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Abstract

One of the central problems in the study of rarefied gas dynamics is to find the steady-state
solution of the Boltzmann equation quickly. When the Knudsen number is large, i.e. the
system is highly rarefied, the conventional iterative scheme can lead to convergence within a
few iterations. However, when the Knudsen number is small, i.e. the flow falls in the near-
continuum regime, hundreds of thousands iterations are needed, and yet the “converged”
solutions are prone to be contaminated by accumulated error and large numerical dissipation.
Recently, based on the gas kinetic models, the implicit unified gas kinetic scheme (UGKS)
and its variants have significantly reduced the iterations in the near-continuum flow regime,
but still much higher than that of the highly rarefied gas flows. In this paper, we put for-
ward a general synthetic iterative scheme (GSIS) to find the steady-state solutions of general
rarefied gas flows within dozens of iterations at any Knudsen number. The key ingredient
of our scheme is that the macroscopic equations, which are solved together with the Boltz-
mann equation and help to adjust the velocity distribution function, not only asymptotically
preserve the Navier-Stokes limit in the framework of Chapman-Enskog expansion, but also
contain the Newton’s law for stress and the Fourier’s law for heat conduction explicitly. For
this reason, like the implicit UGKS, the constraint that spatial cell size should be smaller
than the mean free path of gas molecules is removed, but we do not need the complex
evaluation of numerical flux at cell interfaces. What’s more, as the GSIS does not rely on
the specific kinetic model/collision operator, it can be naturally extended to quickly find
converged solutions for mixture flows and even flows involving chemical reactions. These
two superior advantages are expected to accelerate the slow convergence in simulation of
near-continuum flows via the direct simulation Monte Carlo method and its low-variance
version.
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1. Introduction

Multiscale rarefied gas flows involving a wide range of Knudsen number have been en-
countered in massive engineering problems, e.g. high-altitude aerothermodynamics of space
vehicles, microelectromechanical systems, and gas transportation in ultra-tight shale strata.
A gas flow can be described by either the macroscopic or the mesoscopic model. At the
macroscopic level, the gas is assumed as a continuous medium and the evolution of gas
system is described in terms of the spatial and temporal variations of the familiar flow prop-
erties such as density, velocity, pressure and temperature. The mathematical description
of any macroscopic model is grounded in two primary aspects: 1) the conservation laws
that describe how the mass, momentum and energy should be conserved during transport
processes, and 2) the constitutive equations that describe how the fluxes of mass dissipa-
tion, momentum diffusion and heat conduction response to various stimuli such as pressure
difference, gradients of temperature and velocity, and external force. The Navier-Stokes
equations provide the conventional mathematical model for a gas as a continuum, in which
the conservation laws are closed by the famous constitutive equations of the Newton’s law
of viscosity and Fourier’s law of heat conduction. Since the transport terms are expressed in
terms of the first-order macroscopic quantities, the Navier-Stokes equations are only valid
when the length scale of the gradients of the macroscopic variables is much larger than the
mean free path of gas molecules, i.e. the Knudsen number is far smaller than one [1]. Many
other higher-order macroscopic equations are proposed for larger Knudsen numbers, but
none of them is able to describe the multiscale rarefied gas flows from the continuum to free
molecular flow regimes [2].

The mesoscopic model postulates that the gas is not continuous but is composed of a
finite number of molecules. The molecules rush hither and thither, and strike with boundary
and collide with each other. Actually, the macroscopic transport phenomena stem no other
than the random motion of gas molecules. The mathematical model at the mesoscopic level
is the Boltzmann equation, which governs the evolution of the one-particle velocity distri-
bution function providing information on the state of every molecule at all times [3]. Then,
macroscopic flow properties are identified with average values of the molecular quantities.
Note that the Boltzmann equation is applicable for the entire range of Knudsen number, as
long as the gas is dilute, i.e. the molecular mean free path is much larger than the dimension
of gas molecules.

The Boltzmann equation can be numerically solved either in discretized molecular veloc-
ity space via the discrete velocity method (DVM)[4], or by applying the direct simulation
Monte Carlo (DSMC) method that uses a collection of particles to represent random points
in the molecular velocity space [3]. Compared to the traditional computational fluid dy-
namic (CFD) techniques for solving macroscopic equations, the Boltzmann equation and its
simplified kinetic model equations are much more expensive to solve in terms of computation
time and memory. This is mainly due to the following facts. First of all, additional dimen-
sions of the molecular velocity space are required to be discretized in DVM and particles
are required to generate in DSMC. Second, since the random behaviors of gas molecules are
modeled on length and time scales comparable to the cell size and simulation time interval,
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respectively, in order to suppress numerical diffusion errors it is suggested that the size of
grid cell and time interval should be smaller than the mean free path and mean collision
time of gas molecules, respectively [5]. As a consequence, the computational cost dramati-
cally increases as the gas flow approaches the near-continuum regime. Finally, in DVM, the
conventional iterative scheme (CIS) to find steady-state solution converges extreme slowly
for flows with low Knudsen numbers, since the exchange of information (e.g. perturbation
in the flow field) through molecular streaming becomes very inefficient when binary colli-
sions dominate [6]. Worse still, the “converged” solutions are prone to be contaminated by
numerical errors, e.g. the accumulated error from finite discrete molecular velocities [7] and
error stemming from the evaluation of molecular collisions, say, by the projection method [8]
and the fast spectral method [9]. In DSMC, the simulation time also increases significantly
due to this inefficient information exchange process in near-continuum flows. Note that the
unified gas-kinetic scheme (UGKS) [10, 11, 12, 13, 14] can remove the restrictions on cell
size and time step by simultaneously handling free streaming and collision of gas molecules.
However, as information exchanging relays on the evolution of velocity distribution func-
tion, UGKS still needs a large number of iterations to obtained steady-state solutions for
near-continuum flows [15, 16].

There has been a tremendous growth of researches on multiscale hybrid numerical meth-
ods that combine multiple models defined at fundamentally different length and time scales
within the same overall spatial and temporal domain. Specifically for the flow of interest,
the continuum CFD methods are used in regions where the Navier-Stokes equations are
valid, while methods based on gas kinetic theory are applied in regions where the continuum
equations fail [17, 18, 19, 20, 21, 22, 23]. However, intrinsic difficulties arise when coupling
the two different models. First, the mechanism for continuum breakdown is unclear and
the criterion to determine where the continuum model is valid relies on empirical parame-
ters that vary for different flow conditions [21]. Second, the continuum-kinetic coupling is
strictly required to lie in the region that can be accurately modeled by the Navier-Stokes
equations, so that the Boltzmann equation is still employed in low-Knudsen-number regions.
Therefore, the CIS still needs lots of iterations to converge to the steady-state solution; also,
DSMC still needs small cell size and time step and hence large evolutionary steps to find
converged solution.

In recent years, the synthetic iterative scheme (SIS), which is initially developed for
radiation transport process [24], has been extended to achieve high efficiency and accuracy in
DVM, in particular with fast convergence property across the whole gas flow regimes [25, 26].
In this scheme, the gas kinetic equation and macroscopic equations are solved simultaneously
on the same grid in the entire domain. Since the velocity distribution function is guided by
the macroscopic flow quantities solved from diffusion-type equation at each iterative step,
information propagates accurately and fast even when Knudsen number is small. When
the Knudsen number is small, the synthetic macroscopic equations asymptotically regress
to the Navier-Stokes equations. On the other hand, the SIS also preserves accuracy in other
flow regimes since the macroscopic equations contain high-order terms to take into account
rarefaction effects. The SIS has been successfully applied to Poiseuille flow in channels of
arbitrary shapes using the Bhatnagar-Gross-Krook (BGK) kinetic model for single-species
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monatomic gases [27], and flows of binary and ternary gas mixtures driven by local pressure,
temperature and concentration gradients using the McCormak model [28, 29, 30, 31, 32]. It
has also been extended to solve the linearized Boltzmann equation (LBE), where the role of
realistic intermolecular potential in Poiseuille, Couette and thermal transpiration flows has
been analyzed [6, 33].

It is interesting to note that the similar idea of SIS has also been used in DSMC, that is,
in addition to traditional DSMC, macroscopic variables are solved and updated according
to macroscopic rules/equations. For instances, in the information preservation DSMC, the
information velocity is introduced to compute macroscopic velocity and shear stress, with
the aim of removing “the statistical fluctuation source inherent in the DSMC method that
results from the randomness of the thermal velocity” [34, 35, 36], although the rule of up-
dating the information velocity and/or other macroscopic variables is not exactly derived
from the Boltzmann equation. On the other hand, the moment-guided DSMC is proposed
to reduce the statistical error, where the density, velocity and temperature are updated by
the five exact macroscopic equations from conservation laws, but with the pressure ten-
sor and heat flux calculated from the DSMC [37]. Similar idea is adopted in neutral gas
kinetics, where, in addition to the five macroscopic equations for density, velocity and tem-
perature, consistency terms are introduced to ensure that, upon convergence, solutions from
the low-order macroscopic equations will be the same as that from the kinetic equation [38].
Although fast convergence is realized, this, however, will cause problems since if the spatial
cell size is not resolved the DVM solution of gas kinetic equation is contaminated by the
large numerical dissipation, for instances, see Fig. 1(d) in Ref. [16] and Fig. 6 below.

In DVM, the SIS can not only asymptotically achieve the Navier-Stokes limit with fast
convergence rate, but also preserve accuracy in high Knudsen number regimes. The criti-
cal point to develop this scheme is that the macroscopic equations must explicitly contain
both the constitutive relations predicting the transport phenomena at the continuum level,
as well as high-order terms taking into account rarefaction effects. To the author’s aware-
ness, in rarefied gas dynamics the SIS is still limited to simple flows such as the Poiseuille,
Couette and thermal transpiration flows, where the flow velocity is perpendicular to the
computational domain, we refer to [25] for an example. In this paper, we shall develop the
general SIS (GSIS) with the aim to find the steady-state solution of general rarefied gas flow
within dozens of iterations at any Knudsen number. For the first step, we will consider only
linearized flows in this paper.

The remainder of the paper is organized as follows. In Section 2, the LBE is introduced.
In Section 3, the GSIS for general rarefied gas flow is proposed. Numerical tests to assess
efficiency and accuracy of the proposed scheme are presented for stationary and periodic
oscillatory problems in Sections 4, 5 and 6. The paper closes with some finial comments and
outlooks in Section 7.

