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We	start	with	the	premise	that	an	inertial	frame	is	defined	as	one	that	isn’t	accelerating	in	the	
usual	detectable	sense.	General	Relativity	states	that	inertial	frames	are	‘influenced	and	dragged	
by	the	distribution	and	flow	of	mass–energy	in	the	universe’,	noting	the	relativistic	equivalence	
of	mass	and	energy	[1].	This	dragging	of	inertial	frames	is	simply	called	frame	dragging	and	is	
shown	 conceptually	 in	 Figure	 1.	 Frame	 dragging	 also	 influences	 the	 flow	 of	 time	 around	 a	
spinning	body.		
	

	
	
Figure	1.	Distortion	of	space-time	in	the	vicinity.																			Figure	2.	Time	dilations	for	objects	rotating	around	the	Earth	[1].	
Of	the	Earth	due	to	Frame	Dragging	[1].	
	
In	Figure	2	the	pink	object	is	rotating	prograde	and	takes	longer	to	get	back	to	the	starting	point,	
with	respect	to	a	distant	fixed	star,	than	the	blue	object	which	is	rotating	retrograde,	assuming	
they	 are	 both	 on	 the	 same	 orbit.	 If	 we	 examine	 this	 more	 closely	 and	 consider	 twins	 flying	
arbitrarily	slowly	on	exactly	the	same	equatorial	orbit	but	in	opposite	directions,	then	their	age	
difference	on	meeting	up	again	at	 the	starting	point	will	be	of	 the	order	of	10#$%	 s.	This	 is	an	
example	of	the	well-known	twins	paradox.		A	theory	for	frame-dragging	was	proposed	by	Lense	
and	Thirring	in	1918,	in	which	inertial	frames	are	dragged	around	a	central	rotating	mass	due	to	
the	effect	of	its	gravity	on	the	surrounding	spacetime	[2].	The	rotation	of	the	central	mass	twists	
the	surrounding	spacetime,	and	this	perturbs	the	orbits	of	other	masses	nearby.	This	effect	 is	
known	 as	 Lense-Thirring	 precession,	 and	 henceforth	 as	 LT.	 The	 Earth’s	 gravitational	 field	 is	
capable	of	generating	frame	dragging	and	this	is	generally	considered	to	be	demonstrable	in	three	
gravitomagnetic	manifestations:	

- by	the	precession	of	a	gyroscope	in	orbit	around	the	Earth,	
- by	 the	 precession	 of	 orbital	 planes,	 where	 a	 mass	 orbiting	 the	 Earth	 constitutes	 a	

gyroscope	whose	orbital	axis	will	precess,	
- by	the	precession	of	the	pericentre	of	the	orbit	of	the	test	mass	about	the	Earth.	

GP-B	measured	the	first	two	[3],	and	the	LAGEOS	satellites	measured	the	second	one	only	[4].	
LAGEOS	measured	the	LT	drag	of	their	orbital	planes	to	~0.031	arcsecs/year	[1],	which	is	~	8.611	
*	10#%	°/year.	This	was	subject	to	error	due	to	uncertainty	in	the	Earth’s	mass	distribution,	and	
there	 is	still	some	debate	about	the	true	size	of	 the	error	 in	LAGEOS’s	LT	measurement	but	 it	
mainly	derived	from	the	low	eccentricity	of	the	LAGEOS	orbits	and	the	difficulties	in	eliminating	
Earth	multipoles.	GP-B		measured	LT	to	~	0.039	arcsecs/year	[1],	which	is	10.833	*	10#%	°/year.	
GP-B	used	IM	Pegasi	HR	8703	as	the	guide	star	and	operated	on	a	circular	polar	orbit	of	642	km	
altitude	[1].	The	spin	axes	of	GP-B’s	gyroscopes	drifted	so	the	geodetic	precession	[5]	(due	simply	
to	the	presence	of	the	mass	of	Earth	rather	than	its	presence	and	its	rotation)	was	only	measured	
to	a	precision	of	1.5%,	which	had	a	relatively	significant	knock-on	effect	on	the	measurement	of	
LT.	 The	 relationships	 between	 the	 directions	 of	 the	 LT	 and	 the	 geodetic	 precessions	 are	



