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ABSTRACT 39 

The seismic design of buildings uses global ductility factor and occupancy importance factor (IF) as two major 40 

fixed parameters in defining the safety of the structure. The study of performance variation of the structure with 41 

global ductility factor is available but, there is hardly any study that provides information regarding the increase 42 

in the level of safety achieved by increasing the IF values. Being a building categorical dependent parameter, 43 

IF is used by the international seismic design codes for increasing the design loads of the structure. The change 44 

in the level of safety achieved through the variation in the value of the IFs for reinforced concrete (RC) framed 45 

buildings will perhaps be an important useful representation of the stakeholders for the approximate damage 46 

cost estimation. This article performs the structural safety assessment against seismic load using a standard 47 

structural reliability method with second-order hazard approximation to evaluate the effect of the IF on the level 48 

of safety and the cost associated with the building. Results show that, an overall reduction of 50-60% in the 49 
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damage index of the selected buildings can be achieved by increasing the IF from a value of 1.0 to 2.0 with a 50 

consequent increase in the cost of the building. 51 

 52 

Keywords: Importance Factor, Fragility curve, Reliability index, Cost index 53 

 54 

INTRODUCTION 55 

In seismic design, occupancy importance factor (IF) is a multiplier to increase or decrease the design base shear, 56 

according to different occupancy category or importance class of a building. In order to obtain an acceptable 57 

performance and affordable cost, international seismic design codes have suggested different values of IFs. The 58 

higher the value of IF of the building, the higher is the expected seismic performance at the expense of higher 59 

cost. The value of IF recommended by major international codes (Table 1) is based on the functional use of the 60 

buildings, the nature of the hazardous consequences of a severe event, post-earthquake functional needs, and 61 

historical value or economic importance. All the above factors were considered by the building design codes 62 

through engineering justification and experience as there are no detailed experimental or analytical studies on 63 

the occupancy importance factor available in published literature. The building lots are mainly divided into two 64 

or three broad categories by the design codes as shown in Table 1. The higher occupancy category corresponds 65 

to critical and lifeline buildings. The moderate occupancy category corresponds to business continuity type 66 

buildings. All other buildings are included as a lower occupancy category. Table 1 presents the values of IF 67 

recommended in the major international design codes. It can be seen from this table that in higher occupancy 68 

category buildings, IFs increase the design horizontal seismic base shear up to a range of 50-100%.  69 

The selection of the seismic design load level takes the safety and the economic aspects into account which 70 

balance the benefit and the cost for the structural lifecycle. The research on the optimum seismic design level 71 

for buildings is not new and has been reported by various studies (Rosenblueth 1976, 1987; Kanda and 72 

Ellingwood 1991; Rosenblueth and Jara 1991; Ang and De Leon 1997; Rackwitz 2000; Kang and Wen 2000; 73 

Ellingwood 2001, Esteva et al. 2002, 2012; Ellingwood and Wen 2005; Goda and Hong 2006). Ang and De 74 

Leon (1997) proposed a systematic approach for formulating risk-based, cost-effective criteria for the design of 75 

structures. Target reliabilities (or acceptable risks) for damage control and life safety performance levels are 76 

determined on the basis of minimum expected life-cycle cost, and which develops the risk-consistent criteria 77 
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for the structural design. Hong et al. (2006) suggested an optimum design approach for buried pipelines which 78 

can maintain a balance between the cost and benefits. Several studies (Rosenblueth 1976; Ellingwood and Wen 79 

2005; Garcia-Perez et al. 2005; Pozoz-Estrada et al. 2016) have investigated the economic efficiency of a class 80 

of structures on increasing the level of safety and concluded that, the design codes use an IF to cope with the 81 

extraordinary economic loss or a loss of irreplaceable buildings. 82 

Previous literature (Zahid et al. 2013; Ergun et al. 2015; Allahvirdizadeh et al. 2017; Bojorquez et al. 2017; 83 

Mosleh et al. 2017; Loulelis 2017) have employed deterministic approaches for the performance evaluation of 84 

buildings subjected to seismic excitations. But a probabilistic approach for the better estimate of the performance 85 

is always profound because the deterministic approach does not take account of the uncertainties associated 86 

with earthquake load and structural capacity. The seismic performance of the buildings cannot be estimated 87 

accurately by ignoring the associated uncertainties, and sometimes it also cannot be guaranteed that considering 88 

such uncertainties will improve the performance of the buildings as a decrease in damage index may not 89 

correspond to the decrease in the exceedance probability and the estimated loss. So considering the uncertainties 90 

of sensitive random variables, fragility assessment can be a reliable solution to evaluate the efficiency of IF in 91 

the seismic design. Many studies (Hwang et al. 1990; Barron et al. 2001; Ellingwood 2001; Cornell et al. 2002; 92 

Ramamoorthy et al. 2006; Rajeev and Tesfamariam 2012; Bakhshi and Ashadi 2013) have employed fragility 93 

curves for the evaluation of seismic excitations of buildings using random parameters and, among these random 94 

parameters IF plays a major role in controlling the damage index of the building. 95 