2. The linearized Boltzmann equation

In kinetic theory, the state of a gaseous system is described by the one-particle velocity
distribution f (t,x,v). Evolution of the velocity distribution function to the independent
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variables, i.e. time t, spatial position x = (x1, x2, x3) and molecular velocity v = (v1, v2, v3),
is governed by the Boltzmann equation [1]. When the system deviates slightly from the
global equilibrium described by

feq(v) = π−3/2exp(−|v|2), (1)

the velocity distribution function of gas molecules can be linearized around feq as:

f(t,x,v) = feq(v) + αh(t,x,v), (2)

where αh(t,x,v) is the small perturbance satisfying |αh/feq| � 1 with α being a small con-
stant related to the amplitude of perturbation. The velocity distribution function h(t,x,v),
however, is not necessary smaller than the equilibrium distribution function feq. The LBE
for h(t,x,v) is:

∂h

∂t
+ v · ∂h

∂x
= L(h, feq), (3)

where the linearized Boltzmann collision operator is [39]:

L =

∫∫
B(θ, |u|)[feq(v′)h(v′∗) + feq(v′∗)h(v′)− feq(v)h(v∗)]dΩdv∗︸ ︷︷ ︸

L+

−νeq(v)h(v), (4)

and the equilibrium collision frequency is

νeq(v) =

∫∫
B(|u|, θ)feq(v∗)dΩdv∗. (5)

Note that the relative velocity of the two molecules before binary collision is u = v − v∗,
and Ω is a unit vector along the relative post-collision velocity v′− v′∗. The deflection angle
θ between the pre- and post-collision relative velocities satisfies cos θ = Ω ·u/|u|, 0 ≤ θ ≤ π.
Finally, B(θ, |u|) = |u|σ is the collision kernel, with σ being the differential cross-section
that is determined by the intermolecular potential. In the present paper, we mainly consider
the inverse power-law potentials, where the collision kernel is modeled as [39, 40]

B(|u|, θ) =
|u|2(1−ω)

K
sin

1
2
−ω
(
θ

2

)
cos

1
2
−ω
(
θ

2

)
, (6)

with ω being the viscosity index (i.e. the shear viscosity µ of the gas is proportional to T ω)
and K some normalization constants [39]. HS and Maxwell molecules have ω = 0.5 and 1,
respectively. We will also consider the Lennard-Jones potential (the detailed implementation
of which by the fast spectral method can be found in Ref. [41]) to demonstrate that the GSIS
works for the LBE with general intermolecular potentials.

Note that we have presented the governing system in terms of dimensionless variables.
The coordinate x is normalized by the characteristic flow length H, the molecular velocity
v is normalized by the most probable speed vm =

√
2kBT0/m, the time t is normalized by
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H/vm, and velocity distribution functions feq and h are normalized by n0/v
3
m, where n0 is

the average number density of the gas molecules, T0 is the reference temperature, kB is the
Boltzmann constant, and m is the mass of gas molecules.

To fully determine the gas dynamics in spatially-inhomogeneous problems, the gas-
surface boundary condition should be specified. In this paper, the Maxwell diffuse boundary
condition is used: the velocity distribution function f(t,x,v) of the reflected gas molecules
at the solid surface satisfies the following equation:

f(t,x,v) =
2
∫
v′n<0
|v′n|f(t,x,v′)dv′

πT 2
w

exp

(
−|v −Uw|2

Tw

)
, (7)

where Tw is the wall temperature normalized by the reference temperature T0, Uw is the
wall velocity normalized by the most probable speed vm, and vn is the normal component
of the peculiar velocity v −Uw redirected into the gas.

The macroscopic quantities of interest including the number density ρ, bulk velocity U ,
temperature T , pressure p, stress tensor σij and heat flux q, which are further normalized
by the dimensionless constant α, can be calculated as

ρ =

∫
hdv, U =

∫
vhdv, T =

2

3

∫
|v|2hdv − ρ, p = ρ+ T (8)

σij = 2

∫ (
vivj −

|v|2

3
δij

)
hdv, q =

∫
v|v|2hdv − 5

2
U , (9)

where δij is the Kronecker delta function, and i, j = 1, 2, 3 represent the three orthogonal
spatial directions in the Cartesian coordinates.

3. The general synthetic iterative scheme

The steady state solution of the integro-differential system (3) is usually solved by the
CIS. Given the value of h(k)(x,v) at the k-th iteration step, the velocity distribution function
at the next iteration step is calculated by solving the following equation [40, 41, 42]:

νeq(v)h(k+1) + v · ∂h
(k+1)

∂x
= L+(h(k), feq), (10)

where the derivative with respect to x can be approximated by any conventional CFD
schemes such as the finite difference, finite volume, or Discontinuous Galerkin (DG) meth-
ods [43, 44], and the collision operator in Eq. (4) can be calculated by the fast spectral
method [39, 41] based on the velocity distribution function at the k-th iteration step. The
process is repeated until relative differences between successive estimates of macroscopic
quantities are less than a convergence criterion ε.

A key parameter in the rarefied gas dynamics is the rarefaction parameter, which is
defined as

δrp =
H

λ
, λ =

µ(T0)vm

n0kBT0

, (11)
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where µ(T0) is the shear viscosity of the gas at the reference temperature, and λ is the mean
free path of gas molecules. Alternatively, the Knudsen number is defined as

Kn =

√
π

2δrp

. (12)

The CIS is efficient for highly rarefied gas flow when δrp is very small, where converged
solution can be quickly found after several iterations. However, the number of iteration
increases significantly with the rarefaction parameter [6, 25]. This is due to the frequent
collisions of gas molecules, which quickly smear the perturbance and hinder the fluid infor-
mation exchange. In order to enhance the information exchange across the whole computa-
tional domain, synthetic equations for the evolution of macroscopic flow variables that are
asymptotic preserving the Navier-Stokes limit should be developed [6].

To this end, we first multiply Eq. (3) by 1, 2v, and |v|2 − 3
2
, respectively, and integrate

the resultant equations with respect to v; we obtain the following equations for the evolution
of density, velocity, and temperature:

∂ρ

∂t
+
∂Ui
∂xi

= 0,

2
∂Ui
∂t

+
∂ρ

∂xi
+
∂T

∂xi
+
∂σij
∂xj

= 0,

3

2

∂T

∂t
+
∂qj
∂xj

+
∂Uj
∂xj

= 0,

(13)

which are not closed, since expressions for the shear stress σij and heat flux q are not
known. One way to close Eq. (13) is to use the Chapman-Enskog expansion, where the
distribution function is expressed in the power series of Kn [1]: h = Knh(1) + Kn2h(2) + · · · .
When f = f (0), we have σij = qi = 0, and the Euler equations are recovered. When the
distribution function is truncated at the first-order of Kn, that is, h = Knh(1), we have

σij = −δ−1
rp

(
∂Ui
∂xj

+
∂Uj
∂xi
− 2

3

∂Uk
∂xk

δij

)
≡ −2δ−1

rp

∂U<i
∂xj>

, qi = − 5

4Pr
δ−1

rp

∂T

∂xi
, (14)

and Eq. (13) reduces to the Navier-Stokes equations with Pr being the Prandtl number.
Higher-order macroscopic equations can be obtained successively but they are not stable.
On the other hand, even the obtained high-order macroscopic equations are stable, they are
only the approximate solutions of the Boltzmann equation, rather than the exact solutions.
Therefore, they cannot describe the multiscale rarefied gas dynamics.

It should be noted that in the implicit UGKS [14] and other variants [45, 46], both the
gas kinetic equation and macroscopic equations (13) are solved, where σij and q are obtained
according to Eq. (9). These methods are efficient when the Knudsen number is large, like the
CIS. However, in the near-continuum flow regime, the number of iterations are still large,
at the order of thousands iterations. The reason for the relative slow convergence is that,
if the iteration starts from the global equilibrium state where σij and q are zero, in most
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of the time the Euler equations, rather than the Navier-Stokes equations that dominate
the steady-state flow dynamics, are solved, due to the fact that perturbance from the wall
boundary takes a long time to reach the bulk region for near-continuum flows. Even when
the shear stress and heat flux are non-zero, solutions of Eq. (13) deviate from that of the
Navier-Stokes equations in the near-continuum flow regime unless they nearly converge to
the steady-state solution. As a matter of fact, the authors have checked, in the linearized
Poiseuille flow [6], that when the kinetic equations is solved according to Eq. (10), Eq. (13)
cannot help to find converged solution within dozens of iterations.

Bearing this in mind, to develop an ultra-fast convergence scheme, it is beneficial to
construct macroscopic equations that contain the Newton’s law for stress and Fourier’s law
for heat conduction explicitly to recover the macroscopic transport mechanism; that is, the
shear stress and heat flux should be expressed as follows:

σij = −2δ−1
rp

∂U<i
∂xj>

+ HoTσij , (15)

qi = − 5

4Pr
δ−1

rp

∂T

∂xi
+ HoTqi , (16)

where HoTσij and HoTqi are the high-order terms containing contributions of all the orders

O(Knα
′
) with α′ = 2, 3, · · · ,∞.

To obtain (15), we multiply Eq. (3) by 2(vivj − δij|v|2/3) and integrate the resultant
equation with respect to v, and obtain

∂σij
∂t

+ 2

∫
(vivj −

δij
3
|v|2)v · ∂h

∂x
dv − 2

∂U<i
∂xj>︸ ︷︷ ︸

HoT

+ 2
∂U<i
∂xj>

= −δrpσij︸ ︷︷ ︸
Newton’s law of viscosity

+2

∫
(L− Ls)vivjdv,

(17)
where

Ls = δrp

{[
ρ+ 2U · v + T

(
|v|2 − 3

2

)
+

4 (1− Pr)

5
q · v

(
|v|2 − 5

2

)]
feq − h

}
(18)

is the linearized collision operator of the Shakhov kinetic model equation [47], and

HoTσij =


∂
∂xi

∫
(2v2

i − 1)vjhdv + ∂
∂xj

∫
(2v2

j − 1)vihdv + ∂
∂xk

∫
2v1v2v3hdv,

for i 6= j, k 6= i, k 6= j,
∂
∂xi

∫
2(v2

i −
|v|2

3
− 2

3
)vihdv +

∑
k

∂
∂xk

∫
2(v2

i −
|v|2

3
+ 1

3
)vkhdv,

for i = j, k 6= i.

(19)

Note that this derivation is simple as we just separate the underlined term in Eq. (17)
from high-order moments

∫
2(vivj − δij|v|2/3)vkhdv, and the purpose of introducing Ls is

only to recover the term δrpσij, so that the Newton’s law of stress is recovered explicitly.
It should also be noted that, for the linearized Boltzmann collision operator, the term
2
∫

(L− Ls)vivjdv is negligible when compared to δrpσij. For instances, for the Maxwell
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molecular model, this term is zero, while for the HS molecular model, this term is less than
2% of δrpσij, see page no. 169 in the third edition of the book [1].