orthogonal	and	are	shown	in	Figure	3.	The	total	relativistic	precession	on	the	body	is	therefore	
the	vector	sum	of	the	LT	and	geodetic	precessions.	Our	main	interest	is	the	LT	component.	It	is	
important	to	note	that	the	relativistic	frame	dragging	effect	evidenced	by	LT	precession	is	about	
ten	million	times	smaller	than,	for	example,	the	classical	Newtonian	effects	operating	on	the	plane	
of	the	LAGEOS	orbits,	requiring	an	‘enormously	accurate	treatment	of	background	effects’	[6].		
	

		 			
	
Figure	3.	GP-B	and	the	orthogonal	relationships	between	the	Lense-Thirring									Figure	4.	LAGEOS	satellites	and	the	effect	on	Lense-				
and	the	de	Sitter	geodetic	precessions	[1].																																																																											Thirring	precession	of	the	Earth’s	uneven	mass													
																																																																																																																																																												distribution	[1].	
																																														
The	analysis	behind	LT,	in	terms	of	(weak)	gravitomagnetic	effects	on	an	accelerating	mass,	can	
be	considered	analogously	with	an	accelerating	charge	producing	a	magnetic	field.	Specifically,	
the	analogy	is	between	the	equations	that	govern	the	forces	on	a	spinning	electric	charge	with	
magnetic	moment	𝜇	which	moves	through	a	magnetic	 field,	and	the	 forces	of	a	spinning	mass	
moving	through	the	gravitational	field	of	a	rotating	mass	[1],	and	this	analogy	is	made	through	
Maxwell’s	equations	which	we	return	to	later.	Schwarschild	[7]	proposed	an	exact	solution	for	
space	around	a	large	non-rotating	body	and	this	solution	is	known	as	the	Schwarschild	metric	
and	accounts	for	curved	non-Euclidean	space.	This	metric	doesn’t	account	for	the	rotation	of	the	
massive	body	but	the	Kerr	metric	[7]	does,	and	GP-B	measured	LT	to	within	15%	of	the	value	
predicted	by	the	Kerr	metric	for	Einstein’s	field	equations.	The	full	Kerr	solution	is	complicated	
because	of	its	highly	nonlinear	form	but	there	is	a	useful	simpler	statement	of	it	which	assumes	a	
slowly	rotating	body,	and	this	is	suitable	as	a	background	for	LT	analysis	in	the	vicinity	of	the	
Earth.	The	complexity	of	the	Kerr	metric	is	largely	due	to	the	fact	that	spacetime	is	not	a	static	
background	for	physical	processes	and	is	dynamic	and	affected	by	any	and	all	contributions	to	
the	 energy-momentum	 tensor	 of	 the	 system	 of	 interest.	 This	 tensor	 is	 integral	 to	 Einstein’s	
equations	which	describe	the	ten	components	of	the	metric,	and	then	the	metric	is	finally	used	to	
formulate	the	equations	of	motion	of	the	system	of	interest.	Fortunately,	in	exploring	LT	in	the	
vicinity	of	the	Earth,	we	are	dealing	with	weak	fields	and	non-relativistic	velocities,	so	the	full	
form	of	general	relativity	is	not	necessary	and	a	linearised	version	of	the	theory	is	sufficient	[8].												
	
