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Abstract: Flow and heat transfer of a nanofluid through a horizontal microchannel in the presence 
of the magnetic field effects and electric double layer (EDL) is investigated theoretically. For a 
microchannel with a large aspect ratio, the flow problem is treated as a two-dimensional nonlinear 
system. The body force generated by the EDL and magnetic field is considered in momentum 
equation. In order to study the mechanism of nanofluid heat transfer, the nanoparticle distribution 
and the heat transfer process of nanofluid flow are represented by the Buongiorno's nanofluid model 
with the passively controlled nanoparticle distribution at the boundary, which has not been 
considered in previous microchannel studies. Compared to the so-called active control of 
nanoparticle volume fraction at the boundary, the current approach makes the model physically 
more reliable by taking into account of the effect due to varying temperature. The analytical 
approximations obtained by the homotopy analysis method reveals that both the magnetic field 
effects and the EDL play significant roles on altering the flow and heat transfer in microchannels. It 
is also found that the heat enhancement is significantly dependent on the Brinkman number and the 
temperature applied to the wall. 

Keywords: Nanofluid flow, Passively-controlled model, Electric double layer, Magnetic 
field, Microchannel 

1. Introduction

With the development of miniaturization of scientific instruments, flow and heat 

transfer of nanofluids in micro-components have been involved in various fields, 

especially in medicine, aerospace and other high-tech fields [1, 2]. However, 
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experimental observations [3, 4] have shown that the behaviours of fluid flow and heat 

transfer in a microchannel are very different from that in a macro-scale situation. Mala 

et al. [5, 6] studied the effect of the EDL on fluid flow and heat transfer in microchannel 

between two parallel plates. Their research shows that the EDL results in a reduced 

velocity of flow, thus also affects the temperature distribution. Similar conclusions and 

other particular features of EDL were found and studied by Ren and Li [7], You and 

Guo [8], Shit et al. [9], Jing et al. [10], Zhao et al. [11]. It was indicated that study of 

the flow of fluid in the micro-devices should take into account the role of the EDL. 

On the other hand, magnetohydrodynamics (MHD) flow is very useful in heat and 

mass transfer progresses in many industrial procedures, because the applied magnetic 

field can affect the flow and heat transfer characteristics of the fluid [12]. Magnetic 

fluid is a kind of fluid containing magnetic particles, the particles of which is generally 

nanoscale. Therefore, magnetic fluid can be generally considered as a nanofluid and its 

flow and heat transfer can be theoretically studied by using nanofluid models. Recently, 

many researchers have paid much attention to the MHD flow and considerable effort 

has been devoted to experimental and theoretical research [13-17]. It is worth 

mentioning that Ganguly et al. [18] and Shit et al. [19] theoretically studied the electro-

osmotic flow in a hydrophobic microchannel with externally applied magnetic field. 

Their work indicates that the magnetic field can be used to alter the distributions of 

velocity. Besides, Sheikholeslami and Rokni [20] analysed the flow of nanofluid 

convection in the presence of induced magnetic fields. The Buongiorno's nanofluid 

model and the active control of nanoparticle volume fraction at the boundary is adopted 

in their work. The results showed that the nanofluid motion reduces with the Hartmann 

number. 

Physically, the concentration distribution of nanoparticles on the wall surface is 

not as easy as the temperature to be controlled. The value of the nanoparticle volume 

fraction at the boundary has a strong relationship with the temperature and the physical 

properties of nanoparticles. Kuznetsov and Nield [21] found that Brownian motion and 

thermophoresis have significant effects on heat transfer, and subsequently modifying 

the boundary conditions such that the nanoparticle volume fraction on the surface of 

the plate passively adjusts itself to whatever temperature is imposed on the surface of 
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the plate. Therefore, a passively controlled nanofluid model was proposed by 

Kuznetsov and Nield [22], which is more physically realistic than previous nanofluid 

model. Based on the passively controlled nanofluid model, Xu and Pop [23, 24] studied 

the flow and heat transfer of nanofluids and analysed the effects of Brownian motion 

and thermophoresis on the distribution of nanoparticles. It should be pointed out that 

the Buongiorno's nanofluid model is adopted in their work since the Buongiorno's 

nanofluid model can describe the relationship between temperature and nanoparticle 

volume fraction with coupled equations. 