Similarly, to obtain Eq. (16), we multiply Eq. (3) by vi(|v|2 − 5/2) and integrate the
resultant equation with respect to v; we obtain

∂qi
∂t

+ HoTqi +
3Cq
2

∂T

∂xi
= −2

3
δrpqi +

∫
(L− Ls)vi|v|2dv, (20)

where

HoTqi =
∂

∂xi

∫ [
(v2
i − Cq)

(
|v|2 − 3

2

)
− v2

i

]
hdv +

∑
j 6=i

∂

∂xj

∫
vivj

(
|v|2 − 5

2

)
hdv. (21)

For the linearized Boltzmann collision operator, the term
∫

(L− Ls)vi|v|2dv is negligible
when compared to δrpqi, i.e. within 3% of δrpqi [1]. If we choose Cq = 5/9Pr, then the
under-braced term in Eq. (20) recovers the Fourier’s heat conduction law in Eq. (14). Since
for monatomic gas the Prandtl number is very close to 2/3, in the following paper we choose
Cq = 5/6.

Note that the macroscopic equations (13), (17) and (20) resemble the Grad 13 moment
equations [48, 49]. However, since the higher-order terms (19) and (21) are computed di-
rectly from the velocity distribution function, no approximations are introduced here. If
the velocity distribution function is approximated by the Gauss-Hermite polynomials to the
third order, where the coefficients before those polynomials are determined by the first 13
moments of the velocity distribution function, then G13 moment equations will be recov-
ered. Since the first-order Chapman-Enskog expansion to G13 equations leads to Eqs. (13)
and (14), that is, only the underlined terms in Eqs. (17) and (20) are retained, the derived
synthetic equations (13), (17) and (20) are asymptotic preserving the Navier-Stokes limit.
Thus, they should be able to boost the convergence to the steady-state solution of the LBE
significantly, as in the bulk region (a few mean free path of gas molecules away from solid
surfaces) we are effectively solving the Navier-Stokes equations.

With these macroscopic equations to update the macroscopic quantities and the veloc-
ity distribution function, we devise the following iteration scheme to find the steady-state
solution of the LBE (3) efficiently:

• Step 1. When the velocity distribution function h(k) and the corresponding macro-
scopic quantities in Eqs. (8) and (9) are known at the k-th iteration, we calculate
2
∫

(L− Ls)vivjdv in Eq. (17) and
∫

(L− Ls)vi|v|2dv in Eq. (20). We also calcu-
late the velocity distribution function h(k+1/2) according to the conventional iterative
scheme (10), that is, we solve the following equation:

νeq(v)h(k+1/2) + v · ∂h
(k+1/2)

∂x
= L+(h(k), feq), (22)

by a second-order upwind finite difference in the bulk and a first-order upwind scheme
at the solid surface [42] or the DG method [43, 44].
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• Step 2. From h(k+1/2), we calculate the density ρ(k+1/2)(x), flow velocity U (k+1/2)(x),

the temperature T (k+1/2)(x), the shear stress σ
(k+1/2)
ij (x), the heat flux q(k+1/2)(x), and

the high-order terms HoTσij and HoTqi defined in Eqs. (19) and (21), respectively.

• Step 3. We obtain the macroscopic quantities ρ(k+1)(x),U (k+1)(x), T (k+1)(x), σ
(k+1)
ij (x),

and q(k+1)(x) by solving the synthetic equations (13), (17) and (20), That is, for the
steady-state problems the shear stress and heat flux can be solved from Eq. (17)
and (20), which will then be substituted to Eq. (13) to form the Navier-Stokes equa-
tions with source terms related to the higher-order terms defined in Eqs. (19) and (21).
These equation can be solved by the SIMPLE algorithm and/or DG method easily in
the bulk region, where the boundary values in the vicinity of wall for the density,
velocity, temperature are obtained from Step 2. The detailed DG algorithm to solve
the synthetic equations can be found in the Appendix.

• Step 4. The velocity distribution function h is modified to incorporate the change of
macroscopic quantities. That is,

h(k+1)(x,v) =h(k+1/2)(x,v) +

[
2λU (x) · v +

4

5
λq(x) · v

(
|v|2 − 5

2

)]
feq

+

[
λρ(x) + λT (x)

(
|v|2 − 3

2

)
+ λσij(x)

(
vivj −

|v|2

3
δij

)]
feq, (23)

where λU (x) = U (k+1)(x) − U (k+1/2)(x), λq(x) = q(k+1)(x) − q(k+1/2)(x), λρ(x) =

ρ(k+1)(x) − ρ(k+1/2)(x), λT (x) = T (k+1)(x) − T (k+1/2)(x), and λσij(x) = βσ
(k+1)
ij (x) −

βσ
(k+1/2)
ij (x), with β = 3/2 when i = j and β = 2 otherwise.

• Step 5. The above steps are repeated until convergence.

Since the gas kinetic equation is solved together with the macroscopic equations (13),
(17) and (20) for general rarefied gas flows, the above scheme is called the GSIS. Note that
although the SIS has been widely applied to the radiation transport process [24] and rarefied
gas flows driven by local pressure, temperature, and concentration gradients [25, 30, 31, 27,
43] to overcome the slow convergence and remove the constraint on the spatial cell size in
the near-continuum flow regime, it is the first time that the GSIS is developed for general
rarefied gas flows described by the LBE. Also, it is with no doubt that such a methodology
can be directly applied to construct the GSIS for the nonlinear Boltzmann equation.

4. Numerical test for zero-dimensional problem: Rayleigh-Brillouin scattering

For linearized problems, if the external force that drives the flow changes periodically in
time, then the velocity distribution function can be expressed as [50, 51, 52]:

f = feq(v) + α< [exp(iStt)h(x,v)] , (24)
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where < is the real part of a variable and h satisfies the following linearized Boltzmann
equation:

iSth+ v · ∂h
∂x

= L(h, feq). (25)

Note that here i is the imaginary unit and h is a complex function, so are the macroscopic
quantities defined in Eqs. (8) and (9). These complex values will introduce phase shifts
relative to that of the external driving force. The Strouhal number St

St =
$H

vm

(26)

is the oscillation frequency $ normalized by vm/H. The solutions to these oscillating prob-
lems can also be accelerated by the GSIS; the corresponding macroscopic synthetic equations
can be obtained if we replace ∂/∂t in Sec. 3 by iSt.

In the spontaneous Rayleigh-Brillouin scattering (SRBS), light propagating through the
gas is scattered by the thermal motion of gas molecules, where the spectrum of the scattered
light contains the information of gas such as temperature, speed, and viscosity. Thus, SRBS
provides a non-intrusive way to probe the gas properties in a remote way. Theoretically,
the SRBS spectrum can be obtained by solving the LBE (3) with the initial condition
h(t = 0, x2,v) ∝ δ(x2)feq(v), which represents a density impulse [53, 54]. To be more
specific, the SRBS spectrum is calculated as

Ss(δrp, fs) = <
(∫

ĥdv

)
, (27)

where ĥ(v), the Laplace-Fourier transforms of h in the temporal and spatial directions,
satisfies (suppose the scattered light propagates in the x2 direction)

2πi(fs − v2)ĥ = L+(ĥ)− νeqĥ+ feq. (28)

Note that in Eq. (27) and (28), the rarefaction parameter δrp is defined when the char-
acteristic flow length H is λL/2 sin(θs/2), with λL being the wavelength of laser and θs the
angle of light scattering, and fs(= St/2π) is the frequency shift in the scattering process
normalized by the characteristic frequency vm/H. Also note that terms in the left-hand-
side of Eq. (28) appear because operators ∂/∂t and ∂/∂x2 in Eq. (3) are replaced by 2iπfs
and −2iπ, respectively. Finally, the source term feq in Eq. (28) is from the Laplace trans-
form of the initial density impulse. This term will change the first equation in Eq. (13) to
∂ρ
∂t

+ ∂Ui

∂xi
= 1, while other synthetic equations remain unchanged.

In CIS, the velocity distribution function is obtained by solving the following equation
iteratively:

ĥ(k+1)(v) =
L+(ĥ(k)) + feq(v)

2πi(fs − v2) + νeq(v)
, (29)

which converges fast when δrp is small, but extremely slow when δrp is large as the flow
enters the near-continuum regime.
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Figure 1: Comparisons of the SRBS spectrum (a) and iteration numbers (b) between the CIS and GSIS
when the rarefaction parameter is large. The HS molecular model is used in the LBE. The molecular velocity
space [−6, 6]3 is discretized by 24 × 32 × 24 uniformly distributed points. The solutions are believed to be
converged when the relative error in ρ̂ between two consecutive iteration steps is less than 10−7.

In the GSIS, the synthetic equations can be rewritten in the following matrix at the
(k + 1)-th iteration step:

2iπfs −2iπ 0 0 0

−2iπ 4iπfs −2iπ −2iπ 0

0 −2iπ 3iπfs 0 −2iπ

0 −8
3
iπ 0 2iπfs + δrp 0

0 0 −3iπCq 0 2iπfs + 2
3
δrp




n̂(k+1)

Û
(k+1)
2

T̂ (k+1)

σ̂
(k+1)
22

q̂
(k+1)
2

 =


1
0
0

R4

R5

 , (30)

where, the hat denotes the Laplace-Fourier transform of the corresponding quantity, R4 =
2iπHoT(k+1/2)

σ22
+ 2

∫
(L− Ls)v

2
2dv and R5 = 2iπHoT(k+1/2)

q2
+
∫

(L− Ls)v2|v|2dv.
In the numerical simulation, starting from the zero perturbance at each frequency dif-

ference, solutions are believed to be converged when the relative error in ρ̂ between two
consecutive iteration steps is less than 10−7. Results in Fig. 1(a) show that GSIS and CIS
generate almost the same SRBS spectra, except at δrp = 50 the CIS has a false converged
solution (i.e. the discontinuous spectrum) when the frequency difference is around 0.68. As
usual, the iteration number in CIS increases significantly with the rarefaction parameter
δrp, while in GSIS this remains nearly unchanged and is far less than that of the CIS. For
example, the iteration number of the GSIS is about 10 and 100 times less than that of the
CIS when δrp = 10 and 50, respectively. We have also tested that, even when δrp = 500,
converged solutions are obtained within 20 steps in the GSIS for every frequency difference.