Spacetime	is	generally	dynamic	within	the	universe	and	there	is	no	natural	way	of	splitting	it	into	
space	 and	 time,	 but	 if	we	 consider	 it	 to	 be	 stationary	 around	 the	 Earth	 then	 this	 simplifying	
stationarity	can	be	used	as	a	basis	for	thinking	of	it	in	terms	of	‘3+1	slicing’.	This	means	that	the	
spacetime	metric	tensor	𝑔-. 	then	decomposes	naturally	into	constituent	parts,	and	because	of	
the	prevailing	conditions	of	weak	gravity	and	non-relativistic	(low)	velocities	this	decomposition	
can	 be	 used	 to	 form	 the	 basis	 of	 a	 useful	 analogy	 with	 electromagnetism	 as	 expressed	 by	
Maxwell’s	 equations,	 from	which	 an	 expression	 for	 LT	precession	 can	 eventually	be	obtained	
[8,9].	So,	‘the	formal	analogy	between	weak-field	low-velocity	general	relativity	and	Maxwellian	
electrodynamics	is	a	simple	way	to	illuminate	a	whole	class	of	interesting	physical	phenomena	
dubbed	gravitomagnetism,	Lense-Thirring	precession	is	one	such	example’	[8].	
	
We	start	with	gravitational	analogies	for	the	electromagnetic	scalar	and	vector	potentials	taken	
from	the	Kerr	spacetime	metric,	stated	 in	terms	of	 the	time-time	and	time-space	components,	
where	c	is	the	speed	of	light,	



	

𝛷 =
1
2
(𝑔33 − 1)𝑐7	

	
𝐴9 = 𝑔39𝑐7	

																																																																																																																																																																														(1)(2)	
	
Now,	taking	Maxwell’s	equations	in	their	usual	form,	
	

𝛻. 𝐸< =
𝜌
𝜀0
	

	
∇. 𝐵< = 0	

	

∇ × 𝐸< = −
𝜕𝐵<
𝜕𝑡
	

	

∇ × 𝐵< = 𝜇3𝐽 ̅ + 𝜇3𝜀3
𝜕𝐸<
𝜕𝑡
	

																																																																																																																																																																											(3)-(6)	
	
We	then	look	at	the	physical	context	for	Maxwell’s	equations.	Equation	(3)	states	that	the	quantity	
of	electric	field	coming	from	a	region	of	space	is	proportional	to	the	total	electric	charge	in	that	
region	of	space.	Equation	(4)	states	that	the	magnetic	field	doesn’t	come	or	go	but	travels	in	a	
continuous	 loop,	 so	 a	 single	 magnetic	 pole	 or	 monopole	 can’t	 exist	 in	 practice,	 according	 to	
Maxwell.	Equation	(5)	says	that	the	curl	of	the	electric	field	is	equal	to	the	negative	of	the	rate	of	
change	of	the	magnetic	field.	Changing	the	magnetic	field	alters	the	curl	of	the	electric	field,	with	
the	negative	 sign	defining	 that	 they	go	 in	opposite	directions.	 So,	 the	 curl	of	 the	electric	 field	
pushes	electric	charge	round	in	a	circle	in	the	form	of	an	electric	current.	Finally,	equation	(6)	
says	 that	 the	 curl	 of	 the	magnetic	 field	 is	 proportional	 to	 the	 current	density	 and	 a	 changing	
electric	field.	Defining	terms	precisely:	𝐸< 	is	the	electric	field,	𝜌	is	the	electric	charge	density,	𝜀3	is	
the	permittivity	of	free	space,	𝐵< 	is	the	magnetic	field,	𝜇3	is	the	permeability	of	free	space,	and	𝐽	̅is	
the	current	density.		
	
We	then	bring	in	the	gravitoelectric	field	𝐸<G	and	the	gravitomagnetic	field	𝐻I	and	it	is	well	known	
that	 they	 are	 related	 to	 the	 potentials	 of	 equations	 (1)	 and	 (2)	 according	 to	 the	 simplifying	
Lorentz	gauge	[10],	as	follows,		
	

𝐸<G = −∇Φ−
1
4𝑐
𝜕�̅�
𝜕𝑡
	

	
𝐻I = ∇ × �̅�	

																																																																																																																																																																														(7)(8)	
	