 96 

RESEARCH SIGNIFICANCE 97 

Studies on the variation of the performance of the structure with major design parameter like global ductility 98 

factor are available in the literature. However, the information on seismic performance of the structure with the 99 

change in the design parameter such as IF is very limited. The present study focuses on the change in the level 100 

of safety and the associated cost of the building with the change in IF. The seismic performance of the buildings 101 

with the variations of IF values are evaluated in terms of seismic fragility curves and mean annual probability 102 

of collapse. 103 

  104 
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SAFETY ASSESSMENT METHODOLOGY 105 

A joint venture research committee, which was formed by four agencies namely the Structural Engineers 106 

Association of California (SEAOC), the Applied Technology Council (ATC), the Consortium of Universities 107 

for Research in Earthquake Engineering (CUREE), and the Federal Emergency Management Agency (FEMA), 108 

is combinedly abbreviated as the SAC-FEMA and proposed the popularly known SAC-FEMA method (Cornell 109 

et al. 2002). It is used in the present study for the probabilistic seismic safety assessment that characterizes the 110 

randomness and uncertainty both in seismic demand and capacity of the building. The SAC-FEMA method is 111 

formulated as a closed-form expression to analytically estimate the value of the risk integral convolving seismic 112 

hazard and structural response. This method is widely used by several researchers (Cornell et al. 2002; 113 

Ramamoorthy et al. 2006; Ellingwood et al. 2007; Wu et al. 2009; Celik and Ellingwood 2009, 2010; Davis et 114 

al. 2010; Rajeev and Tesfamariam, 2012, Haran et al. 2015, 2016; Bhosale et al. 2017, 2018; Dhir et al. 2018; 115 

Sahu et al. 2019) for the evaluation of seismic risks. An incremental dynamic analysis (IDA) framework 116 

introduced by previous researchers (Vamvatsikos and Cornell 2002; Dolsek 2009; Vamvatsikos and Fragiadakis 117 

2010; Ferracuti et al. 2009; Azarbakht and Dolšek 2011; Brunesi et al. 2015; Kiani and Khanmohammadi 2015) 118 

is adopted in this study to develop the probabilistic seismic demand models (PSDMs) and fragility curves. IDA 119 

involves subjecting a building model to one or more ground motion records, of which each scaled to multiple 120 

levels of intensity, and plotting a response parameter as a function of intensity level. 121 

 122 

PSDM and Fragility Curves 123 

A fragility function represents the probability of exceedance of the seismic demand (D) for a selected 124 

performance level (C) at a specific intensity measure, characterized here by the level of peak ground acceleration 125 

(PGA). This can be obtained for each of the damage state and can be expressed in a closed-form equation (Celik 126 

and Ellingwood 2010) as follows: 127 

 
2 2 2

ˆ
ln ˆ

( ) P (C-D  0|PGA) 

c mD PGA

D
Cf PGA

 
 

    
   

 

    (1) 128 
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Where ϕ is the standardized Gaussian distribution function, D̂ is the median drift demand, Ĉ is the median drift 129 

limit state defining the capacity of the structure at selected performance levels, 
D PGA

  is the dispersion in drift 130 

demand at a given PGA  level, c  is the dispersion in capacity, and m  is the dispersion in modelling. A series 131 

of nonlinear time history analysis is carried out to obtain the probabilistic representation of demand parameter. 132 

An analytical approximation of this representation is considered (Cornell et al. 2002) that says, at a given level 133 

of the PGA, the predicted median drift demand ( D̂ ) can be represented approximately by the form:  134 

 bPGAaD ˆ
      (2) 135 

Where a and b are the constant coefficients. The drift demands (D) are assumed to be distributed log-normally 136 

about the median (Shome and Cornell 1999) with a standard deviation 
D PGA

  (the dispersion of the drift, D 137 

considers the natural logarithm at a given PGA level) for the considered frame. The three parameters, a, b, and 138 

D PGA
  are obtained by performing a regression analysis of nonlinear building response. The power-law 139 

relationship presented in Eq. (2) represents the PSDM for the corresponding frame. Eq. (1) can be re-written 140 

using this PSDM as follows: 141 

    
2 2 2

ˆln ln .
( ) P (C-D  0|PGA) 1

b

c mD PGA

C a PGA
f PGA

 
    
    
 

    (3) 142 

The median inter-storey drift limit states ( Ĉ ) for RC moment-resisting frame suggested by Haran et al. (2015, 143 

2016) for various performance levels as 1%, 2% and 4% for immediate occupancy (IO), life safety (LS), and 144 

collapse prevention (CP) performance level respectively are considered in this present study. The value of βc 145 

depends on the building type and construction quality, and it has been assumed as 0.25, according to ATC 58 146 

(ATC 2012) in the present study. 147 

 148 

Mean Annual Probability of Exceedance 149 

In order to study the actual effect of the IF on the seismic safety of a building, it is important to consider the 150 

hazard data on that particular selected site. Seismic hazard function,  PGAH , which, gives the annual 151 

probability of occurrence of the earthquake at any given site and the probabilities of the buildings exceeding 152 
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any performance level is achieved by combining the probabilistic representations of the three elements in two 153 

steps. The first step couples the hazard function  PGAH  and drift demand function in terms of PSDM to 154 

produce a drift hazard curve  dH
D

 and  dH
D

 provides the annual probability that the drift demand  D  exceeds 155 

any specified drift value  d . The second step combines this curve with the drift capacity )C(  to produce 
PLP156 

which is defined as the annual probability of the performance level not being met.  157 