The aim of the present work is to investigate the flow and heat transfer of nanofluid 

between two horizontal plates in the presence of the magnetic field effects and EDL. 

The body force due to the EDL and magnetic field are taken into account in the 

momentum equation, meanwhile, the pressure gradient parameter is treated as unknown 

quantity. The energy equation and nanoparticle volume fraction equation are modelled 

by the Buongiorno's nanofluid model and the viscous dissipation is considered in the 

energy equation. As one of the highlights in the present approach, the passively 

controlled nanoparticles distribution is adopted at the upper plate surface. The 

governing equations are reduced by a set of dimensionless quantities and then solved 

by homotopy analysis method (HAM) [25]. The effects of the parameters of EDL and 

magnetic field on the velocity, temperature and nanoparticle concentration are analysed. 

Furthermore, the important physical quantities of practical interests are examined in 

detail. 

2. Problem description and mathematical formulation 

A pressure-driven nanofluid flow between two horizontal plates at the presence of 

the EDL and the externally applied magnetic field is described in the following sections. 

The boundary walls of the channel are held at different temperatures with the lower 

wall at temperature 1T  and the upper wall at temperature 2T . A passively controlled 

nanofluid model is adopted here and the upper plate has the passive boundary condition, 

while the nanoparticle volume fraction at lower plate is a constant 1C . The magnetic 

field of strength B  is imposed along the y-axis. L is the length of the two plates and 

H is the distance between the two plates, as illustrated in Fig.1. The physical model and 
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boundary conditions in this study conform to the physical facts. 

 

Fig1. Physical sketch of the problem. 

The nanofluid flow between two horizontal plates is assumed to be steady, laminar, 

fully developed. Therefore, the electrostatic potential equation and Navier-Stokes 

equations describing the conservations of the total mass, momentum, thermal energy 

and nanoparticle volume fraction respectively can be written as 

 2

0

e

r

ρψ
ε ε

∇ = − , (1) 

 0∇⋅ =V , (2) 

 2( ) pρ µ⋅∇ = −∇ + ∇ +V V V F , (3) 
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0

( ) [ ]T
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p

DT T D T C T T
T c

µα τ
ρ

⋅∇ = ∇ + ∇ ⋅∇ + ∇ ⋅∇ + ΦV , (4) 

 2 2

0

( ) T
B

DC D C T
T

⋅∇ = ∇ + ∇V , (5) 

In Eqs.(1)-(5), ψ   is the electrostatic potential, rε   is the dielectric constant of the 

fluid, 0ε  is the permittivity of vacuum, V  is velocity vector, ρ  is the density of 

the fluid, µ  is the viscosity, p  is the pressure, e eρ= + ×F E J B  is the body force 

originating from the presence of the EDL and magnetic field, eE  is the electric field 

strength generated by the electric double layer, eρ   is the charge density, J   is the 

current density vector, B   is the magnetic flux density vector, α   is the thermal 

diffusivity, T   is the temperature, 0T   is the reference temperature, C   is the 
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nanoparticle volume fraction, Φ   is the viscous dissipation term, BD   and TD

represent the Brownian diffusion coefficient and the thermophoretic diffusion 

coefficient respectively, and ( ) ( )p p p fc cτ ρ ρ=  is the heat capacity ratio. Subscripts 

p  and f , denote the nanoparticles and the base fluid, respectively. 