In	the	analogy	given	by	[8],	the	electric	field	of	Maxwell’s	equations	𝐸<	becomes	the	gravitoelectric	
field	𝐸<G 	and	the	magnetic	field	of	Maxwell’s	equations	𝐵< 	becomes	the	gravitomagnetic	field	𝐻I.	
The	electric	charge	density	𝜌	becomes	the	mass	density	𝜌L.	The	charge	current	density	𝐽	̅becomes	
the	mass	current	density	defined	by	𝐺𝜌L�̅�,	where	G	is	Newton’s	gravitational	constant	and	�̅�	is	
the	velocity	of	the	source	mass.	These	substitutions	are	applied	by	means	of	the	analogy	in	order	
to	generate	the	gravitational	analogue	of	Maxwell’s	electromagnetic	equations,	
	

∇. 𝐸<G = −4𝜋𝐺𝜌L	
	



∇.𝐻I = 0	
	

∇ × 𝐸<G = 0	
	

∇ × 𝐻I = 4 P−4𝜋𝐺
𝜌L�̅�
𝑐

+
1
𝑐
𝜕𝐸<G
𝜕𝑡
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																																																																																																																																																																									(9)-(12)	
	
Despite	some	structural	similarities	between	the	equations	which	emerge	from	the	gravitational	
analogy	 (9)-(12)	 and	Maxwell’s	 equations	 themselves,	 equations	 (3)-(6),	 there	 are	 still	 some	
qualifiers	and	provisos	to	be	made,	[8]	as	follows:	

- gravity	is	attractive,	but	electromagnetism	is	both	attractive	and	repulsive	(this	difference	
leads	to	the	minus	signs	in	the	RHS	‘source	terms’	in	equations	(9)	and	(12),	

- the	gravitational	tensor	introduces	the	additional	4	in	equation	(12),	
- the	space-space	components	from	the	gravitational	metric	tensor	correspond	to	curved	

space	rather	than	Euclidean	space.	As	we	are	only	 interested	here	 in	the	effects	of	 the	
Earth’s	rotation	on	an	orbiting	test	mass	then	we	can	neglect	the	curvature	of	space	and	
also	those	terms	that	are	not	gravitometric	and	of	the	order	of	(R

S
)7.	

Assuming	 that	 equations	 (9)-(12)	 can,	 in	 principle,	 be	 used	 to	 find	 the	 gravitoelectric	 and	
gravitomagnetic	fields,	the	force	on	an	orbiting	test	mass	can	be	found	from,	
	

𝐹< = 𝑚𝐸<G +
𝑚
𝑐
�̅� × 𝐻I	

																																																																																																																																																																																(13)	
	
from	which	we	get,	
	

𝑚
𝑑�̅�
𝑑𝑡

= −
𝛼
𝑟7
𝑛< +

𝑚
𝑐
�̅� × 𝐻I	

																																																																																																																																																																																(14)	
	
and	where	�̅� = 𝑟𝑛<		is	the	orbital	radius	vector	of	the	test	mass	m	and	𝛼 = 𝐺𝑀𝑚,	where	M	is	the	
mass	of	the	Earth.	We	recall	that	𝐻I	is	the	gravitomagnetic	field	due	to	the	Earth’s	rotation	and	
note	that	this	can	be	found	in	principle	from	equations	(9)-(12).	
	
In	general	the	magnetic	moment	is	given	by,	
	

�̅� =
1
2𝑐
[[�̅� × 𝚥]̅𝑑𝑉	

	
where	𝚥	̅is	the	electric	current	density,	and	so	the	gravitational	analogy	leads	to,	
	

�̅�G = −4𝐺
1
2𝑐
[𝜌L [�̅� × 𝚥]̅𝑑𝑉 = −2𝐺

𝑆̅
𝑐
	

																																																																																																																																																																																(15)	
	
where		𝑆̅ =	∫𝜌L[�̅� × 𝚥]̅𝑑𝑉,	this	being	the	rotating	gravitating	body’s	proper	angular	momentum.	
The	conventional	magnetic	moment	�̅�	creates	a	dipole	magnetic	field,	given	by,	
	