However, when δrp is small and St is large, the GSIS does not converge or even blows up.
This is because the eigenvalue of the matrix in Eq. (30) has large complex values so that any
inappropriate initial guess can lead to large oscillations that decay rather slow or even blow
up. Whereas, physically speaking, the solution should decay fast due to the large rarefaction
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Figure 2: Comparisons of the SRBS spectrum and iteration numbers (inset) between the CIS and GSIS
when the rarefaction parameter is small. The Maxwell molecular model is used in the LBE. The molecular
velocity space [−6, 6]3 is discretized by 24 × 192 × 24 uniformly distributed points due to high rarefaction
effects. The solutions are believed to be converged when the relative error in ρ̂ between two consecutive
iteration steps is less than 10−7.

effect, that is, large dissipation. To remedy this, the small value δrp in the left-hand side of
Eq. (30) is replaced by a relative large value δ̄rp = max(δrp, 10), while the right-hand side
terms are modified correspondingly as

R4 =2iπHoT(k+1/2)
σ22

+ 2

∫
(L− Ls)v

2
2dv + (δ̄rp − δrp)σ̂

(k+1/2)
22 ,

R5 =2iπHoT(k+1/2)
q2

+

∫
(L− Ls)v2|v|2dv +

2

3
(δ̄rp − δrp)q̂

(k+1/2)
2 . (31)

This simple treatment helps to decay non-physical solutions at initial few iteration steps.
When the solution of the new system converges, it can be proven that it satisfies Eq. (30).
Therefore, no approximation is introduced to the converged solution. This point is proven
in Fig. 2, where the GSIS and CIS solutions agree perfectly with each other, and from the
inset we see that the GSIS needs slightly less iteration steps than CIS in most of frequency
differences.

Another remarkable property of the GSIS is that, at the same level of convergence cri-
terion, the GSIS provides more accurate numerical solutions. One example is given in
Fig. 3, where one can see that the relative error between two consecutive iteration steps
ε = |ρ̂(k+1)/ρ̂(k)− 1| decays rather fast in the GSIS, while in the CIS it decreases slowly with
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Figure 3: (a) The decay of the relative error ε = |ρ̂(k+1)/ρ̂(k) − 1| between two consecutive iteration steps,
and (b) the SRBS spectra obtained at different level of convergence criterion. The reference solution is
obtained from the GSIS when ε = 10−7. The linearized Boltzmann equation with HS molecular model is
used, with the rarefaction parameter δrp = 50.

many oscillations. As a consequence, the GSIS finds the correct spectrum profile even when
the relative error in density is less 10−2, while the CIS can only reach the correct solution
when the error is less than 10−6. This is explained below. According to the analysis of Adam
and Larsen for radiation transfer problem [24], if one stops at the (k + 1)-th step with∣∣∣∣ ρ̂(k+1)

ρ̂(k)
− 1

∣∣∣∣ = ε (32)

in the CIS, then the relative difference from the true solution ρ̂ is∣∣∣∣ ρ̂

ρ̂(k+1)
− 1

∣∣∣∣ ≈ γ

1− γ
ε, (33)

where γ is the spectral radius of the iteration operator. For problem with slow convergence,
γ is very close to one (see Figure 1 in Ref. [6] for the kinetic BGK model equation), which
could make the difference from true solution magnified by thousands of times. And thus the
convergence criterion ε in CIS should be set at a much smaller value.

5. Numerical tests for one-dimensional problems

Numerical simulations are further carried out to assess efficiency and accuracy of the
GSIS. To this end, we consider one-dimensional problems between two parallel plates, in-
cluding the Fourier flow, oscillating Couette flow and sound prorogation. The reason is that
in previous cases the special SIS is only applicable for rarefied gas flows [25, 30, 31, 27, 43, 33],
where the flow velocity is perpendicular to the computational domain. Here we investigate
the performance of GSIS for typical general rarefied gas flows, where the flow velocity (or
other macroscopic variables) also varies within the computational domain.
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5.1. Heat transfer between two parallel plates

Consider the steady Fourier flow of a gas between two infinite parallel plates with a
distance H, located at x2 = 0 and x2 = 1. The two plates are stationary, the one at
x2 = 0 has a temperature T0 −∆T/2, while that at x2 = H has a temperature T0 + ∆T/2.
We assume that the temperature difference ∆T is negligible compared to T0, so that the
problem is symmetrical around x2 = 1/2. Therefore, in numerical simulations only the region
x2 ∈ [0, 1/2] is considered. The Boltzmann equation is linearized by choosing α = ∆T/T0

in Eq. (2). The boundary condition at x2 = 0, as according to Eqs. (2) and (7), is

h(x2 = 0,v) =

[
1− |v|

2

2
− 2
√
π

∫
v2<0

v2h(x2 = 0,v)dv2

]
feq, when v2 > 0, (34)

while that at x2 = 0.5 is
h(v1, v2, v3) = −h(v1,−v2, v3), (35)

due to the symmetry of this linearized problem.
From the synthetic equations (13), (17) and (20), as well as the symmetry condition (35),

we know
U = 0, σij = 0 when i 6= j, q1 = q3 = 0, (36)

the heat flux perpendicular to the two plates q2 is a constant, and the variation of the
perturbed temperature satisfies

∂T

∂x2

= −4δrp

9Cq
q2 +

2

3Cq

∫
v2|v|2(L− Ls)dv︸ ︷︷ ︸
H

(k)
1 (x2)

− 2

3Cq

∂

∂x2

∫
(v2

2 − Cq)
(
|v|2 − 3

2

)
hdv︸ ︷︷ ︸

H
(k+1/2)
2 (x2)

, (37)

whose solution at the (k + 1)-th iteration step is given by

T (k+1)(x2) = −4δrpq2

9Cq

(
x2 −

1

2

)
+

∫ x2

1/2

H
(k)
1 (x2)dx2 −H(k+1/2)

2 (x2), (38)

where the constant heat flux q2 is

q2 =
9Cq
2δrp

[
T (k+1/2)(x2 = 0) +H

(k+1/2)
2 (x2 = 0)−H(k)

1 (x2 = 0)
]
. (39)

When the temperature is known, the density variation can be easily obtained by solving
the following equation

ρ+ T + σ22 =

∫
2v2

2hdv, (40)

where the term at the right-hand-side of Eq. (40) is zero due to the symmetry condition (35),
and according to Eq. (17) the stress σ22 can be calculated as

σ22 = −
∂
∂x2

∫
2
(
v2

2 −
|v|2

3

)
v2hdv

δrp

+
2

δrp

∫
(L− Ls)v

2
2dv. (41)
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Figure 4: Density and temperature profiles at different iteration steps obtained from the CIS (a, b) and
GSIS (c, d), when the rarefaction parameter is δrp = 50. Circles show the converged solution obtained from
the GSIS. The linearized Shakhov model is used with the initial condition h(x2,v) = 0. The spatial region
is discretized by N2 = 51 equidistant points. The iteration stops when ε in Eq. (43) is less than 10−5. Data
in the legends are the iteration steps.

We first test efficiency of the GSIS based on the Shakhov model, that is, the linearized
Boltzmann collision operator in Eq. (3) is replaced by the linearized Shakhov model (18).
We choose the rarefaction parameter δrp = 50 and discretize the half spatial space into N2

even-spaced points, where the derivative with respect to x2 is approximated by a second-
order upwind finite difference. The molecular velocity space in the v1 and v3 directions is
truncated to the region [−6, 6] by 24 × 24 equidistant points, while the molecular velocity
v2 is truncated to [−6, 6] and approximated by the non-uniform points [39, 55]:

v2 =
6

(Nv − 1)ı
[(−Nv + 1)ı, (−Nv + 3)ı, · · · , (Nv − 1)ı], (42)

which is useful to capture the discontinuity in the velocity distribution function near v2 ∼ 0.
In this test we take ı = 3 and Nv = 64. The iterations in both CIS and GSIS are terminated
when

ε = max

{∫ ∣∣∣∣ρ(k+1)

ρ(k)
− 1

∣∣∣∣ dx2,

∫ ∣∣∣∣T (k+1)

T (k)
− 1

∣∣∣∣ dx2,

∫ ∣∣∣∣∣q(k+1)
2

q
(k)
2

− 1

∣∣∣∣∣ dx2

}
(43)

is less than a certain value. Note that ρ and T at x2 = 1/2 are excluded in the above
equation since they are zero.
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Figure 5: The decay of the error ε as a function of the iteration step, for the Fourier flow between two
parallel plates described by the linearized Shakhov model. The spatial region is discretized by N2 = 51
equidistant points.

Figure 4 compares the convergence history of the GSIS and CIS when the rarefaction
parameter is δrp = 50, that is, the flow is in the near-continuum regime. Starting from the
initial guess h(x2,v) = 0, the perturbance from the solid surface quickly changes the density
and temperature near the solid surface in the CIS (within about one molecular mean free
path away from the wall). However, due to the frequent collision between gas molecules, it
takes a long time (i.e. iteration steps) to feel this change in the bulk region. From example,
from Fig. 4(b) we see that about 50 iteration steps are taken for the temperature at x2 = 0.5
to feel this change. Moreover, such a change does not necessarily lead to the final converged
state monotonically, but it could deviate further away from the final steady state: from
Fig. 4(a) we see that the density perturbance in the bulk region is even negative after 50
iterations, while the final steady state of the density is always non-negative in the region of
x2 ∈ [0, 0.5]. This is also evidenced in Fig. 5 that the error does not decay monotonically
but oscillates several times. Such a slow convergence is completely changed in the GSIS,
where the temperature and density are corrected according to the synthetic equations (37)
and (40); the dominated parts are respectively ∂T

∂x2
= −4δrp

9Cq
q2 and ρ = −T when δrp is

large, and this means that the temperature and density in the bulk region are corrected to
be nearly linear immediately. As we can see from Fig. 4(d), after the first iteration, the
temperature from the GSIS at x2 = 0 is the same as that from the CIS, but the temperature
from the GSIS in the bulk region varies linearly, while that from the CIS is still zero. From
Fig. 4(c) we see that the density also varies linearly in the bulk, but at the solid surface it
is more close to the final state than that obtained from the CIS. Since the diffusion-type
macroscopic equation (37) allows the efficient exchange of information, fast convergence is
realized in the whole computational domain, see Fig. 4(c) and (d).
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Figure 6: The influence of the spatial discretization on accuracy of both the CIS and GSIS, for the Fourier
flow between two parallel plates described by the linearized Shakhov model with δrp = 50. The iteration
terminates when ε < 10−6. The reference solutions (i.e. ρref and q2,ref) are obtained from the GSIS with
N2 = 251, that is, the spatial cell size is about one tenth of the mean free path of gas molecules.

Figure 5 demonstrates how fast the solution is converged at different values of rarefaction
parameter. When δrp is small, errors in both the CIS and GSIS decay at the same rate,
which means that the two schemes are as efficient as each other. As δrp increases so that
the flow enters the transition and near-continuum regimes, the error in the CIS oscillates
several times before it decays monotonically. As a consequence, the iteration number of
CIS increases rapidly with the rarefaction parameter, which nearly scales as δ2

rp. For the
GSIS, however, the error is monotonically decreasing, and the rarefaction parameter does
not influence the error decay rate, where the converged solutions are obtained within the
same number of iterations (here 20 iterations) for each rarefaction parameter from the free
molecular to continuum flow regimes. At δrp = 50, the GSIS is about 100 times more efficient
than the CIS, and it can be expected that the gain of using GSIS becomes larger and larger
as δrp further increases.