For parallel flow in channels, it is assumed that the velocity component of fluid is 

equal to zero along y-direction. The values of temperature and nanometer particle 

volume fraction in horizontal direction remain constant, namely, 0T x C x∂ ∂ = ∂ ∂ = . 

The fluid thermophysical properties are held constant, and the pressure gradient is 

assumed to be constant. It is worth noting that the electrical force e eρE  is caused by 

the EDL. Here, the direction of electric field strength is parallel to the x-axis, while the 

electric field strength is zero in the y-direction, namely, ( ,0)e xE=E . This is due to the 

fact that the free charged particles in the EDL surface will move along the direction of 

liquid flow (parallel to the x-axis), and the direction of free charge movement is parallel 

to the direction of electric field strength. Therefore, the electric field strength in the x 

direction can be noted as xE . Similarly, the velocity of the fluid is zero in y-direction, 

and there is no free charge movement in y-direction. Thus, the electric field strength in 

the y-direction is zero. It is also assumed that the magnetic Reynolds number is small 

(<<1) so that the induced magnetic field can be omitted. According to Ohm’s law, the 

current density can be written as 

 ( )σ= + ×J E V B , (6) 

where, σ  is the electrical conductivity, E  is applied electric field. 

There is no applied electric field in present research, fluid motion is only owing to 

the pressure driven, i.e. 0=E . In addition, 0(0, )B=B , ( ,0)u=V . The force exerted 

on the fluid due to the electromagnetic interaction with the moving fluid can be written 

as 

 2
0( ) [ ( ) ( )] ( ,0)B uσ σ σ× = × × = ⋅ − ⋅ = −J B V B B B V B V B B . (7) 

Based on the above assumptions, the governing equations (1)-(5) are reduce to 
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2 2

2 2
0

0T
B

Dd C d TD
d y T d y

+ = . (11) 

It is noted that the electric potential at the boundary between the diffuse double 

layer and the compact layer is zeta potential (ζ  ). The boundary conditions for the 

velocity are non-slip, which requires the x-component of the velocity to vanish at the 

wall. It is also assumed that the boundary conditions for the temperature are isothermal. 

The passive boundary condition is employed at the upper plate. With these assumptions, 

the appropriate boundary conditions of Eqs. (8)-(11) are 

 1 1( ) , ( ) 0, ( ) , ( ) , 0y u y T y T C y C at yψ ζ= = = = = , (12) 

 2
0

( ) , ( ) 0, ( ) , 0,T
B

DdC dTy u y T y T D at y H
d y T d y

ψ ζ= = = + = = . (13) 

In the channel flow research, mass flow is usually regarded as a specified quantity. 

Therefore, the following equation is established 

 
0

1 ( )
H

mU u y dy
H

= ∫ , (14) 

where mU  is the average velocity. 

2.1 Analytical solution to the electrostatic potential 

For the electrostatic potential, the relationship between ψ  and eρ  is described 

by the Poisson equation (8). The net charge density eρ  in a unit volume of the fluid is 

given by [26] 

 0
0 0 0( ) 2 Sinh ˆe

b

zen n ze n ze
k T
ψρ + −  

= − = −  
 

, (15) 

where, n+   and n−  are the number of ions of each type satisfying the Boltzmann 

equation 0 0
ˆExp( )bn n ze k Tψ+ = −  and 0 0

ˆExp( )bn n ze k Tψ− = . z  is the valence of 
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ions, 0e  is the charge of a proton, 0n  represents the bulk ionic concentration, bk and 

T̂ are the Boltzmann constant and the absolute temperature respectively. 

Substituting Eq.(15) into the Poisson’s equation (8), the well-known Poisson-

Boltzmann equation is obtained 

 
2

0 0 0
2

0

2 Sinh ˆ
r b

n ze zed
d y k T

ψψ
ε ε

 
=  

 
. (16) 

By defining the Debye-Hückel parameter as ( )1/22 2
0 0 0

ˆ2 r bk n z e k Tε ε= , and 1 k  

is generally regarded as the EDL thickness.  

