 1 implies degradation acceleration while ω < 1 indicates

deceleration. We set the parameter as ω = 1.2. To facilitate comparison with the previous result-

s, we let α1 = 1.0307 and α2 = 1.0254. Other parameters are identical to the estimated values

in Section 4.1. With the environmental influence, the failure threshold is stochastic rather than

deterministic. We assume that the failure threshold follows an exponential distribution, with the
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parameter λ1 = λ2 = 30.

Figure 7 shows the system reliability with environmental influence, along with the marginal

bounds of the Kendall’s tau and marginal distributions of the two degradation processes. Figure 7

presents the integrated impact of random failure thresholds and degradation acceleration.
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Figure 7: Plot of system reliability, Kendall’s tau and marginal distributions with environmental
influence

To investigate the influence of random failure thresholds and degradation acceleration separate-

ly, we plot the system reliability with deterministic thresholds in Figure 8 for comparison. Observe

that that the reliability curves from Figure 8(a,b) and Figure 6 are quite different, which implies the

significant influence of random failure thresholds. Further, the environmental influence on degra-

dation acceleration can be observed by comparing the reliability variations of Figure 6 and Figure

8(c,d). It can be observed that in the presence of the accelerated degradation, the system reliability

decreases faster than the homogeneous gamma deterioration process. In addition, the reliability

curve is shifted to the left. The observations are intuitive, due to the fact that the existence of envi-

ronmental influence accelerates the degradation processes when the power-law parameter ω > 1.
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Figure 8: Plot of (a,b) system reliability, Kendall’s tau and marginal distributions with random
failure thresholds and homogeneous degradation, (c,d) with deterministic failure thresholds and
accelerated degradation
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Under the current setting, the mean time to failure is 18.6, which is quite different from that

without environmental influence. We are interested in the parameters λi and ω , since λi implies

the influence of a random failure threshold and ω stands for the impact of degradation accelera-

tion/deceleration. In Figure 9, we plot the variation of mean time to failure and system lifetime

with respect to λi and ω . It can be observed that both the mean time to failure and system reliability

increases with λi and decreases with ω . This is due to the fact that a large λi increases the failure

threshold (randomly) while a large ω leads to a rapid deterioration process. Significantly, Figure

9(d) actually presents the system reliability under decelerated (ω = 0.8), homogeneous (ω = 1)

and accelerated (ω = 1.2) degradation processes.
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Figure 9: Influence of λi and ω on (a,b) mean time to failure and (c,d) system reliability

4.3 Life cycle cost analysis

The system is perfectly maintained (perfect repair or replacement) at failure, which constitutes

a renewal cycle. We consider a discounted cost since the value of money decreases with time.
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We consider the case that the cost at each failure is independent from the system failure time.

As discussed in Section 3, we do not need to specify the distribution of the cost for life cycle

analysis; what required is the mean and standard deviation. In the present example, the mean

and standard deviation of the cost Cs are given as µc = 10 and σc = 5. Figure 10 presents the

expectation, variance and second moment of the life cycle cost, with the discounted rate ρ = 0.005.

In addition, we compare the analytical result with that by Monte Carlo simulation in Figure 10. It

should be noted that numerical methods are used to compute the life cycle cost in Section 3. The

numerical method here refers to discretising the continuous variables into discrete ones. Monte

Carlo simulation here indicates to repeatedly simulate the failure time and total cost within the

operating horizon for multiple times, and then obtain the expected cost and variance from the set

of simulated cost. The numerical method here requires the analytical expression of the life cycle

cost, while Monte Carlo simulation does not. As can be observed, both the expected cost E[K(t)]

and second moment E[K2(t)] increase with time. It is worth noting that Var(K(t)) is close to or

even higher than the expected cost E[K(t)] during the time interval (100,500), which indicates that

cost estimation purely based on expected cost will lead to a meaningless result owing to the high

volatility of life cycle cost. Decision-makers are suggested to incorporate the uncertainty of life

cycle cost when making investment decisions.

The reason for such a high variance is that the life cycle cost is subject to uncertainties: One is

the intrinsic randomness due to the stochastic degradation process, and the other is the epistemic

uncertainty in evaluating the maintenance and failure cost.

Figure 11 shows how the life cycle cost varies with the operating time considering the envi-

ronmental influence. Notably, the expectation and variance of the life time cost are much larger

than those without environmental influence. This is due to the fact that system lifetime has been

significantly reduced in the way that the operating environment has accelerated the degradation

process and randomised the failure thresholds. Therefore, we conclude that environmental influ-

ence contributes significantly to the lifetime cost. We recommend that maintenance managers take
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Figure 10: Life cycle cost without environmental influence: (a) renewal function, (b) expected
cost, (c) variance and (d) second moment

effective measures to diminish its effect.

The proposed model can be applied to real examples, such as electronic products and pipelines.

As shown in the numerical example, data is where we start from. Based on the simulated data, we

estimate the associated parameters and the life cycle cost. For a real example, what we need is the

data for the degradation processes. As long as the degradation data are provided, we can evaluate

system reliability and life cycle cost with the proposed model.

5 Conclusions

In this study, we established a life cycle cost model for systems with multiple dependent degra-

dation processes and environmental influence. We evaluated the expectation and variance of the

life cycle cost for a finite horizon. Copula functions were employed to characterise the depen-

dence of degradation processes, which serves for system reliability and the subsequent life cycle

cost analysis. The operating environment affects system reliability in such a way that it acceler-
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Figure 11: Life cycle cost with environmental influence: expected cost, variance and second mo-
ment

ates/decelerates the degradation process and leads to random failure thresholds. We show through

a numerical example that the operating environment can have significant impacts on system re-

liability and life cycle cost. We suggest that engineers take effective measures to diminish the

environmental influence and prolong system lifetime.

Future research can be conducted in the following two directions. First, in the current study

we evaluated the life cycle cost focusing on the renewal of failures, without incorporating system

intervention. Future research can consider system interventions, such as preventive maintenance or

adding more redundancies. Specifically, condition-based maintenance and predictive maintenance

strategies can be implemented to prevent system failure. Second, the environmental influence on

the degradation process and system reliability can be investigated in detail. We assumed expo-

nentially distributed failure thresholds under environmental influence. For different systems, the

influence may vary with the operating environment and failure mechanisms. An accurate descrip-

tion of the environmental influence can be achieved using field data and expert knowledge.
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