𝐵< =
3𝑛<(𝑛< ∙ �̅�) − �̅�

𝑟c
	

	



So,	inserting	�̅�G 	instead	of	𝜇	leads	to	an	alternative	form	which	now	represents	the	Earth’s	dipolar	
gravitomagnetic	field,	
	

𝐻I =
2𝐺
𝑐
P
𝑆̅ − 3𝑛<(𝑛< ∙ 𝑆̅)

𝑟c
Q	

																																																																																																																																																																																(16)	
	
The	abstract	angular	momentum	for	 the	 large	rotating	body	𝑆̅	 can	be	replaced	by	the	angular	
momentum	specific	to	the	Earth,	defined	as	𝐿′I 	in	[8],	so	we	can	extract	the	Earth’s	angular	velocity	
as,	
	

ΩI =
2𝐺
𝑐7𝑟c

𝐿′I 	
																																																																																																																																																																																(17)	
	
Therefore,	 the	 gravitomagnetic	 field	 which	 we	 derived	 in	 equation	 (16)	 can	 now	 be	 neatly	
restated	 in	terms	of	 the	Earth’s	angular	velocity,	where	 �̅� ≡ 𝐿′I ,	noting	that	 it	 is	divided	by	the	
velocity	of	light	in	order	to	accommodate	equation	(17)	correctly,	
	

𝐻I
𝑐
= ΩI − 3𝑛<(ΩI ∙ 𝑛<)	

																																																																																																																																																																																(18)	
	
In	order	to	proceed	to	LT	we	need	to	revert	to	explicit	angular	momentum	of	the	Earth,	through	
equation	 (17)	and	 then	 to	 rearrange	 to	get	 the	gravitomagnetic	 field	 in	 terms	of	 fundamental	
quantities	and	in	the	conventional	form,	as	follows,	
	

𝐻I =
4𝐺
𝑐
P
𝐿′I𝑟7 − 3�̅�(𝐿hI ∙ �̅�)

2𝑟i
Q	

																																																																																																																																																																																(19)	
	
One	can	find	the	same	result	for	𝐻I	in	[10]	although	the	notation	and	the	aggregation	of	constants	
is	done	differently	there.	Before	we	complete	the	analysis	for	the	LT	precessional	term	we	state	
the	general	expression	for	the	spin	precession	rate	for	LT	from	the	Schiff	formula	statement	of	
the	LT	metric	[11],	which	is,	
	

ΩIjkl = ΩIjm + ΩIGnk + ΩIoj 	
																																																																																																																																																																																(20)	
	
where	ΩIjkl	is	the	total	angular	velocity	measured,	assuming	an	orbital	test	mass	such	as	a	satellite	
containing	gyrospcopic	measurement	instruments.	The	right-hand	side	terms	of	equation	(20)	
are	 the	 Thomas	 precession	 ΩIjm ,	 the	 geodetic	 precession	 ΩIGnk,	 and	 the	 LT	 precession	 ΩIoj .	
Concentrating	on	the	LT	precession,	averaging	over	fast	orbital	motions	[8]	and	persevering	with	
their	notation,	we	find	[12]	that	LT	is	directly	equal	to,	
	

ΩIoj =
𝐻I
2𝑐
	

																																																																																																																																																																																(21)		
	
and	so	 for	a	closely	orbiting	body	we	 initially	obtain	 from	equation	(19)	 the	 following	 for	 the	
averaged	gravitomagnetic	field	at	the	poles,	
	



𝐻Ipkqnr =
4𝐺
𝑐
𝐿<′
𝑟c
	

																																																																																																																																																																																(22)	
	
and	if	we	now	move	from	a	general	closely	orbiting	body	to	a	specific	terrestrial	location	where	
there	is	a	body	elevated	at	h	from	the	surface	of	the	Earth	(therefore	at	altitude	R,	where	𝑅 = 𝑟t +
ℎ,	and	𝑟t 	is	the	radius	of	the	Earth	at	the	location),	then	the	LT	precession	from	equation	(19)	is	
given	by,		
	