Another important property of the GSIS is that the numerical error caused by the spatial
discretization is largely reduced when compared to that of the CIS. From Fig. 6 we see that
when N2 is decreased from 251 to 6, that is, when the spatial cell size is respectively about
1/10 and 5 times of the mean free path of gas molecules, the relative error in the density
profile increases from 0.3% to 9%, while that in the heat flux increases from 0.3% to 16% in
the CIS. However, the relative error in the GSIS always remain within 1%, even when the
cell size is about 5 times larger than the gas mean free path. Note that even when δrp = 500,
the heat flux obtained from the GSIS only changes from 3.721 × 10−3 when N2 = 551 to
3.726 × 10−3 when N2 = 6. The reason for this excellent performance is that the GSIS is
asymptotically preserving the Navier-Stokes limit, while in the CIS the “numerical” thermal
conductivity may be different to the physical one. Besides, in the CIS, the false convergence,
e.g. the non-uniform distribution of heat flux in Fig. 6(b), may be reached when the spatial
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Figure 7: The Knudsen layer function Ts for the temperature profile in the Fourier flow between two parallel
plates obtained from GSIS. Note that the Lennard-Jones potential for helium is used at T0 = 300K, where
the fast spectral method developed in Ref. [41] is used to calculate the Boltzmann collision operator.

resolution is not enough. The superior GSIS, however, does not suffer this problem.
It should be noted that the implicit UGKS [14] and other variants [45, 46] can also

produce accurate results when the cell size is much larger than the molecular mean free
path. This is achieved through a complex evaluation of the numerical flux at the cell
interface to spontaneously treat the molecular streaming and collision. The GSIS, however,
does not need complex flux evaluation since the Navier-Stokes constitutive laws are recovered
explicitly.

Using the accurate and efficient GSIS, the LBE is solved for different molecular collision
models (6) and the corresponding Knudsen layer functions are obtained. In the numerical
simulation, we set the rarefaction parameter to be δrp = 60, so that the distance between two
plates is about 60 times as large as the mean free path of gas molecules; thus, the interference
between the Knudsen layers near each plate is avoided. In the fast spectral approximation of
the linearized Boltzmann collision operator (4), the integral with respect to the solid angle
Ω is calculated by the Gauss-Legendre quadrature with M = 6, see Eq. (39) in Ref. [40]. In
the spatial discretization we set

x2 = (10− 15s+ 6s2)s3, s = (0, 1, · · · , Ns − 1)/2(Ns − 1) (44)

with Ns = 200. The iteration is terminated when ε < 10−6.
When the steady-state solution is obtained, the temperature profile in the bulk region

(i.e. 0.4 ≤ x2 ≤ 0.5) is linearly fitted by TNS = k1(x2 − 1/2) in the dimensionless form,
where k1 is the coefficient from the least square fitting of temperature. Then the Knudsen
layer function is calculated according to the following equation:

Ts (x2δrpPr) = δrpPr
TNS(x2)− T (x2)

k1

, (45)
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and the temperature jump coefficient is calculated as [56]

ζT =
δrp

2

(
5

4δrpPr|q2|
− 1

)
. (46)

When the LBE for HS, Helium and Maxwell molecules is solved by the GSIS, steady-
state solutions are reached after 22, 25 and 27 iterations, respectively, and the temperature
jump coefficients are respectively 1.892,1.933 and 1.954, which do not differ a lot between
the three collision models. However, the Knudsen layer functions shown in Fig. 7 have
larger difference. It is amazing that the small terms 2

∫
(L− Ls)vivjdv in Eq. (17) and∫

(L− Ls)vi|v|2dv in Eq. (20) significantly affect the Knudsen layer function.

5.2. Oscillatory Couette flow between two parallel plates

Consider the rarefied gas dynamics between two infinite parallel plates with a distance
H, located at x2 = 0 and x2 = 1. Both plates have a temperature T0, the one at x2 = 1 is
stationary, while that at x2 = 0 oscillating in the x1 direction with the velocity

Uw,1 = <
[
U0

vm

exp(iStt)

]
. (47)

The Boltzmann equation is linearized by choosing α = U0/vm in Eq. (25). If we consider
the diffuse boundary condition, then we have h(x2 = 0,v) = 2v1feq when v2 > 0, and
h(x2 = 1,v) = 0 when v2 < 0 [50]. The synthetic equations (13), (17), and (20) can be
simplified to

2iStU1 +
∂σ12

∂x2

= 0,

iStσ12 + HoTσ12 +
∂U1

∂x2

= −δrpσ12 + 2

∫
(L− Ls)v1v2dv, (48)

where the moments involving even orders of v1 are all zero, and we do not consider the heat
flux q1 in this problem as it does not affect the rate of convergence. It is noted that the
above equations reduce to the synthetic equation developed in Ref. [33] when St = 0.

The two equations in Eq. (48) can be combined to produce the following diffusion equa-
tion for the flow velocity U1 in the (k + 1)-th iteration step:

2iSt(iSt + δrp)U
(k+1)
1 − ∂2U

(k+1)
1

∂x2
2

=
∂

∂x2

[
2

∫
(L(k) − L(k)

s )v1v2dv − HoT(k)
σ12

]
. (49)

In the numerical simulation, the spatial space is discretized by Eq. (44) with Ns = 100.
The kinetic equation (22) is solved by the second-order upwind scheme, while the derivative
in Eq. (49) is approximated by the central finite difference scheme with 5 stencils, and the
resulting linear algebraic system for U1 is solved exactly in the bulk region (i.e. at least
three spatial points away from the boundary) in matrix form.

The comparison in accuracy and efficiency between the CIS and GSIS is summarized
in Fig. 8, where the molecular velocity space is discretized in the same way as that in the
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Figure 8: Comparisons of the amplitude of the shear stress exerting on the oscillating plate and iteration
numbers (inset) between the CIS and GSIS, for the oscillating Couette flow. The Shakhov model is solved,

where the solution is converged when
∫ ∣∣∣∣U(k+1)

1

U
(k)
1

− 1

∣∣∣∣dx2 < 10−5.

previous tests, but with Nv = 96 in Eq. (42). The relative difference in the amplitude of
the shear stress σ12 is within 1%. When the rarefaction parameter is δrp = 50, we see that
the number of iterations in the CIS decreases from 30,000 to 100 when Strouhal number
increases from 0 to 50. The reason for this reduction can be understood in the following
way. The temporal Knudsen number Knt, which is defined as the ratio of characteristic
oscillation frequency to the mean collision frequency of gas molecules, i.e.

Knt =
$

vm/λ
=

St

δrp

, (50)

increases with St. Therefore, even when δrp is large, that is, when the spatial Knudsen
number is small, the large temporal Knudsen number can also make the flow rarefied, and
the more rarefied the gas, the fast the iteration to the steady-state. Even with this effect,
the GSIS is still faster than the CIS: only about 20 iterations are needed in the GSIS for
each Strouhal number considered.

However, for the GSIS in oscillating problems, there is a problem, like the one encoun-
tered in Sec. 4. From Eq. (49) we see that the eigenvalue of this second-order differential
equation is imaginary, which means that when δrp is small and St is large, the solution will
change quasi-periodically in the spatial direction with large frequency, whereas physically
the solution should decay fast from the oscillating sources as the dissipation is huge due to
the large values of both spatial and temporal Knudsen numbers. Mathematically speaking,
for highly oscillating solutions, any slight inaccurate boundary conditions will lead to com-
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pletely different solutions. Therefore, in the numerical simulation, when we solve Eq. (49)
directly, the solution is either wrong or blows up. To fix this problem, again we introduce a
relative large value of δ̄rp to decay the fast oscillation. That is, instead of solving Eq. (49),
we solve the following diffuse-type equation:

2iSt(iSt + δ̄rp)U
(k+1)
1 − ∂2U

(k+1)
1

∂x2
2

=
∂

∂x2

[
2

∫
(L(k) − L(k)

s )v1v2dv − HoT(k)
σ12

]
+ 2iSt(δ̄rp − δrp)U

(k+1/2)
1 , (51)

where
δ̄rp = max(δrp, St). (52)

It can be proven that, when the solution of Eq. (51) converges, Eqs. (51) and (49) are
equivalent. This treatment does not affect the accuracy and efficiency of the GSIS when δrp

is small, while when δrp is large, the solution from the synthetic equations is always stable,
and we see in Fig. 8 that in most cases the GSIS needs slightly less iterations than CIS.

In addition to the significant reduction of iteration number, the GSIS needs less spatial
grids than that of the CIS. Two examples are given in Fig. 9, where one can see that the
GSIS can yield accurate results even when the cell sizes are respectively about 6.6 and 50
times of the molecular mean free path, while the CIS has large error due to the strong
numerical dissipation for unresolved spatial cells.

5.3. Sound propagation between two parallel plates
Consider the sound propagation through a gas between two infinite parallel plates with

a distance H, located at x2 = 0 and x2 = 1. The two plates have a temperature T0, the
one at x2 = 1 is stationary, while that x2 = 0 oscillating in the x2 direction with the speed
Uw,2 = < [(U0/vm) exp(iStt)]. The Boltzmann equation is linearized by choosing α = U0/vm

in Eq. (25). The boundary conditions are [51]

h(x2 = 0,v) =

[√
π + 2v2 − 2

√
π

∫
v2<0

v2h(x2 = 0,v)dv

]
feq, when v2 > 0,

h(x2 = 1,v) =2
√
πfeq

∫
v2<0

v2h(x2 = 1,v)dv, when v2 < 0.

(53)

The synthetic equations (13), (17), and (20) can be simplified to

iStρ+
∂U2

∂x2

= 0, (54)

2iStU2 +
∂ρ

∂x2

+
∂T

∂x2

+
∂σ22

∂x2

= 0, (55)

3

2
iStT +

∂q2

∂x2

+
∂U2

∂x2

= 0, (56)

iStσ22 + HoTσ22 +
4

3

∂U2

∂x2

= −δrpσ22 + 2

∫
(L− Ls)

(
v2

2 −
|v|2

3

)
dv, (57)

iStq2 + HoTq2 +
3Cq
2

∂T

∂x2

= −2

3
δrpq2 +

∫
(L− Ls)v2|v|2dv. (58)
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Figure 9: Comparisons of the velocity profiles in the oscillating Couette flow with different spatial dis-
cretizations, when (a, b) δrp = 50 and St = 1 and (c, d) δrp = 500 and St = 0.1. The reference solution is
obtained from the GSIS, where the spatial domain is discretized by Eq. (44), with Ns = 100 when δrp=50
and Ns = 500 when δrp = 500.