Introducing the dimensionless variables 

 y
H

η = , 0( ) ˆ
b

ze
k T
ψηΨ = . (17) 

Then Eq.(16) can be non-dimensionalized as 

 ( )
2

2
2

( ) Sinh ( )d
d

η κ η
η
Ψ

= Ψ , (18) 

where Hkκ = . 

It is assumed that the electric potential is much smaller than the thermal energy of 

the ions, i.e. 0
ˆ

bze k Tψ   . According to the Debye-Hückel linear approximation, 

Eq.(18) can be transformed into 

 
2

2
2

( ) ( )d
d

η κ η
η
Ψ

= Ψ , (19) 

subject to the boundary conditions 

 0(0) (1) ˆ
b

ze
k T
ζ

Ψ = Ψ = , (20) 

which has the analytical solution 

 ( ) ( )
1

e e
e

κ κη κη
κ

ζη −Ψ = +
+

, (21) 

where 0
ˆ= ( )bze k Tζ ζ , * exp(*)e =  is exponential function. 
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2.2 The dimensionless form of the governing equations and boundary conditions 

The streaming current is the current due to the transport of the net charge with the 

fluid flow. It is defined as [5] 
 s eI u dρ

Ω

= Ω∫ , (22) 

where, Ω  is the cross-sectional area of the channel, and H WΩ = × , W  is the width 

of the plate. 

The streaming potential generated by the streaming current will create an opposite 

current, called conduction current and is defined by 

 0c xI Eλ= Ω , (23) 

where, 0λ  is the electrical conductivity of the fluid, and 0λ  is assumed to be constant. 

In Eq. (9), the unknown electrokinetic potential xE  can be obtained through the 

balance between streaming current and electrical conduction current at steady state. It 

means that the net electrical current should be zero at a steady state,  

 0s cI I+ = . (24) 

Therefore, the electrokinetic potential xE  is obtained as 

 
0

0

1 H

x eE u dy
H

ρ
λ

= − ∫ , (25) 

Substituting Eq.(25) into Eq.(9) , the momentum equation is transformed into 

 
2

2
02 0

0

1 0
H

e e
d u d p B u u dy
d y d x H

µ σ ρ ρ
λ

− − − =∫ . (26) 

Using Eq.(15), Eq.(17) and the Debye- H ü ckel linear approximation, the 

relationship between the net charge density eρ   and the dimensionless electrostatic 

potential ( )ηΨ  can be obtained as 

 0 02 ( )e n zeρ η= − Ψ . (27) 

Define the dimensionless quantities 

 0 0

2 0 1 0

( ), ( ) , ( ) , ( )
m

T T C Cy u yU
H U T T C C

η η θ η φ η− −
= = = =

− −
, (28) 

where, 0C  is the reference nanoparticle volume fraction. 

Therefore, non-dimensionalize the momentum Eq.(26) by Eq.(27) and 
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dimensionless quantities (28), we obtain 

 
12

0
( ) ( ) ( ) ( ) ( ) 0U P Ha U G U dη η η η η η′′ + − − Ψ Ψ =∫ , (29) 

where, P   is a non-dimensional parameter, Ha   is the Hartmann number, G   is a 

non-dimensional parameter and they are defined by 

 
22

0 0
0

0

(2 ), ,x
m

n ze HHP P Ha B H G
U

σ
µ µ µλ

= = = , (30) 

in which xP dp dx= − is the pressure constant, 

According to the boundary conditions (12), (13) and the additional boundary 

condition (14), the dimensionless boundary conditions for the velocity are 

 
1

0
(0) (1) 0, ( ) 1U U U dη η= = =∫ , (31) 

Similarly, substituting the dimensionless quantities (28) into Eqs. (10) and (11), 

the reduced energy equation and volume fraction of nanoparticles equation are obtained 

respectively 

 2 2( ) ( ) ( ) ( ) ( ) 0Nb Nt BrUθ η θ η φ η θ η η′′ ′ ′ ′ ′+ + + = , (32) 