Using the total probability theorem (Benjamin and Cornell 2014)  dH
D

 can be written as: 158 

( ) [ ] ( )D iH d P D d PGA x dH x       (4) 159 

Where  xdH can be obtained from a standard hazard curve,  PGAH . The hazard curve is assumed to be a 160 

second-order polynomial in log-space in the region of interest (Vamvatsikos 2013) as follows: 161 

  2

0 2 1exp ln ( ) ln( )H PGA k k PGA k PGA        (5) 162 

Where 0k , 1k , and 2k  are the constant coefficients. Using Eq. (2) and the log normality assumption of drift 163 

demand, the first factor of Eq. (4) can be written as: 164 

 [ ] 1 ln / b

i D PGA
P D d PGA x d ax           (6) 165 

Using Eq. (5) and Eq. (6), Eq. (4) for the drift hazard curve can be written in a simplified form as  166 

 
2

1 1

0

2

1
4

q d

D

q k
H ( d ) q k H PGA exp ( q)

k


 

 
    

 
     (7a) 167 

2 2

2 /

1

1 2 /d IM

q
k b


 

     (7b) 168 

dPGA  is the peak ground acceleration corresponding to the drift demand level, d i.e. 169 

1

d b
d

PGA
a

 
  
 

      (8) 170 

Where ‘a’ and ‘b’ are the regression coefficients of the corresponding PSDM. The detailed derivation of Eq. (7) 171 

is available in Vamvatsikos (2013). Using the total probability theorem, the annual probability of unacceptable 172 

performance )P(
PL

 can be defined as: 173 
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     
i

idall
iPL

dDPdDDCPDCPP       (9) 174 

The second factor, in the above equation, represents the likelihood of a given drift demand level  dDP   which 175 

can be determined from the drift hazard curve derived in Eq. (4). Now, Eq. (9) can be represented in a continuous 176 

form as follows: 177 

PL DP P[C d ] dH ( d )       (10) 178 

In order to facilitate an analytical treatment of the rather highly complicated problem of considering 179 

uncertainties in the capacity and seismic demand of an RC structure, SAC-FEMA method has introduced various 180 

simplifications. The first approximation is the power-law formulation of the PSDM where the engineering 181 

damage parameter is approximated to have a linear relation to the seismic intensity measure in log space (Eq. 2). 182 

In addition, the engineering demand parameter is assumed to be log-normally distributed about the median. 183 

However, the previous literature (Dhir et al. 2018) has reported that power-law assumption and log normality 184 

assumption of drift demand in RC framed building is in agreement with the results of Monte Carlo simulation. 185 

The other important approximation in the original SAC-FEMA method is the first‐ order power‐ law fit of the 186 

hazard curve, which has later been replaced with second-order hazard approximation (Eq. 5) by Vamvatsikos 187 

(2013).  188 

 189 

FRAMES CONSIDERED 190 

Typical RC regular bare frames of two, four, six and eight-storied buildings with a uniform storey height of 191 

3.2 m and uniform bay width of 5 m are selected for the present study (Fig. 1). These buildings are assumed 192 

to be located in Guwahati (India) lying in the seismic zone V (PGA of 0.36 g) as per IS 1893 (BIS 2016b) 193 

and detailed as per IS 13920 (BIS 2016a), considering medium soil conditions (N-value in the range 10-30). 194 

The characteristic strength of concrete and steel is taken as 25 MPa and 415 MPa respectively. The buildings 195 

are assumed to be symmetric in plan and elevation. The dead load of the slab, including floor finishes, is 196 

taken as 3.75 kN/m2 and live load as 3 kN/m2. The self-weight of the partition walls (230 mm) is applied 197 

separately as the uniformly distributed load on the respective beams. As the focus of the present study is to 198 

evaluate the influence of IF on the fragility of the structures, a wide range of IFs has been studied for four 199 

different frame geometries. Selected building frames are designed as per relevant Indian Standards that 200 
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satisfy the requirement of both ultimate and serviceability limit states. However, the design is found to be 201 

governed by the criteria of the ultimate limit state. The design details of the building frames of two storey, 202 

four storey, six storey and eight storey are shown in Table 2, 3, 4 and 5 respectively. The notations used 203 

nSmB-p to represent a frame with n storeys and m bays, designed considering an IF value of p. For example, 204 

2S2B-1 represents a 2-storey, 2-bay frame designed with IF value of 1.0. The design base shear (Vb) 205 

calculated as per equivalent static method (BIS 2016b) is presented in Table 6. 206 

 207 

STRUCTURAL MODELLING AND ANALYSIS 208 

Selected buildings frames are modelled, and nonlinear time history analysis was performed during the seismic 209 

risk assessment. The Open System for Earthquake Engineering Simulation (OpenSEES) Laboratory tool 210 

developed by McKenna et al. (2014) was used for the present analysis. A force-based nonlinear beam-column 211 

fiber element (Lee and Mosalam 2004) that considers the spread plasticity approach along the element was 212 

adopted for modelling the beams and columns. Five integration points are considered for fiber elements as per 213 

Kunnath (2007). Core and cover concrete are modelled as confined and unconfined concrete respectively as per 214 

