
ar
X

iv
:1

41
0.

53
03

v4
 [

cs
.S

I]
 2

0
A

ug
 2

01
5

UPDATING AND DOWNDATING TECHNIQUES FOR OPTIMIZING
NETWORK COMMUNICABILITY

FRANCESCA ARRIGO† AND MICHELE BENZI‡

Abstract. The total communicability of a network (or graph) is defined as the sum of the entries
in the exponential of the adjacency matrix of the network, possibly normalized by the number of
nodes. This quantity offers a good measure of how easily information spreads across the network, and
can be useful in the design of networks having certain desirable properties. The total communicability
can be computed quickly even for large networks using techniques based on the Lanczos algorithm.

In this work we introduce some heuristics that can be used to add, delete, or rewire a limited
number of edges in a given sparse network so that the modified network has a large total communi-
cability. To this end, we introduce new edge centrality measures which can be used to guide in the
selection of edges to be added or removed.

Moreover, we show experimentally that the total communicability provides an effective and easily
computable measure of how “well-connected” a sparse network is.

Key words. network analysis; eigenvector centrality; subgraph centrality; total communicabil-
ity; edge centrality; free energy; natural connectivity.

AMS subject classifications. 05C82, 15A16, 65F60

1. Introduction. Network models are nowadays ubiquitous in the natural, in-
formation, social, and engineering sciences. The last 15 years or so have seen the
emergence of the vast, multidisciplinary field of Network Science, with contributions
from a wide array of researchers including physicists, mathematicians, computer sci-
entists, engineers, biologists, and social scientists [3, 18, 35]. Applications of Network
Science range from biology to public health, from social network analysis to homeland
security, from economics to the humanities, from marketing to information retrieval.
Network analysis is also an essential ingredient in the design of information, commu-
nication, and transportation networks, as well as in energy-related disciplines such
as power grid maintenance, control, and optimization [36]. Graph theory and lin-
ear algebra provide abstractions and quantitative tools that can be employed in the
analysis and design of large and complex network models.

Real-world networks are characterized by structural properties that make them
very different from both regular graphs on one hand, and completely random graphs
on the other. Real networks frequently exhibit a highly skewed degree distribution
(often following a power law), small diameter, high clustering coefficient (the two last
properties together are often referred to as the small world property), the presence of
motifs, communities, and other signatures of complexity.

Some of the basic questions in network analysis concern node and edge centrality,
community detection, communicability, and diffusion [11, 18, 35]. Related to these
are the important notions of network robustness (or its opposite, vulnerability) and
connectivity [13]. These latter properties refer to the degree of resiliency displayed by
the network in the face of random accidental failures or deliberate, targeted attacks,
which can be modeled in terms of edge or node removal. Generally speaking, it is
desirable to design networks that are at the same time highly sparse (in order to reduce

†Department of Science and High Technology, University of Insubria, Como 22100, Italy
(francesca.arrigo@uninsubria.it).

‡Department of Mathematics and Computer science, Emory University, Atlanta, Georgia 30322,
USA (benzi@mathcs.emory.edu). The work of this author was supported by National Science Foun-
dation grants DMS1115692 and DMS-1418889.

1

http://arxiv.org/abs/1410.5303v4
mailto:f
mailto:b

2 Francesca Arrigo and Michele Benzi

costs) and highly connected, meaning that disconnecting or disrupting the network
would require the removal of a large number of edges. Such networks should not
contain bottlenecks, and they should allow for the rapid exchange of communication
between nodes. Expander graphs [17, 28] are an important class of graphs with such
properties.

In this paper we describe some techniques that can be brought to bear on the
problems described above and related questions. Our approach is based on the notion
of total communicability of a network, introduced in [7] on the basis of earlier work by
Estrada and Hatano [20, 21]. Total communicability, defined as the (normalized) sum
of the entries in the exponential of the adjacency matrix of the network, provides a
global measure of how well the nodes in a graph can exchange information. Commu-
nicability is based on the number and length of graph walks connecting pairs of nodes
in the network. Pairs of nodes (i, j) with high communicability correspond to large
entries [eA]ij in the matrix exponential of A, the adjacency matrix of the network.

Total network communicability can also be used to measure the connectivity of
the network as a whole. For instance, given two alternative network designs (with a
similar “budget” in terms of number of candidate edges), one can compare the two de-
signs by computing the respective total communicabilities and pick the network with
the highest one, assuming that a well-connected network with high node communi-
cability is the desired goal. It is important to stress that the total communicability
of a network can be efficiently computed or estimated even for large networks using
Lanczos or Arnoldi based algorithms without having to compute any individual entry
of eA (only the ability to perform matrix-vector products with A is required).

In this paper we consider three different problems. Let G = (V,E) be a connected,
undirected and sparse graph. The downdating problem consists of selecting an edge
(i, j) to be removed from the network so as to minimize the decrease in its total
communicability while preserving its connectedness.