These synthetic equations can be combined to form two diffusion equations for the flow
velocity U2 and temperature T . To quickly decay the non-physical oscillations when δrp is
small and St is large, in numerical iterations we set

δrpσ
(k+1)
22 =δ̄rpσ

(k+1)
22 + (δrp − δ̄rp)σ

(k+1/2)
22 ,

δrpq
(k+1)
2 =δ̄rpq

(k+1)
2 + (δrp − δ̄rp)q

(k+1/2)
2 , (59)

where δ̄rp is given in Eq. (52). When U2 and T are solved, the perturbed density, shear
stress and heat flux can be solved from Eqs. (54), (57), and (58).

Typical numerical results are shown in Fig. 10 when the spatial region x2 ∈ [0, 1] is
discretized by 200 uniformly-distributed points, while the velocity grids are the same as that
used in Sec. 5.2. For the CIS, it is very hard to find the converged solution when the Strouhal
number St is small, where the iteration number scales roughly as St−1.5. However, this
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Figure 10: Comparisons of (a) the amplitude of normal pressure exerting on the oscillating plate and iteration
numbers (b) between the CIS and GSIS, for the sound propagation problem. The Shakhov model is solved,

where the solution is converged when max

{∫ ∣∣∣ρ(k+1)

ρ(k) − 1
∣∣∣dx2, ∫ ∣∣∣∣U(k+1)

2

U
(k)
2

− 1

∣∣∣∣dx2, ∫ ∣∣∣T (k+1)

q(k) − 1
∣∣∣dx2} <

10−5.

problem does not exist in the GSIS, as the Strouhal number has little effect on the number
of iterations. The effect of spatial resolution on the fidelity of the solution is demonstrated in
Fig. 11 when St = 2.5, where the sound waves between two plates have resonance. It is seen
that the GSIS needs less spatial grids than CIS. Again, this example proves the accuracy
and efficiency of the GSIS.

6. Numerical tests for two-dimensional problems

Now we consider two-dimensional problems such as lid-driven cavity flow and shear-
driven flow between two eccentric cylinders. The problems are not able to be simulated by
the special SIS only applicable for rarefied gas flows [25, 30, 31, 27, 43, 33], where the flow
velocity is perpendicular to the computational domain. Here we investigate the performance
of GSIS for typical general rarefied gas flows, where the flow velocity (or other macroscopic
variables) varies within the computational domain.

6.1. Two-dimensional lid-driven cavity flow

The two-dimensional lid-driven cavity flow is a canonical test for the algorithms for both
the Navier-Stokes and gas-kinetic equations. The flow domain is a square with size of 1× 1,
with the left and right walls locate at x1 = 0 and x1 = 1, bottom and top walls at x2 = 0
and x2 = 1, respectively. The top wall moves in the x1 direction with a constant velocity
of Uw, while the other walls are static. All the walls are kept at uniform temperature T0.
To demonstrate the accuracy and efficient of the GSIS, the Shakhov kinetic equation is
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Figure 11: Profiles of macroscopic quantities in the sound propagation problem with different spatial dis-
cretizations, when δrp = 50 and St = 2.5. The reference solution is obtained from the GSIS, where the
spatial domain is discretized by Ns = 200 uniform grids; the corresponding CIS results overlap with these
lines and are not shown here. The normal pressure is defined as P22 = 2

∫
v22hdv.

linearized by choosing α = Uw/vm in Eq. (2). The boundary conditions are

h (x1 = 0,v) = −2
√
πfeq

∫
v1<0

v1h (x1 = 0,v) dv, when v1 > 0,

h (x1 = 1,v) = 2
√
πfeq

∫
v1>0

v1h (x1 = 1,v) dv, when v1 < 0,

h (x2 = 0,v) = −2
√
πfeq

∫
v2<0

v2h (x2 = 0,v) dv, when v2 > 0,

h (x2 = 1,v) =

[
2v1 + 2

√
π

∫
v2>0

v2h (x2 = 1,v) dv

]
feq, when v2 < 0.

(60)

The problem is solved on non-uniform Cartesian grids, where dimensions in both the axes
x1 and x2 are discretized by Eq.(44). The linearized Shakhov equation is solved by DVM with
the 2nd-order upwind finite-difference scheme, where the distribution functions are stored
at the centers of grid cells. In GSIS, Eq. (13) with the constitutive relations in Eqs. (17)
and (20) lead to the Navier-Stokes-Fourier equations with source terms; these equations
are solved using a finite-difference version of the Semi-Implicit Method for Pressure Linked
Equations (SIMPLE). In each SIMPLE iteration, we solve four discrete diffusive equations
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Figure 12: The decay of error ε as a function of the iteration step in the lid-driven cavity flow described by
the linearized Shakhov model. The iteration is assumed to be converged when ε defined in Eq. (62) is less
than 10−5.

(for the two velocity components, pressure correction, and temperature) using the Jacobi
iteration methods.

After the macroscopic flow variables are solved by SIMPLE algorithm, the velocity dis-
tribution function is updated as

h(k+1)(x,v) = h(k+1/2)(x,v) +
δrp

max(10, δrp)

[
λρ(x) + 2λU (x) · v + λT (x)

(
|v|2 − 3

2

)]
feq,

(61)
because (i) the update of the shear stress and heat flux does not affect the accuracy and
efficiency of the GSIS, and (ii) for highly rarefied gas flows, high-order terms are very large
and the macroscopic synthetic equations become stiff near the solid corners due to the small
value of δrp, hence the limiter δrp/max(10, δrp) is introduced to retain the numerical stability.

We first test the converging speeds of both CIS and GSIS for the cases of δrp = 0.1, 1,
10, 100 and 1000. The corresponding spatial grids are non-uniform with Ns = 21, 21, 21, 41,
61 respectively. For the cases of δrp = 0.1, 1 and 10, the molecular velocity in both v1 and
v2 are discretized by Eq. (42), with ı = 3, and Nv = 48, 48 and 24, respectively, while for v3,
24, 24 and 12 uniform points in the range of [−6, 6] are used, respectively. When δ = 100
and 1000, the 6- and 8-point Gauss-Hermite quadrature nodes are used in all three velocity
components. The iterations in both CIS and GSIS are assumed to be converged when

ε =

∫∫ ∣∣∣∣ |U (k+1)|
|U (k)|

− 1

∣∣∣∣ dx1dx2 < 10−5. (62)

The same criterion is used for the inner loop of SIMPLE algorithm for the Navier-Stokes
equations.
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Table 1: Number of iteration steps and CPU time to reach convergence for the lid-driven cavity flow.

δrp N2
s Nv1Nv2Nv3 Iteration steps Total CPU time (s)

CIS GSIS CIS GSIS
0.1 20× 20 48× 48× 24 14 13 28.5 32.6

1 20× 20 48× 48× 24 14 16 28.2 38.4
10 20× 20 24× 24× 12 99 31 121.4 47.7

100 40× 40 16× 16× 16 1823 36 3176.1 144.1
1000 60× 60 8× 8× 8 — 36 — 492.5

Figure 12 compares the decay of error ε as a function of the number of iteration steps in
CIS and GSIS for flows at different values of rarefaction parameter, while Table 1 summarizes
the number of iteration steps and the total CPU time, where the single threaded Matlab
2018 code is run on Intel Xeon-E5-2680 v4 CPU. Similar to the test case of the Fourier heat
transfer, at small values of δrp (0.1 and 1), errors in both GSIS and CIS decay with the
same rate and converged solutions are found within 20 iteration steps. In the cases of larger
δrp, the iteration step in GSIS slightly increases, but it is less than 40 steps even for the
case of δrp = 1000. In contrast, the convergence of the CIS iteration deteriorates severely
as δrp increases. The iteration step reaches 1823 for the case of δrp = 100. Due to the slow
convergence of CIS for near continuum flows, the case of δrp = 1000 is not simulated.

With significantly faster convergence rate, the GSIS takes much less CPU time than the
CIS for cases of large δrp as shown in Table 1. Note that although the iteration number
is reduced in GSIS, the time for each iteration increases as the cost to solve the synthetic
equations is non-negligible, see the last column of Table 1. This is because the inner loop
of the SIMPLE algorithm based on segregated approach can take up to several hundreds
iterations to converge, depending on the value of δrp. The iteration steps of each inner loop
to reach convergence is dynamically decreasing with the DVM (outer) iteration, and settles
down to a constant which is rarefication-parameter related, e.g., from 677 to 155 in the case
of δrp = 100, while 178 to 76 in the case of δrp = 10. We note that using a coupled algorithm
to solve the discretized pressure and velocity components in a single linear equation system
would be much faster than the segregated approach, especially for high δrp cases, as have
been studied in the incompressible CFD theories. For example, in the following section
we find that if the kinetic and synthetic equations are both solved by DG, the cost of DG
for synthetic equations is negligible since pressure, velocity, and temperature are solved
simultaneously by direct solver.

To compare the accuracy of the GSIS with the CIS, we simulated the case of δrp = 100
with different non-uniform physical grids, including Ns = 21, 41, 61 and 101. Fig. 13
compares the pressure fields and streamlines predicted by both the CIS and GSIS, in which
the reference solutions are chosen as the GSIS results on the grid of Ns = 61. It can be seen
that the GSIS solution on the coarsest grid (Ns = 21) is much more accurate than the CIS
counterpart, especially in terms of the pressure field. From Fig. 13(d) to (f), we observe
that the short contour lines near the bottom wall are accurately captured by the GSIS even
on the coarsest mesh, while the CIS can capture them only with the finest mesh, see Fig. 13
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Figure 13: Accuracy comparisons between the CIS and GSIS for the lid-driven cavity flow. In each plot, the
right half are the reference solution (GSIS results on the Ns = 61 grid). In the upper rows, the left halves
of the plots are CIS solutions on grids of Ns = 21, 41 and 101 from left to right. In the lower rows, the left
halves are GSIS solution on grids of Ns = 21, 41 and 61 from lest to right. The contour plot is pressure
(ρ+ T ), with contour levels of -0.2, -0.1, -0.05, -0.02, -0.005, 0, 0.005, 0.02, 0.05, 0.1 and 0.2.

(c).

6.2. Shear-driven flow between two eccentric cylinders

In this section, we consider a shear-driven gas flow between two noncoaxial cylinders.
This test case is used to show that the proposed GSIS can be efficiently implemented through
other CFD method rather than the finite difference algorithm to deal with more complicated
geometries. As shown in Fig. 14, the outer cylinder with a radius of 2 rotates clockwise at a
constant speed of Uw, while the inner cylinder with a radius of 1 keeps static. The centers
of the outer cylinder and inner cylinder are at x = (0, 0.5) and the origin, respectively.
Both cylinders have a constant temperature T0. It is assumed that Uw is much smaller than
the most probable speed vm, thus the gas system can be linearized with α = Uw/vm. The
velocity distribution function for reflected molecules at the outer cylinder is given by
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h (x,v) =

[
2tw · v − 2

√
π

∫
v′·nw<0

v′ · nwh (x,v′) dv′
]
feq, when v · nw > 0, (63)

where nw and tw denote the outward unit normal vector and tangential vector of the solid
surface. The boundary condition at the inner cylinder is similar but without the term tw ·v.

x1

x2

 

Uw

Figure 14: Schematic of the geometry and structured triangular mesh for shear-driven flow between two
eccentric cylinders.