Kent and Park (1971). Giuffre-Menegotto-Pinto steel material model (Filippou et al. 1983) has been used for 215 

the modelling of steel reinforcing bars. 216 

In the current study, a lumped mass approach is taken into consideration, in which all the permanent weights 217 

that move with the structure is lumped at the suitable nodes. It comprises of all the dead loads and a part of the 218 

live load (25%) which are expected to be present in the structure during the ground shaking. The in-plane 219 

stiffness of the floor is modelled using rigid diaphragm constraint. Mass and stiffness proportional Raleigh 220 

damping model is used for dynamic analysis as per Filippou et al. (1992). As the number of available earthquake 221 

records in the Indian region is limited, a suite of 44 ground motions (22 pairs) from other regions collected from 222 

Haselton et al. (2012) are used in the present study for representing the uncertainty in the earthquake loading. 223 

These ground motions are converted to match with the design spectrum of Indian Standard IS 1893 (BIS 2016b), 224 

using a computer program (Mukherjee and Gupta 2002). These modified spectrum consistent ground motion 225 

records are used for the nonlinear dynamic analyses (NLDA). Uncertainties associated with the structural 226 

capacity are considered through concrete compressive strength and the yield strength of reinforcing steel. The 227 

uncertainty, in the global damping ratio, is additionally considered in the analysis. Table 7 presents the details 228 
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of the uncorrelated random variables which have been explored in the present study. Further details of the 229 

computational modelling can be available in Dhir et al. (2018). 230 

 231 

PROBABILISTIC SEISMIC DEMAND MODEL (PSDM) 232 

The earthquake ground motions are linearly scaled from 0.1 g to 1.0 g and each computational model (44) is 233 

analysed for a randomly selected earthquake. The maximum inter-storey drift (ISD) is plotted with the 234 

corresponding PGA on a logarithmic graph for two storey, four storey, six storey and eight storey frames in 235 

Fig. 2, 3, 4, and 5 respectively. Using regression analysis, a power law (refer to Eq. 2) relationship is fitted 236 

for each frame which represents the PSDM for the corresponding frames. The higher is the value of inter-237 

storey drifts, the higher will be the vulnerability of the building. The regression coefficients, a and b, of the 238 

PSDMs found in each frame are reported in Table 8. 239 

As observed in all the PSDM plots, for a given PGA, the maximum ISD demand decreases with the increase 240 

in IF. This can be attributed to the improved structural capacity of the building frames in terms of stiffness 241 

due to the increase in IF. The percentage decrease in the maximum ISD demand of building frames with IF 242 

values of 1.2, 1.4, 1.5, 1.6, 1.8 and 2.0 with respect to the frame with IF = 1 is calculated at a typical PGA 243 

of 0.3 g and presented in Fig. 6. This figure shows that, in general, the reduction in ISD demand is higher for 244 

the higher IF. The reduction can be due to the increase in the cross-section of the members and the change 245 

in design. 246 

 247 

COMPARISON OF FRAGILITY CURVES 248 

Fragility curves were developed for all the selected building frames and the effect of IFs on the fragility 249 

function was studied at three performance limit states (IO, LS, and CP) as presented in Figs. 7, 8, 9 and 10. 250 

The values of the constants a and b, and the dispersions of ISD demand, βD/IM are calculated from the 251 

corresponding PSDM. The probability of exceedance is found to decrease with the increase in IF. It can be 252 

seen from the figures that, the building frames designed with IF = 2 have the least probability of exceeding 253 

the limit state among all the selected frames. The probability of exceedance for the building frames designed 254 

with IF of 1.2, 1.4, 1.6, 1.8, and 2.0 normalized to that of building frame with IF = 1 for a typical PGA of 255 
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0.3 g is presented in Table 9. It can be seen from the table that the normalised probability of exceedance 256 

reduces with the increase of IF. This trend is similar to all the four selected categories of buildings.  257 

 258 

MEAN ANNUAL PROBABILITY OF EXCEEDANCE 259 

The selected building frames are designed for the limit state of collapse against design basis earthquake 260 

(approximately 10% probability of occurrence in 50 years) for a site located in the seismic zone V (Guwahati) 261 

as per IS 1893 (BIS 2016b). The hazard curve of Guwahati (Fig. 11) prepared using data collected from the 262 

published literature (Iyengar et al. 2010) is considered to calculate the seismic performance of the building 263 

frames in terms of mean annual probability of exceedance (using Eq. 10). Table 10 presents the values of the 264 

annual probability of the collapse  PLP  of all the selected frames at each performance limit state. It can be 265 

seen that the annual probability of collapse decreases as the IF increases. This implies that the frames 266 

designed with a higher IF have greater seismic safety. 267 

 268 

EFFECT OF IF ON DAMAGE AND COST INDICES 269 

It is clear from the previous discussion that, on the one hand, the building performances can be significantly 270 

improved by a higher value of IF in the design. On the other hand, a higher value of IF in the design leads to 271 

the increased cost of the building. This section investigates the effect of IF on the structural performance and 272 

the associated costs of the building. A parameter called Damage Index (DI) is introduced and defined as 273 

follows: 274 

𝐷𝐼 =
𝑃𝑃𝐿,𝐼𝐹

𝑃𝑃𝐿,𝐼𝐹=1
     (11) 275 

 276 

Where, PPL,IF=1 is the mean annual probability of exceedance of building designed with IF = 1 and PPL,IF is 277 

the mean annual probability of exceedance of a building designed with IF greater than unity. DI is expected 278 

to be less than unity for buildings designed with IF greater than one. Similarly, another parameter, Cost Index 279 