	

Ωoj =
𝐺

𝑐7𝑅c
𝐿′v1 − 3|𝑧̅. �̅�|v	

																																																																																																																																																																																(23)	
	
The	scalar	angular	momentum	𝐿′	is	given	by	𝐿h = 𝐼⨁Ω⨁	and	considering	the	Earth	initially	as	a	
non-oblate	sphere,	then	𝐼⨁ = 7

i
𝑀𝑟t7.	 	But	the	actual	radius	of	gyration	of	the	Earth	is	0.576	rE		

[13],	so	the	factor	of		7
i
		becomes		0.5767	which	is	0.3316.	Therefore	𝐼⨁ = 0.3316	𝑀𝑟t7	

	
From	which	we	obtain,	
	

Ωoj =
0.3316	𝐺𝑀Ω⨁

𝑐7𝑅
v1 − 3|𝑐𝑜𝑠𝜃|v	

	
																																																																																																																																																																																(24)	
	
where		𝑧̅ ∙ �̅� = 𝑐𝑜𝑠𝜃	and	𝑅 ≈ 𝑟t 		for	h	very	small	indeed	(assuming	that	the	bob	is	hanging	a	few	
cm	above	the	ground).	This	result	does	not	include	the	geodetic	precession	and	is	purely	the	LT	
component.	The	angle	𝜃	is	the	colatitude	which	is	the	included	angle	between	𝑧	̅and	�̅�	(the	spin	
axis	of	Earth	and	the	local	vertical	axis	at	the	location,	respectively)	so	𝜃 = �

7
− 𝜙,	where	𝜙	is	the	

latitude	as	measured	north	or	south	from	the	equator.		
	
At	the	poles,	from	equation	(22),	we	get	a	reduced	form	of	equation	(23)	as	follows,	
	

Ωoj =
2𝐺
𝑐7𝑅c

𝐿′(�̅� ∙ 𝑧̅)	
																																																																																																														
																																																																																																																																																																														(25)	
	
This	simplifies	to	the	following	after	making	the	appropriate	substitutions,	
	

Ωoj =
0.6632	𝐺𝑀Ω⨁

𝑐7𝑅
𝑐𝑜𝑠𝜃	

																																																																																																																																																																														(26)	
																																																																																													
The	double	modulus	signs	are	needed	in	equation	(23)	to	ensure	that	Ωoj	is	always	a	positive	
angular	precession,	and	the	same	values	are	obtained	at	numerically	equal	northern	(+ve)	and	
southern	(-ve)	latitudes.		
	
																																																																																																																																																																																	
Numerical	data:	
	
G	=	6.67408*10-11	m3	kg-1	s-2	
	



M	=	5.972*1024		kg	
	
Ω⨁		=	7.2921150*10-5		rad/s	
	
c	=	2.99792488*108		m/s	
	
R	=	6356*103	m	at	the	NP	
	
R	=	6363.18*103	m	at	Glasgow	
	
𝜙	=	1.5707963	rad	at	the	NP	
	
𝜙	=	0.9750	rad	at	Glasgow	
	
	
	
	
Numerical	results	-	North	Pole	
	
Pippard	[14]	gives	the	LT	precession	as	being	220	mas/year	at	the	NP	and	the	precession	rate	is	
6*10-10	of	Ω⨁.	Ruggiero	&	Tartaglia	[12]	state	the	LT	precession	at	the	NP	as	being	281	mas/year.		
	
Using	equations	(24)	or	(26)	and	the	above	data	we	get	Ωoj 	=	219.5	mas/year	at	the	NP	and	the	
precession	rate	is	calculated	to	be	4.62733*10-10	of	Ω⨁.	
	
By	changing	both	the	latitude	and	the	radius	of	the	Earth	to	the	values	for	the	location	of	Glasgow	
the	LT	there	can	be	calculated	using	equation	(24)	to	be	Ωoj 	=	162.6	mas/year.		
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