Using both the GSIS and CIS, the shear-driven flow is simulated on structured triangular
mesh, in which the grid nodes along the radial direction is described by Eq. (44). The high-
order DG methods are employed to seek solutions of the linearized Shakhov model equation
and the synthetic macroscopic equations, in pecewise polynomial spaces of degree of 3. The
detailed DG scheme for the gas kinetic equation can be found in [44], while the hybridizable
DG algorithm to solve the synthetic macroscopic equations is listed in the Appendix. During
each iteration step, besides the Nv discretized kinetic equations that are solved successively
on each spatial cell using the sweeping technique, one linear system (generated after DG
discretization) of dimension 4(K+1)Nf×4(K+1)Nf for the evolutions of all the maroscopic
unknowns over the whole computational domain is solved by the direct solver for large
sparse linear system based on LU -decomposition. Here the number 4 represents the number
of unknowns, i.e. p, u1, u2 and T , K is the degree of approximating polynomials in DG
discretization and Nf is the number of faces in spatial mesh skeleton.

The resultant velocity contours and streamlines are illustrated in Fig. 15 for two selected
rarefaction parameters δrp = 1000 and 10, in which the GSIS solutions are plotted in the left
half domain and the CIS ones are plotted in the right half domain. The results at δrp = 1000
are obtained on 2400 triangles with cell size (characterized by the height of triangle) varying
from 3 to 260 times the mean free path of gas molecules. The molecule velocity space is
discretized by 8-point Gauss-Hermite quadrature nodes in v1 and v2 and 12 equidistant
nodes in the range of [−4, 4] in v3. The results at δrp = 10 are obtained on 1600 triangles
with cell size varying from 0.1 to 3 times the mean free path of gas molecules. The molecule
velocity space is discretized in the domain of [−4, 4]3 by 32 non-uniform nodes in v1 and v2
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Figure 15: Comparisons of the CIS and GSIS results for shear-driven flow between two eccentric cylinders.
(a) Contours of U1 and streamlines at δrp = 1000; (b) Contours of U2 and streamlines at δrp = 1000; (c)
Contours of U1 and streamlines at δrp = 10; (d) Contours of U2 and streamlines at δrp = 10. In each
sub-figures, the GSIS results are plotted in the left half domain while the CIS ones are illustrated in the
right half domain. In (a) and (b) the velocity contours obtained by only solving the Navier-Stokes equations
with non-slip velocity boundary are also included, which are indicated by the white dashed lines.

and 24 equidistant nodes in v3. Numerical solutions are believed to be converged when the
relative error in velocity magnitude |U | between two consecutive iteration steps is less than
10−5. The streamlines show that, as the gas rotates clockwise from the top to the bottom,
due to the shrink of the flow pass, part of the gas near the outer surface is squeezed into
the bottom narrow space while the other part of the gas flows back along the surface of the
inner cylinder; as a consequence, a vortex appears above the inner cylinder.

Large discrepancies in the velocity contours are observed between the GSIS and CIS
results at δrp = 1000. To test the accuracy of both schemes, we also include the results of
the Navier-Stokes equations with non-slip velocity boundary condition, which are illustrated
by the white dashed lines in Fig. 15(a) and (b). The GSIS results overlap with the ones
from the Navier-Stokes equations, thus the GSIS can asymptotically preserve the Navier-
Stokes limit. However, the CIS cannot predict accurate solutions due to the large numerical
dissipation on such a coarse mesh, i.e. the maximum cell size is about 260 times of the
molecular mean free path. As the rarefaction parameter decreases to 10, the GSIS and CIS
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can produce close solutions on the same mesh.
Consider the rate of convergence to the steady-state solution, the numbers of iteration

steps and CPU time to reach convergence for both the CIS and GSIS are listed in Table 2.
All the cases are done in double precision on Intel Xeon-E5-2680 processors and 128 GB
RAM and the direct sparse solver, PARDISO [57] is called to directly solve the linear system
for macroscopic equations. The simulations are run on 12 processors using OpenMP. It is
seen that the GSIS cost only 26 iterative steps to reach the convergence criterion for both
the cases of δrp = 1000 and 10, while the CIS consumes 49454 and 296 steps, respectively.
Compared to that of solving the kinetic equation, the computational consumption for DG
to solve the macroscopic equations is very small, since the number of degrees of freedom for
the latter one is much smaller. Therefore, the GSIS can be nearly 1300 and 5 times faster
than the CIS when δrp = 1000 and 10, respectively.

Table 2: Number of iteration steps and CPU time to reach convergence for the shear-driven flow between
two eccentric cylinders.

δrp # of triangles Nv1Nv2Nv3 Iteration steps Total CPU time (s)
CIS GSIS CIS GSIS

1000 2400 8× 8× 12 49454 26 33861.2 26.3
10 1600 32× 32× 24 296 26 2849.8 580.3

6.3. Two-dimensional oscillatory Couette flow

Finally we consider the oscillatory flow in a three-dimensional cavity shown in Fig. 16(a).
We assume the side length OD is much larger than OH and OA, so that the problem is quasi
two-dimensional. The characteristic length H is chosen as the side length OA, and the aspect
ratio is defined as Asp = OH/OA. If Asp =∞, the problem is just the oscillatory Couette
flow between two parallel plates studied in Sec. 5.2. This problem is interesting because it
displays a counter-intuitive phenomenon that the shear force exerting on the oscillating lid
in two-dimensional cavity could be even smaller than that of the one-dimensional Couette
flow [52]. The full three-dimensional oscillatory flow was studied in Ref. [58], but not all the
parameter region are covered, for example, the case with OA much larger than OA and OH.

The synthetic equations (13), (17), and (20) can be simplified to

2iStU1 +
∂σ12

∂x2

+
∂σ13

∂x3

= 0,

iStσ12 + HoTσ12 +
∂U1

∂x2

= −δrpσ12 + 2

∫
(L− Ls)v1v2dv,

iStσ13 + HoTσ13 +
∂U1

∂x3

= −δrpσ13 + 2

∫
(L− Ls)v1v3dv, (64)

which leads to the following diffusion-type equation for the flow velocity U1 that is solved
in a stable iterative manner:

2iSt(iSt + δ̄rp)U
(k+1)
1 −

(
∂2

∂x2
2

+
∂2

∂x3
2

)
U

(k+1)
1 = Source + 2iSt(δ̄rp − δrp)U

(k+1/2)
1 , (65)
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where δ̄rp is given in Eq. (52), and

Source =
∂

∂x2

[
2

∫
(L(k) − L(k)

s )v1v2dv − HoT(k+1/2)
σ12

]
+

∂

∂x3

[
2

∫
(L(k) − L(k)

s )v1v3dv − HoT(k+1/2)
σ13

]
. (66)

In numerical simulations, the molecular velocities v2 and v3 are discretized non-uniformly
according to Eq. (42) with 48 points in each direction, while v1 is truncated into the re-
gion of [−6, 6] and discretized by 24 uniformly-distributed points. Due to the symme-
try h(x2, x3, v1, v2, v3) = h(x2,Asp − x3, v1, v2,−v3), we only consider the domain where
0 ≤ x2 ≤ 1 and 0 ≤ x3 ≤ Asp/2, which are discretized by 50 and 60 points according to
Eq. (44) in x1 and x2 directions, respectively. The velocity distribution function entering the
domain from the stationary walls is zero, while that from the oscillating wall is 2v1feq. The
diffusion-type equation (65) is approximated by the central finite difference with 5 stencils,
which are directly solved by rewriting it in matrix form. From the inset of Fig. 16(b) we see
that the GSIS is very efficient as converged solutions are obtained within 40 iterations.

We are interested in how the average shear force exerting on the oscillating lid change
with the normalized oscillation frequency St. Hence σ13 is not considered here as it is anti-
symmetric along the line x3 = Asp/2 so its overall contribution to the friction is zero. The
amplitude of the average shear force on the oscillating lid is defined as

σ̄12 =
2|
∫ Asp/2

0
σ12(x2 = 1)dx3|

Asp
, (67)

which is shown in Fig. 16(b) for different aspect ratios of the cavity over a wide range of the
oscillation frequency, when δrp = 50. It can be seen when Asp = 2, the average shear force is
the same as that of Asp =∞, except that it is slightly larger when St is small. This is seen
more clearly in Fig. 16(c) that the two lateral walls, i.e. the left and right walls in Fig. 16(a),
increase the shear stress from a nearly small constant to a high rise near the left top corner.
When St increases, the shear stress quickly decays from the oscillating lid to the zero value
at the bottom surface, and its value at the oscillating lid is nearly uniform, see Fig. 16(d)
and (e). As the aspect ratio of the cavity reduces, the average shear force increases when St
is small, see Fig. 16(f) for an example; this is easy to understood as the lateral walls increase
the total friction according to our daily life experience. However, from Fig. 16(f) and (g) we
can see that the shear stress quickly saturates, as larger oscillation frequency only slightly
increases the shear stress at the lid, such that the average shear stress on the lid remains
nearly constant over a wide range of St; and the smaller the aspect ratio is, the wider this
region is. This may be useful to design a micro-electro-mechanical system where the shear
force remains constant in a certain wide range of oscillation frequency. It is this efficient
algorithm allowing us to find this new phenomenon which is missed in Ref. [58]. Another
counter-intuitive thing is that, when St is large, the average shear force at small values of
cavity aspect ratio is slightly smaller than that of the one-dimensional cavity, although the
relative difference is within 5%.
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Figure 16: (a) Schematic of the oscillatory flow in a 3D rectangular cavity, where ‘O’ is the origin of the
coordinate. The top lid oscillates in the x1 direction periodically. (b) The amplitude of shear force exerting
on the oscillating lid that is normalized by the aspect ration Asp = OH/OA, see Eq. (67); Inset shows the
iteration number when the relative error in U1 between two consecutive iteration is less than 10−5. (c, d, e)
The distribution of shear stress when St = 0, 10, and 50, respectively, and Asp = 2. (f, g, h) Same as (c, d,
e), respectively, but with Asp = 0.05. The linearized Shakhov model is used with δrp = 50 in all cases.
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7. Conclusions and outlooks

In summary, we have developed a general synthetic iterative scheme to find the steady-
state solution of the linearized Boltzmann equation efficiently and accurately. Various nu-
merical results have demonstrated that our scheme is able to find the converged solution
within about 20 iterations at any Knudsen number, due to the fact that the synthetic macro-
scopic equations not only asymptotically preserve the Navier-Stokes limit in the framework
of Chapman-Enskog expansion 2, but also explicitly contain the constitutive laws for the
stress and heat flux at the first order approximation in the the Knudsen number to the
linearized Boltzmann equation. As a consequence, accurate solutions that are not contam-
inated by numerical dissipation and accumulated error can be obtained when the cell size
is much larger than the mean free path of gas molecules. Moreover, the numerical error in
the general synthetic iterative scheme decays very fast and the convergence criterion can be
set at a much higher value than the conventional iterative scheme. These factors enable our
general synthetic iterative scheme to find the steady-state solution in 10-ish iterations.