(CI) can be expressed as follows: 280 

1

IF

IF

Cost
CI

Cost 

        (12) 281 
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Where, CostIF and CostIF=1 are the cost of construction for the building under consideration (with an IF greater 282 

than unity) and a similar building designed with IF = 1, respectively. However, it is to be noted that the cost 283 

index as defined in Eq. (12) does not consider the damage-cost and the risk aversion.  284 

Fig. 12 and Fig. 13 present the cost index and damage index of the selected building as a function of IF 285 

respectively. It can be seen from these figures that IF has a linear relationship between the damage and cost 286 

index. The higher the value of IF, the higher is the cost of the building, but the lower will be the expected 287 

damage.  288 

 289 

SUMMARY AND CONCLUSIONS 290 

The international codes and standards have recommended different values of occupancy importance factors for 291 

the seismic design of buildings considering an acceptable performance and affordable cost. This study 292 

investigates the effect of the importance factor in the seismic performance of buildings in a probabilistic 293 

framework. The SAC-FEMA method of structural safety assessment with second-order hazard approximation 294 

(Vamvatsikos 2013) is used to evaluate the influence of the importance factor on the probabilistic demand 295 

model, fragility function and the annual probability of collapse. The performance of the building, in general, is 296 

found to be improving with the increase in the importance factor. The importance factor is also found to have a 297 

proportional linear relationship with the cost index and an inversely proportional linear relationship with the 298 

damage index of the buildings. Salient conclusions of this study are listed as follows. 299 

 When the IF increases from 1.0 to 1.5, the damage index decreases by 25-50% and increase in the IF 300 

from 1.5 to 2.0 the damage index further decreases by 25-35%. An overall decrease in damage index by 301 

increasing the IF from 1.0 to 2.0 is around 50-60%. 302 

 As the importance factor increases, the failure probability decreases, and cost increases. Design codes may 303 

also introduce an indicator of the percentage increase in cost and the percentage decrease in failure 304 

probability (increase in reliability) for the respective importance factor values for each class of buildings. 305 

 306 
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Table 1: IF suggested by various international codes 

Seismic Code 

Occupancy Category 

Higher Moderate Lower 

IS 1893- Part1 (2016) 1.5 1.2 1.0 

Canadian Building code Act, 1992 1.5 - 1.0 

BS EN 1998-1:2004 1.5 - 0.8 

SEI/ASCE 7-16 1.5 1.25 1.0 

NZS 1170 Part 5: 2004 1.3 - 0.6 

NBC 105 : 1994 2.0 1.5 1.0 

EAK 2000 1.3 - 0.85 

Iranian Standard 2800 (2007) 1.2/1.4 1.0 0.8 
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Table 2: Design details of two storey frames 

Frame ID Member 
Floor/ 

Storey No. 

Width 

(mm) 

Depth 

(mm) 

Longitudinal 

Reinforcement 
Transverse 

reinforcement 
Top Bottom 

2S2B-1 

Beam 1 300 300 6-16φ 4-16φ 8φ @100 c/c 

Beam 2 300 300 5-16φ 3-16φ 8φ @100 c/c 

Column 1-2 380 380 8-20φ 8φ @220 c/c 

2S2B-1.2 

Beam 1 300 300 5-16φ 4-16φ 8φ @100 c/c 

Beam 2 300 300 6-16φ 4-16φ 8φ @100 c/c 

Column 1-2 400 400 8-20φ 8φ @220 c/c 

2S2B-1.4 

Beam 1  300 300 5-16φ 4-16φ 8φ @100 c/c 

Beam 2 300 300 4-16φ 3-16φ 8φ @100 c/c 

Column 1-2 450 450 10-20φ 8φ @200 c/c 

2S2B-1.5 

Beam 1 300 300 7-16φ 4-16φ 8φ @100 c/c 

Beam 2 300 300 6-16φ 3-16φ 8φ @100 c/c 

Column 1-2 450 450 10-20φ 8φ @200 c/c 

2S2B-1.6 

Beam 1 330 330 8-16φ 4-16φ 8φ @100 c/c 

Beam 2 330 330 7-16φ 3-16φ 8φ @100 c/c 

Column 1-2 450 450 10-20φ 8φ @200 c/c 

2S2B-1.8 

Beam 1 330 330 9-16φ 4-16φ 8φ @100 c/c 

Beam 2 330 330 8-16φ 3-16φ 8φ @100 c/c 

Column 1-2 500 500 14-20φ 8φ @185 c/c 

2S2B-2 

Beam 1 350 350 9-16φ 4-16φ 8φ @100 c/c 

Beam 2 350 350 9-16φ 3-16φ 8φ @100 c/c 

Column 1-2 550 550 16-20φ 8φ @160 c/c 

 

  



Table 3: Design details of four storey frames 

Frame Member 

Floor/ 

Storey 

No. 