 ( ) ( ) 0Nt
Nb

φ η θ η′′ ′′+ = , (33) 

the corresponding boundary conditions in non-dimensional form are 

 (0) , (1) 1, (0) 1, (1) (1) 0Nb Ntθθ δ θ φ φ θ′ ′= = = + = , (34) 

where, 1 0 2 0( ) ( )T T T Tθδ = − −   is constant, Br  , Nb   and Nt   are the Brinkman 

number, the Brownian motion parameter and the thermophoresis parameter, 

respectively, and they are defined by 

 1 0 2 0

0

( ) ( ), ,B TD C C D T TBr Pr Ec Nb Nt
T

τ τ
α α
− −

= ⋅ = = , (35) 

in which Pr ν α=   and 2
2 0[ ( )]m pEc U c T T= −   are the Prandtl number and Eckert 

number, respectively. 

2.3 Some important physical quantities 

The physically important quantities of practical interest are the skin friction, the 

Nusselt number and the wall mass flux. These important physical quantities are crucial 

to understand shear stress at the boundary, convective heat transfer and mass transfer 
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between the surface of two plates and the fluid flowing past it. In this case, they are 

defined by 

1 2 1 2
1 2 1 22 21 1

1 0 2 02 2

, , , ,
( ) ( )

w w T T
f f

m m f f

Hq HqC C Nu Nu
U U k T T k T T

τ τ
ρ ρ

= = = =
− −

 

 1 2
1 2

1 0 1 0

, ,
( ) ( )

C C

B B

Hq HqSh Sh
D C C D C C

= =
− −

 (36) 

where, 

 
1 2 1 2

0 0

1 2
0

, , , ,

, .

w w T f T f
y y H y y H

C B C B
y y H

du du dT dTq k q k
dy dy dy dy

dC dCq D q D
dy dy

τ µ τ µ
= = = =

= =

= = = − = −

= − = −

 (37) 

in which, fk is the thermal conductivity, the subscript 1 and 2 refer to the physical 

quantities for lower wall and upper wall, respectively. 

Substituting Eqs. (28) and (37) into Eq. (36) , we obtain 

 1 2 1 2

1 2

1Re 2 (0), Re 2 (1), (0), (1),

(0), (1)

f fC U C U Nu Nu

Sh Sh
θ

θ θ
δ

φ φ

′ ′ ′ ′= = = − = −

′ ′= − = −
 (38) 

where Re mU H ν=  is the Reynolds number,  

3. Results and discussion 

The non-dimensional governing equations (19), (29), (32) and (33) with the 

corresponding boundary conditions (20), (31) and (34) are solved for a range of values 

of the parameters by employing the HAM technique.  

According to the HAM, the initial approximations are chosen as 

 

2 2(0) , (0) 6 6 ,
( 1)(0) (1 ) , (0) 1.

U
Nt

Nb
θ

θ θ

η η ζ η η
δθ δ δ η φ η

Ψ = − + = −
−

= + − = +
 (39) 

The auxiliary linear operator are given as 
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2 2

2 2

2 2

2 2

( ) ( )[ ( )] , [ ( )] ,

( ) ( )[ ( )] , [ ( )] .

d d UL L U
d d

d dL L
d d

η ηη η
η η

θ η φ ηθ η φ η
η η

Ψ
Ψ = =

= =
 (40) 

In the computation, the values of convergence control parameter are chosen as 

1 2Ψ = − , 1 2U = − , 1 2θ = − , 1 2φ = − . It is worth noting that the values of 

the convergence control parameters can be adjusted to ensure the convergence of the 

results. To examine the accuracy of the results, the residual sum of square functions for 

the governing equations are defined as 

 

1 2 2

0
1 12 2

0 0
1 2 2 2

0

1 2

0

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

U

E m d

E m U P Ha U G U d d

E m Nb Nt BrU d

NtE m d
Nb

θ

φ

κ η

η η

θ θ φ θ η

φ θ η

Ψ ′′= Ψ − Ψ

′′= + − − Ψ Ψ

′′ ′ ′ ′ ′= + + +

′′ ′′= +

∫
∫ ∫
∫

∫

 (41) 

where, m is the computational order. 