This paper provides a framework to solve the general linear rarefied gas flow problems.
The essence of our approach relies on the following two points: (i) the explicit inclusion
of Navier-Stokes constitutive laws and (ii) high-order terms are derived exactly from the
gas kinetic equation. The first point ensures fast convergence in the (near) continuum flow
regime, while the latter ensures that correct solution is obtained in transition and free-
molecular flow regimes. The advantages and future works are highlighted below:

1. Compared to the implicit UGKS [14] and it variants [45, 46], we conclude that in
order to develop efficient multiscale numerical schemes, macroscopic equations must
be solved together with the Boltzmann or kinetic model equations. While in Refs. [14,
45, 46] only five equations from the conservation laws are used so that complex flux
evaluation across the cell interface must be adopted to asymptotically preserve the
Navier-Stokes limit, our general synthetic iterative scheme needs no complex flux eval-
uation as the Navier-Stokes equations are recovered explicitly. Thus, the numerical
implementation of GSIS is much easy than UGKS and the convergence to steady-state
solution is much faster. More importantly, our scheme does not depend on the spe-
cific form of the collision operator, while that in Refs. [14, 45, 46] relies only on the
BGK-type kinetic equations to enable exact evaluation of numerical flux.

2. The gas kinetic equation and synthetic equations can be solved by sophisticated meth-
ods of computational fluid dynamics. For highly rarefied gas flows, the cell size is
easily smaller than the mean free path and both methods yield high accuracy. For
continuum/or near continuum flows, as long as the macroscopic solver for synthetic

2If the numerical scheme solving the gas kinetic equation is not asymptotically preserving the Navier-
Stokes limit, then the solution will suffer from huge numerical dissipation if the cell size is much larger than
the mean free path; the numerical evidence in Fourier flow, oscillating Couette flow, sound propagation, and
shear-driven flow between two eccentric cylinders has shown that in GSIS the cell size can be much larger
than the mean free path to obtain accurate result, but the CIS cannot. However, the rigorous proof of the
asymptotically preserving property of GSIS is very difficult, and we leave it to future works.
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equations (essentially the NS equations) is able to capture the continuum flow behav-
iors, the accuracy of GSIS is guaranteed, that is, the numerical cell size should be
smaller than the variation scale (such as the wavelength of sound) of the flow, but can
be much larger than the MFP. In other words, the solution of GSIS is not affected
when gas kinetic equation and synthetic equations are discretized by different schemes,
as long as synthetic equations capture the flow dynamics in the continuum regime. For
example, in Fourier/oscillating Couette/sound propagation problems, the gas kinetic
equation is solved by the second-order upwind finite difference scheme, while synthetic
equations are solved by the central finite difference scheme.

3. Since the limitation on spatial cell size (i.e. it should be smaller than the mean
free path of gas molecules) is removed and fast convergence is enabled, the present
general synthetic iterative scheme may be applied to the low-variance [59, 60] and even
frequency-domain [61] DSMC that solves the linearized Boltzmann and kinetic model
equations to improve the computational efficiency, especially in the near-continuum
flow regime.

4. The present method can be extended to multi-species and compressible flow. The
key is to construct macroscopic equations that recover the compressible Navier-Stokes
equation to the first order of Knudsen number. As a matter of fact, the Grad 13
moment equations [48, 49] can be directly used if the high-order velocity moments are
calculated from the numerical solution of the Boltzmann equation, rather than closed
by making assumption on the form of velocity distribution function. Actually the
authors have implemented the general synthetic iterative scheme for nonlinear Fourier
heat transfer between two parallel plates: started from the global equilibrium distri-
bution, converged solution at arbitrary Knudsen number is found within 20 iterations.

5. It is noted that recently the unified gas-kinetic wave-particle (UGKWP) method, which
uses the essential idea of UGKS that the streaming and collision should be treated
spontaneously, has been applied in the framework of DSMC to remove the constraint
on the cell size when the Knudsen number is small [62, 63]; the (ellipsoidal statistics)
BGK kinetic model is solved and the complex and time-consuming particle sorting is
used to enable the asymptotically preserving property. We believe that the general
synthetic iterative scheme can also be applied to DSMC to remove the limitation on
cell size and boost convergence, and the advantage is clear: it relies on no specific
collision operator so that it can be extended naturally to multi-species flows and even
flows involving chemical reactions.

With these new development implemented, it is foreseen that in the near future the
problem of numerical simulation of multiscale rarefied gas flows may be solved completely.
Also, the same idea can be applied to other kinetic equations such as the Enskog equation
for dense gases dynamics with applications to gas extraction in unconventional reservoirs
and non-equilibrium evaporation and condensation at the nano scale [64, 65, 66].

35



Appendix

Here, some details to solve the synthetic macroscopic equations using the high-order
hybridizable discontinuous Galerkin (HDG) method [67] on arbitrary triangular mesh are
presented. The steady-state governing equations can be written in the following mixed form
as a system of first-order equations

∇ · [Gc + Gd] = 0,

L−∇u−Π = 0,

E −∇T −Θ = 0, (A.1)

where

Gc =

 U
pI
0

 ,
Gd =

 0
− 1
δrp

(
L+LT − 2

3
tr (L) I

)
− 5

4δrpPr
E

 ,
Π =

[
HoTσ11 + 1

2
HoTσ22

1
2
HoTσ12

1
2
HoTσ12

1
2
HoTσ11 + HoTσ22

]
,

Θ =

[
4
5
HoTq1

4
5
HoTq2

]
, (A.2)

with I being the identity matrix. The auxiliary variables L and E are introduced to ap-
proximate the combination of the velocity gradient ∇U , temperature gradient ∇T and the
high-order moments. Then, the stress tensor and heat flux are evaluated as

σij = − 1

δrp

(
Lij + Lji −

2

3
Lkkδij

)
, qi = − 5

4δrpPr
Ei. (A.3)

Let ∆ ∈ R2 be an two-dimensional domain with boundary ∂∆ in the x1−x2 plane. Then,
∆ is partitioned in Nr disjoint regular triangles ∆r: ∆ = ∪Ne

r ∆r. The boundaries ∂∆r of the
triangles define a group of Nf faces Γc: Γ = ∪Ne

r {∂∆r} = ∪Nf
c {Γc}. For HDG discretization,

two types of discontinuous finite element approximation space, one for solutions within ∆r

and the other for traces of solution on Γc, are defined as

V = {ϕ : ϕ|∆i
∈ PK(∆r), ∀ ∆i ⊂ ∆},

W = {ψ : ψ|Γc ∈ PK(Γc), ∀ Γc ⊂ Γ}, (A.4)

where PK(D) denotes the space of K−th order polynomials on a domain D.
The HDG method solves the system in two steps. First, a global problem is set up to

determine the traces of the flow properties Q̂ =
[
p̂, Û , T̂

]
on the faces Γ. Then, a local

problem with Q̂ as the boundary condition on ∂∆r is solved element-by-element to obtain
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the solutions for the flow properties Q = [p,U , T ], as well as the ones for the auxiliary
variables L and E. Generally speaking, when moving from the interior of the triangle
element ∆r to its boundary ∂∆r, the traces define what the values of field variables on the
boundary should be. In the HDG method, it is assumed that the traces are singled-valued
on each face.

We introduce the notations (a, b)D =
∫
D∈R2 (a� b) dx1dx2 and 〈a, b〉D =

∫
D∈R1 (a� b) dΓ,

where � can be either the dot product · or tensor product ⊗. The local problem is stated
as: find (Q,L,E) ∈ [V]4 × [V]4 × [V]2 such that

− (Gc + Gd,∇r)∆r
+ 〈F̂ · n, r〉∂∆r = 0,

(L,w)∆r
+ (U ,∇ ·w)∆r

− 〈Û ,w · n〉∂∆r = (w,Π)∆r
,

(E, z)∆r
+ (T,∇ · z)∆r

− 〈T̂ , z · n〉∂∆r = (z,Θ)∆r
, (A.5)

for all (r,w, z) ∈ [V]4 × [V]4 × [V]2. The numerical fluxes F̂ · n is defined as [68]

F̂ · n =

 U
p̂I − 1

δrp

(
L+LT − 2

3
tr (L) I

)
− 5

4δrpPr
E

 · n+

 τ
τ
δrp

5τ
4δrpPr

 p− p̂
U − Û
T − T̂

 . (A.6)

Here n being the outward unite normal vector of ∂∆r. τ is the stabilization parameter that
have important effects on the accuracy and convergence of the HDG method. In this work,
we chosen τ = 1/Hmin, with Hmin the minimum height of the triangles.

The global problem is set up by enforcing the continuity of the numerical fluxes over all
the interior faces. It is stated as: find Q̂ ∈ [W]4 such that

〈
(
F̂ · n

)+

,ψ〉Γc + 〈
(
F̂ · n

)−
,ψ〉Γc = 0, on Γc ∈ Γ\∂∆, (A.7)

for all ψ ∈ [W]4. Here the superscripts ± denote the numerical fluxes obtained from the
triangles on both sides of the face. Note that the traces on boundary faces are calculated as

〈Q̂−Q+
VDF,ψ〉Γc , on Γc ∈ Γ ∩ ∂∆, (A.8)

where Q+
VDF is the field solutions directly calculated from the approximated velocity dis-

tribution function (see Eq. (8)) within the triangle where the boundary face Γc belongs
to.

By assembling the local problem (A.5) and global problem (A.7) and (A.8) over all the
triangles and faces, we can obtain a matrix system of form

AQ AL AE AQ̂
BQ BL BE BQ̂

CQ CL CE CQ̂
DQ DL DE DQ̂




Q
L
E
Q̂

 =


SQ
SL
SE
SQ̂

 , (A.9)
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where Q, L, E and Q̂ are the vectors of degrees of freedom of the flow properties Q, the
auxiliary variables L and E, and the traces of the flow properties Q̂, respectively. Note
that the degrees of freedom for Q, L and E are grouped together and ordered element-by-
element, and the corresponding coefficient matrix [AQ, AL, AE;BQ, BL, BE;CQ, CL, CE] has
block-diagonal structure. Therefore, we can eliminate Q, L and E to obtained a reduced
linear system involving only Q̂. Once Q̂ is determined, Q, L and E are reconstructed
corresponding to the local problem (A.5) in an element-wise fashion, while the stress tensor
and heat flux are calculated as Eq. (A.3).
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