Width 

(mm) 

Depth 

(mm) 

Longitudinal 

Reinforcement 
Transverse 

reinforcement 
Top Bottom 

4S2B-1 

Beam 1 300 300 10-16φ 4-16φ 8φ @100 c/c 

Beam 2-4 300 300 7-16φ 3-16φ 8φ @100 c/c 

Column 1-4 400 400 10-20φ 8φ @180 c/c 

4S2B-1.2 

Beam 1 400 400 8-20φ 5-16φ 8φ @100 c/c 

Beam 2-4 400 400 5-20φ 3-16φ 8φ @100 c/c 

Column 1-4 500 500 14-20φ 8φ @150 c/c 

4S2B-1.4 

Beam 1  400 400 9-20φ 5-16φ 8φ @120 c/c 

Beam 2-4 400 400 6-20φ 3-16φ 8φ @120 c/c 

Column 1-4 500 500 16-20φ 8φ @110 c/c 

4S2B-1.5 

Beam 1  450 450 10-20φ 6-16φ 8φ @100 c/c 

Beam 2-4 450 450 5-20φ 3-16φ 8φ @100 c/c 

Column 1-4 500 500 18-20φ 8φ @200 c/c 

4S2B-1.6 

Beam 1  450 450 12-20φ 7-16φ 8φ @100 c/c 

Beam 2-4 450 450 7-20φ 4-16φ 8φ @100 c/c 

Column 1-4 550 550 18-20φ 8φ @200 c/c 

4S2B-1.8 

Beam 1  450 450 13-20φ 8-16φ 8φ @100 c/c 

Beam 2-4 450 450 8-20φ 5-16φ 8φ @100 c/c 

Column 1-4 600 600 24-16φ 8φ @180 c/c 

4S2B-2 

Beam 1  500 500 5-20φ 9-16φ 8φ @100 c/c 

Beam 2-4 500 500 9-20φ 5-16φ 8φ @100 c/c 

Column 1-4 600 600 26-20φ 8φ @160 c/c 

 

  



Table 4: Design details of six storey frames 

Frame Member 

Floor/ 

Storey 

No. 

Width 

(mm) 

Depth 

(mm) 

Longitudinal 

Reinforcement 
Transverse 

reinforcement 
Top Bottom 

6S2B-1 

Beam 1 400 400 11-20φ 7-16φ 8φ @100 c/c 

Beam 2-6 400 400 5-20φ 3-16φ 8φ @100 c/c 

Column 1-6 500 500 18-20φ 8φ @160 c/c 

6S2B-1.2 

Beam 1 400 400 12-20φ 8-16φ 10φ @100 c/c 

Beam 2-6 400 400 6-20φ 3-16φ 10φ @100 c/c 

Column 1-6 550 550 20-20φ 8φ @110 c/c 

6S2B-1.4 

Beam 1 400 400 15-20φ 10-16φ 10φ @100 c/c 

Beam 2-6 400 400 7-20φ 4-16φ 10φ @100 c/c 

Column 1-6 550 550 20-20φ 10φ @130 c/c 

6S2B-1.5 

Beam 1 450 450 11-25φ 7-20φ 10φ @100 c/c 

Beam 2-6 450 450 7-20φ 4-16φ 10φ @100 c/c 

Column 1-6 550 550 22-20φ 10φ @150 c/c 

6S2B-1.6 

Beam 1  450 450 12-25φ 6-20φ 10φ @100 c/c 

Beam 2-4 450 450 9-20φ 4-16φ 10φ @100 c/c 

Column 1-4 550 550 16-25φ 10φ @130 c/c 

6S2B-1.8 

Beam 1  450 450 14-25φ 9-20φ 10φ @100 c/c 

Beam 2-6 450 450 5-25φ 3-16φ 10φ @100 c/c 

Column 1-6 600 600 24-25φ 10φ @150 c/c 

6S2B-2 

Beam 1  500 500 15-25φ 10-20φ 12φ @110 c/c 

Beam 2-4 500 500 6-25φ 4-16φ 12φ @110 c/c 

Column 1-4 600 600 24-25φ 12φ @160 c/c 

 

  



Table 5: Design details of eight storey frames 

Frame Member 

Floor/ 

Storey 

No. 

Width 

(mm) 

Depth 

(mm) 