For instance, in the case of 1Ha G Brκ ζ= = = = =  , 0.2Nb =  , 0.1Nt =   and 

0.5θδ = , the residual sum of squares for different orders of the solutions are obtain 

through the homotopy analysis method solving process (Table 1). As can be seen in 

Table 1, the computational errors of each equation decrease rapidly with the increase of 

the computational order. It is observed that the maximum residual sum of squares is 
168.815 10−×  at 50th order HAM truncations. In order to ensure the accuracy of the 

results, the 50th order calculation results were adopted for analysis and discussion in 

present work. 

Table 1. The residual sum of squares for different computational orders. 

order ( )E mΨ  ( )UE m  ( )E mθ  ( )E mφ  

10m =  72.955 10−×  75.048 10−×  10.334 10−×  20.596 10−×  

20m =  131.538 10−×  137.618 10−×  68.590 10−×  61.548 10−×  

30m =  191.207 10−×  198.126 10−×  91.820 10−×  92.634 10−×  

40m =  251.032 10−×  257.454 10−×  121.601 10−×  139.125 10−×  

50m =  328.986 10−×  316.455 10−×  168.815 10−×  166.197 10−×  
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Fig. 2 shows the variation trend of electric potential with different values of κ . It 

can be observed that the value of the electric potential decreases with the value of κ  

increasing. According to the definition of κ , the value of κ  is inversely proportional 

to the thickness of the EDL. Therefore, the larger value of κ  , the thinner of the 

thickness of the EDL, which causes the decreasing electric potential. It can be seen in 

Fig. 2 that the HAM solutions are in excellent agreement with the analytical solutions 

for 1ζ =  given by Eq.(21) for different values of κ  demonstrating the accuracy of 

the present solution. 

 
Fig.2 Comparison of the dimensionless electric potential ( )ηΨ  for various values of κ  with 

1ζ = . Line: analytical solutions given by Eq.(21); Square symbols: HAM solutions. 

 

Ψ(η)

η

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ = 1, 2, 3, 4, 5



13 
 

 
Fig.3 The dimensionless velocity profiles ( )U η   for various values of Ha   in the case of 

0.1Nt = , 0.2Nb = , 1G Brκ ζ= = = =  and 0.5θδ = . 

 
Fig.4 The dimensionless temperature profiles ( )θ η   for various values of Ha   in the case of 

0.1Nt = , 0.2Nb = , 1G Brκ ζ= = = =  and 0.5θδ = . 
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Fig.5 The nanoparticle volume fraction profiles ( )φ η  for various values of Ha  in the case of 

0.1Nt = , 0.2Nb = , 1G Brκ ζ= = = =  and 0.5θδ = . 

The influences of Hartmann number Ha   on the distribution of dimensionless 

velocity, temperature and nanoparticle volume fraction are shown in Fig.3, Fig.4 and 

Fig.5 respectively. It is shown in Fig.3 that the enlargement of the Hartmann number 

Ha  causes slightly enhancement of the flow velocity in the vicinity of the two plates 

but the reduction of the flow velocity in the middle of the two plates. The impeding 

effect of magnetic field on flow velocity can be observed. As 0Ha =  , namely, no 

magnetic field exists, the velocity distribution curve is a parabola. When 1Ha , the 

magnetic field force plays an important role, and the velocity curve flattens out in the 

middle of the microchannel. Consequently, magnetic field slows down the flow velocity 

and inhibit the generation of turbulence. In Fig. 4, the dimensionless temperature 

profiles reduce continuously with increasing Ha   due to that the enhanced Lorentz 

force increases the thermal boundary-layer thickness between the two plates. Unlike 

the dimensionless temperature, the nanoparticle volume fraction profile increases with 

increasing magnetic field parameter as shown in Fig. 5 as the consequence of Ha  

inhibiting the fluid motion, which alters the distribution of nanoparticles. 