Longitudinal 

Reinforcement 
Transverse 

reinforcement 
Top Bottom 

8S4B-1 

Beam 1 400 400 11-12φ 3-16φ 8φ @100 c/c 

Beam 2-8 400 400 4-16φ 3-16φ 8φ @100 c/c 

Column 1-8 600 600 24-32φ 8φ @160 c/c 

8S4B-1.2 

Beam 1 450 450 7-20φ 4-16φ 10φ @100 c/c 

Beam 2-8 450 450 4-16φ 3-16φ 10φ @100 c/c 

Column 1-8 600 600 28-32φ 8φ @110 c/c 

8S4B-1.4 

Beam 1 500 500 11-16φ 4-16φ 10φ @100 c/c 

Beam 2-8 500 500 5-16φ 3-16φ 10φ @100 c/c 

Column 1-8 800 800 32-32φ 10φ @130 c/c 

8S4B-1.5 

Beam 1 500 500 8-20φ 5-16φ 12φ @110 c/c 

Beam 2-8 500 500 6-20φ 2-20φ 12φ @110 c/c 

Column 1-8 850 850 40-32φ 12φ @100 c/c 

8S4B-1.6 

Beam 1 500 500 11-20φ 6-16φ 10φ @100 c/c 

Beam 2-8 500 500 4-20φ 4-16φ 10φ @100 c/c 

Column 1-8 900 900 42-32φ 10φ @150 c/c 

8S4B-1.8 

Beam 1 550 550 11-20φ 6-16φ 10φ @150 c/c 

Beam 2-8 550 550 4-20φ 4-16φ 10φ @150 c/c 

Column 1-8 900 900 24-25φ 10φ @100 c/c 

8S4B-2 

Beam 1 550 550 12-20φ 4-16φ 10φ @100 c/c 

Beam 2-8 550 550 5-20φ 4-16φ 10φ @100 c/c 

Column 1-8 900 900 48-32φ 10φ @180 c/c 

 

  



Table 6: Design base shear (kN) for different IF 

Building Frame 

(fundamental period) 

Importance Factor 

1.0 1.2 1.4 1.5 1.6 1.8 2.0 

2S2B (0.301s) 76 92 109 127 143 180 229 

4S2B (0.507s) 187 236 316 367 429 529 631 

6S2B (0.688s) 295 416 503 594 651 682 1017 

8S4B (0.854s) 301 411 532 595 659 810 1056 

 

  



Table 7: Details of random variables used 

Random variables Mean COV (%) 
Probability 

Distribution 
Source 

Concrete compressive 

strength 
33.66 MPa 21.0 Normal Ranganathan (1999) 

Steel yield strength 483.47 MPa 10.0 Normal Ranganathan (1999) 

Global damping ratio 5 % 76.0 Lognormal 
Celik and Ellingwood 

(2009) 

 

  



Table 8: Regression output from NLDA analysis for considered frame 

Frame PSDM R2 βD|PGA 

2S2B-1.0 3.215 (PGA) 0.9206 0.8454 0.226 

2S2B-1.2 3.259 (PGA) 0.9397 0.8839 0.206 

2S2B-1.4 2.795 (PGA) 0.9575 0.8899 0.211 

2S2B-1.5 2.616 (PGA) 0.9282 0.8503 0.244 

2S2B-1.6 2.184 (PGA) 0.9295 0.8412 0.253 

2S2B-1.8 1.850 (PGA) 0.9644 0.8460 0.258 

2S2B-2.0 1.843 (PGA) 0.9583 0.8364 0.260 

4S2B-1.0 3.306 (PGA) 0.7567 0.7766 0.254 

4S2B-1.2 2.352 (PGA) 0.7421 0.7150 0.230 

4S2B-1.4 2.338 (PGA) 0.7457 0.7962 0.236 

4S2B-1.5 2.236 (PGA) 0.7396 0.8113 0.223 

4S2B-1.6 1.939 (PGA) 0.8128 0.8533 0.211 

4S2B-1.8 1.700 (PGA) 0.7627 0.8798 0.176 

4S2B-2.0 1.512 (PGA) 0.8128 0.7608 0.241 

6S2B-1.0 2.567 (PGA) 0.8109 0.8267 0.232 

6S2B-1.2 2.284 (PGA) 0.8129 0.8442 0.219 

6S2B-1.4 2.221 (PGA) 0.7999 0.8196 0.235 

6S2B-1.5 2.217 (PGA) 0.7877 0.8304 0.223 

6S2B-1.6 2.381 (PGA) 0.7786 0.8242 0.225 

6S2B-1.8 2.327 (PGA) 0.7778 0.8386 0.214 

6S2B-2.0 1.442 (PGA) 0.7565 0.8460 0.205 

8S4B-1.0 3.869 (PGA) 0.8113 0.8003 0.254 

8S4B-1.2 3.169 (PGA) 0.8240 0.8686 0.201 

8S4B-1.4 3.022 (PGA) 0.8803 0.8855 0.198 

8S4B-1.5 2.864 (PGA) 0.8614 0.8450 0.231 

8S4B-1.6 2.351 (PGA) 0.8267 0.8811 0.190 

8S4B-1.8 2.348 (PGA) 0.8720 0.8764 0.205 

8S4B-2.0 2.240 (PGA) 0.8447 0.8820 0.193 

 

  



Table 9: Normalized probability of exceedance of selected frames at typical PGA of 0.3g 

IF 2S2B 4S2B 6S2B 8S4B 

1 1 1 1 1 

1.2 0.80 0.66 0.58 0.80 

1.4 0.71 0.65 0.49 0.35 

1.5 0.46 0.62 0.35 0.34 

1.6 0.20 0.36 0.11 0.33 

1.8 0.08 0.29 0.09 0.17 

2 0.02 0.15 0.07 0.09 

 

  



Table 10: Annual probability of collapse  PLP  for selected buildings 

Frame 
Annual probability of collapse (× 10-2) 

IO LS CP 

2S2B-1.0 0.924 0.224 0.041 

2S2B-1.2 0.918 0.17 0.044 

2S2B-1.4 0.666 0.16 0.035 

2S2B-1.5 0.609 0.138 0.024 

2S2B-1.6 0.422 0.089 0.015 

2S2B-1.8 0.286 0.06 0.01 

2S2B-2.0 0.285 0.059 0.01 

4S2B-1.0 1.433 0.282 0.037 

4S2B-1.2 0.711 0.112 0.012 

4S2B-1.4 0.692 0.109 0.011 

4S2B-1.5 0.636 0.096 0.01 

4S2B-1.6 0.396 0.065 0.008 

4S2B-1.8 0.315 0.043 0.004 

4S2B-2.0 0.212 0.031 0.003 

6S2B-1.0 0.743 0.139 0.019 

6S2B-1.2 0.576 0.102 0.013 

6S2B-1.4 0.549 0.094 0.011 

6S2B-1.5 0.464 0.087 0.009 

6S2B-1.6 0.276 0.075 0.007 

6S2B-1.8 0.247 0.061 0.004 

6S2B-2.0 0.201 0.025 0.002 

8S4B-1.0 1.677 0.386 0.063 

8S4B-1.2 1.135 0.241 0.037 

8S4B-1.4 0.907 0.203 0.034 

8S4B-1.5 0.837 0.179 0.028 

8S4B-1.6 0.606 0.112 0.015 

8S4B-1.8 0.551 0.11 0.016 

8S4B-2.0 0.526 0.098 0.013 

 



Figure 1 Click here to access/download;Figure;Fig 1.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167012&guid=56c33a69-3c00-4172-a73d-4399bb9d2e6c&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167012&guid=56c33a69-3c00-4172-a73d-4399bb9d2e6c&scheme=1


Figure 2 Click here to access/download;Figure;Fig 2.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167014&guid=763dd1dd-36a1-4427-b096-cd59095195b0&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167014&guid=763dd1dd-36a1-4427-b096-cd59095195b0&scheme=1


Figure 3 Click here to access/download;Figure;Fig 3.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167015&guid=3ec29837-c64d-44c9-849c-42f163c6bbb2&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167015&guid=3ec29837-c64d-44c9-849c-42f163c6bbb2&scheme=1


Figure 4 Click here to access/download;Figure;Fig 4.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167016&guid=c1b8552f-2466-4fee-99d7-c6e1dd3c0ec3&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167016&guid=c1b8552f-2466-4fee-99d7-c6e1dd3c0ec3&scheme=1


Figure 5 Click here to access/download;Figure;Fig 5.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167017&guid=88acdcaf-d9a7-4059-8bc0-3c677869728d&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167017&guid=88acdcaf-d9a7-4059-8bc0-3c677869728d&scheme=1


Figure 6 Click here to access/download;Figure;Fig 6.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167018&guid=8965aa6d-854f-438a-ac11-ee8e0cb1e507&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167018&guid=8965aa6d-854f-438a-ac11-ee8e0cb1e507&scheme=1


Figure 7 Click here to access/download;Figure;Fig 7.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167019&guid=dda00fce-a55a-46ab-be77-d0e9a052b451&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167019&guid=dda00fce-a55a-46ab-be77-d0e9a052b451&scheme=1


Figure 8 Click here to access/download;Figure;Fig 8.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167020&guid=1a9a2e22-8566-4aa0-b417-6d9cba203eae&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167020&guid=1a9a2e22-8566-4aa0-b417-6d9cba203eae&scheme=1


Figure 9 Click here to access/download;Figure;Fig 9.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167021&guid=e8c6482d-21e4-4a30-b482-65a358314fbe&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167021&guid=e8c6482d-21e4-4a30-b482-65a358314fbe&scheme=1


Figure 10 Click here to access/download;Figure;Fig 10.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167022&guid=5eac9695-fce9-4fae-91ab-ef475d48ad52&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167022&guid=5eac9695-fce9-4fae-91ab-ef475d48ad52&scheme=1


Figure 11 Click here to access/download;Figure;Fig 11.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167023&guid=fdc0b878-a94f-4afd-bacf-462a57b97e68&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167023&guid=fdc0b878-a94f-4afd-bacf-462a57b97e68&scheme=1


Figure 12 Click here to access/download;Figure;Fig 12.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167024&guid=f073cb2b-65a9-4c45-bc7c-50d02a58c89b&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167024&guid=f073cb2b-65a9-4c45-bc7c-50d02a58c89b&scheme=1


Figure 13 Click here to access/download;Figure;Fig 13.tif

https://www.editorialmanager.com/jrnrueng/download.aspx?id=167025&guid=df3cab23-e696-49a6-a10d-f95fd55d97f0&scheme=1
https://www.editorialmanager.com/jrnrueng/download.aspx?id=167025&guid=df3cab23-e696-49a6-a10d-f95fd55d97f0&scheme=1


Figure Caption List 

Fig. 1: RC frames considered in the study (a) 2S2B, (b) 4S2B, (c) 6S2B and (d) 8S4B 

Fig. 2: PSDM for 2S2B frame 

Fig. 3: PSDM for 4S2B frame 

Fig. 4: PSDM for 6S2B frame 

Fig. 5: PSDM for 8S4B frame 

Fig. 6: Decrease in ISD as a function of IF at PGA = 0.3g 

Fig. 7: Fragility curve for 2S2B frame (a) IO, (b) LS and (c) CP 

Fig. 8: Fragility curve for 4S2B frame (a) IO, (b) LS and (c) CP 
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