In the present work, dissipation effect in heat transfer process is considered. The 

Brinkman number is widely used to quantify the relationship between the heat 

generated by dissipation and the heat exchange at the wall. Fig.6 and Fig.7 depict the 
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distribution of dimensionless temperature and nanoparticle volume fraction for 

different Brinkman number. It is found in Fig.6 that the dimensionless temperature 

increases rapidly with increasing Br . On the contrary, the increase in Br  reduces 

nanoparticle volume fraction, as shown in Fig.7. These indicate that the heat energy 

generated by viscous dissipation is greater than that generated by heat transfer as Br  

increases. 

 
Fig.6 The dimensionless temperature profiles ( )θ η   for various values of Br   in the case of 

0.1Nt = , 0.2Nb = , 1G Haκ ζ= = = =  and 0.5θδ = . 
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Fig.7 The nanoparticle volume fraction profiles ( )φ η  for various values of Br  in the case of 

0.1Nt = , 0.2Nb = , 1G Haκ ζ= = = =  and 0.5θδ = . 

 

Fig.8 The dimensionless temperature profiles ( )θ η   for various values of θδ   in the case of 

0.1Nt = , 0.2Nb = , 1G Ha Brκ ζ= = = = = . 

The influence of the lower wall temperature on the distribution of dimensionless 

temperature and the nanoparticle volume fraction are shown in Fig. 8 and Fig 9. It can 

be observed that the temperature of the lower wall has a great influence on the 
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temperature distribution and the nanoparticle volume fraction between the two plates. 

With the enhancement of the temperature on lower wall, the fluid temperature between 

the two plates increases considerably, as illustrated in Fig.8. Similar trend is also 

observed in Fig.9 where the nanoparticle volume fraction increases with the 

temperature on lower wall. It is a clear indication that the nanoparticle volume fraction 

can be controlled by the temperature of the lower wall. In order to compare the 

difference between active control model and passive control model, the passive control 

nanoparticles distribution is adopted at the upper plate surface in present work. While 

the nanoparticles distribution at the lower plate adopts the active control model, which 

makes the value of the nanoparticle volume fraction on the lower wall constant (Fig. 9). 

It is to be pointed out that, in reality, it is difficult to keep the nanoparticle volume 

fraction constant at the plate surface, especially when the temperature changes. 

Therefore, the passively controlled nanofluid model is more physically realistic than 

previous nanofluid model. 

 

Fig.9 The nanoparticle volume fraction profiles ( )φ η  for various values of θδ  in the case of 

0.1Nt = , 0.2Nb = , 1G Ha Brκ ζ= = = = = . 

The effects of thermophoresis parameter Nt   and Brownian motion parameter 

Nb  on the nanoparticle volume fraction are depicted in Fig.10 and Fig.11. It is seen in 

Fig.10 that increasing the value of the thermophoresis parameter, the nanoparticle 
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volume fraction decreases significantly. As observed in Fig.11, the Brownian motion 

parameter can alter the nanoparticle volume fraction dramatically. The enhancement of 

Nb  leads to an increase of nanoparticle volume fraction. It is worth noting that the 

upper plate has the passive boundary condition due to the passively controlled nanofluid 

model in the present study. Therefore, the nanoparticle volume fraction on the upper 

wall varies with the change of Nt  and Nb . This behaviour agrees with the studies of 

Kuznetsov and Nield [22]. 

 

 
Fig.10 The nanoparticle volume fraction profiles ( )φ η  for various values of Nt  in the case of 

0.2Nb = , 1G Ha Brκ ζ= = = = =  and 0.5θδ = . 
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Fig.11 The nanoparticle volume fraction profiles ( )φ η  for various values of Nb  in the case of 

0.1Nt = , 1G Ha Brκ ζ= = = = =  and 0.5θδ = . 

The effect of κ   on the pressure constant P   with different values of Ha   is 

shown in Fig.12. It is seen that the pressure constant decreases monotonously as κ  

increases. When κ is sufficiently large, the pressure constant approaches to a constant 

value. As the value of κ  increases, the thickness of EDL reduces, which leads to a 

weakening of the EDL effect. The strong EDL can lead to back flow near the channel 

wall which induces a stronger flow resistance in the bulk fluid. Therefore, when κ  is 

sufficiently large, the flow resistance caused by the EDL can be neglected, and the 

velocity of the fluid increases. It is worth mentioning that the variation trend of the 

pressure constant is consistent with the result of previous study [11]. Different from the 

previous study, however, both the EDL and the magnetic field effects are considered in 

present work. The variation of the pressure constant P  with the Hartmann number 

Ha  is also illustrated in Fig.12. It is found that the Hartmann number has a significant 

effect on the pressure constant. The increase of Ha  leads to a rapid enhancement of 

the pressure constant. 
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Fig.12 Variation of the pressure constant P   with κ   in the case of 0.1Nt =  , 0.2Nb =  ,

1G Br ζ= = =  and 0.5θδ = . 

Many studies on nanofluid flow containing the magnetic field effect have been 

reported, however, the effects of magnetic field on friction coefficient, Nusselt number 

and Sherwood number are seldom studied. Thus, the influence of Hartmann number on 

these physical quantities are examined in detail. It can be seen in Fig.13 that the 

variation of Ha  causes the different trends for these physical quantities. The increase 

of Ha  leads to a slight increase of the skin friction on the upper wall, but results in 

the decrease slightly of the skin friction on the lower wall. It is also observed that the 

effects of magnetic field parameter on Nusselt number and Sherwood number are 

negligible. However, the influence of the Hartmann number on the pressure parameter 

is significant. The pressure parameter P  increases monotonically as Ha  increases. 

According to Bernoulli's principle, the velocity decreases with increasing pressure. 

Therefore, increasing the magnetic field has the effect of inhibiting the flow rate, which 

is consistent with the finding shown in Fig.3. 
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Fig.13 Variation of the physical quantities with Ha   in the case of 0.1Nt =  , 0.2Nb =  ,

1G Brκ ζ= = = =  and 0.5θδ = . 

4. Conclusions 

The behaviour of nanofluid flow and heat transfer between two horizontal plates 

considering the magnetic field effects and EDL is investigated in this paper. The 

passively controlled mathematical model for nanofluids is employed. In addition, the 

pressure gradient parameter is treated as unknown quantity and the viscous dissipation 

is considered in energy equation. The improved model with consideration of these 

conditions represents more physical reality of the problem. By using the HAM solution 

technique, the effect of the parameter κ , the Hartmann number Ha , the Brinkman 

number Br  , the lower wall temperature θδ  , the thermophoresis parameter Nt   and 

the Brownian motion parameter Nb on the dimensionless electric potential, velocity, 

temperature, nanoparticle volume fraction and various physical quantities are examined 

and discussed in detail. The results revealed that the magnetic field and EDL can be 

used to control the flow and heat transfer in microchannels. It is also found that the heat 

enhancement is significantly depend on the Brinkman number and the temperature 

applied to the wall. In addition, the magnetic field has an effect on the nanoparticle 

volume fraction and the friction coefficient, however the effect of the magnetic field on 
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Nusselt number and Sherwood number can be neglected in present problem. These 

findings provide important guidance for the application of microfluidic devices under 

the external applied magnetic field. 
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