The goal when tackling the updating problem, on the other hand, is to select a
pair of nodes i 6= j such that (i, j) 6∈ E in such a way that the increase in the total
communicability of the network is maximized.

Finally, the rewiring problem has the same goal as the updating problem, but it
requires the selection of two modifications which constitute the downdate-then-update
step to be performed.

The importance of the first two problems for network analysis and design is obvi-
ous. We note that an efficient solution to the second problem would also suggest how
to proceed if the goal was to identify existing edges whose removal wouldmaximize the
decrease in communicability, which could be useful, e.g., in planning anti-terrorism
operations or public health policies (see, e.g., [41, 42]). The third problem is moti-
vated by the observation that for transportation networks (e.g., flight routes) it is
sometimes desirable to redirect edges in order to improve the performance (i.e., in-
crease the number of travellers) without increasing too much the costs. Hence, in
such cases, one wants to eliminate a route used only by a few travellers and to add a
route that may be used by a lot of people.

The above problems may arise not only in the design of infrastructural networks
(such as telecommunication or transportation networks), but also in other contexts.
For instance, in social networks the addition of a friendship/collaborative tie may
change dramatically the structure of the network, leading to a more cohesive group,
and hence preventing the splitting of the community into smaller subgroups.

The work is organized as follows. Section 2 contains some basic facts from linear

Network updating and downdating 3

algebra and graph theory, and introduces the modifications of the adjacency matrix
we will perform. In this section we also provide further justification for the use of
the total network communicability as the objective function. In section 3 we describe
bounds for the total communicability via the Gauss–Radau quadrature rule and we
show how these bounds change when a rank-two modification of the adjacency matrix
is performed. Section 4 is devoted to the introduction of the methods to controllably
modify the graph in order to adjust the value of its total communicability. Numerical
studies to assess the effectiveness and performance of the techniques introduced are
provided in section 5 for both synthetic and real-world networks. In section 6 we
discuss the evolution of a popular measure of network connectivity, known as the free
energy (or natural connectivity), when the same modifications are performed. This
section provides further evidence that motivates the use of the total communicability
as a measure of connectivity. Finally, in section 7 we draw conclusions and we describe
future directions.

2. Background and definitions. In this section we provide some basic defini-
tions, notations, and properties associated with graphs.

A graph or network G = (V,E) is defined by a set of n nodes (vertices) V and a
set of m edges E = {(i, j)|i, j ∈ V } between the nodes. An edge is said to be incident
to a vertex i if there exists a node j 6= i such that either (i, j) ∈ E or (j, i) ∈ E.
The degree of a vertex, denoted by di, is the number of edges incident to i in G. The
graph is said to be undirected if the edges are formed by unordered pairs of vertices.
A walk of length k in G is a set of nodes i1, i2, . . . , ik, ik+1 such that for all 1 ≤ l ≤ k,
(il, il+1) ∈ E. A closed walk is a walk for which i1 = ik+1. A path is a walk with
no repeated nodes. A graph is connected if there is a path connecting every pair of
nodes. A graph with unweighted edges, no self-loops (edges from a node to itself),
and no multiple edges is said to be simple. Throughout this work, we will consider
undirected, simple, and connected networks.

Every graph can be represented as a matrix A = (aij) ∈ R
n×n, called the ad-

jacency matrix of the graph. The entries of the adjacency matrix of an unweighted
graph G = (V,E) are

aij =

{
1 if (i, j) ∈ E

0 otherwise
∀i, j ∈ V.

If the network is simple, the diagonal elements of the adjacency matrix are all equal
to zero. In the special case of an undirected network, the associated adjacency matrix
is symmetric, and thus its eigenvalues are real.

We label the eigenvalues in non-increasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. Since A is
a real-valued, symmetric matrix, we can decompose A into A = QΛQT where Λ is a
diagonal matrix containing the eigenvalues of A and Q = [q1, . . . ,qn] is orthogonal,
where qi is an eigenvector associated with λi. Moreover, if G is connected, A is
irreducible and from the Perron–Frobenius Theorem [34, Chapter 8] we deduce that
λ1 > λ2 and that the leading eigenvector q1, sometimes referred to as the Perron
vector, can be chosen such that its components q1(i) are positive for all i ∈ V .

We can now introduce the basic operations which will be performed on the adja-
cency matrix A associated with the network G = (V,E). We define the downdating of
the edge (i, j) ∈ E as the removal of this edge from the network. The resulting graph

Ĝ = (V, Ê), which may be disconnected, has adjacency matrix

Â = A− UWT , U = [ei, ej], W = [ej , ei],

4 Francesca Arrigo and Michele Benzi

where here and in the rest of this work the vectors ei, ej represent the ith and jth
vectors of the standard basis of Rn, respectively.

Similarly, let (i, j) ∈ E be an element in the complement of E. We will call this
element a virtual edge for the graph G. We can construct a new graph G̃ = (V, Ẽ)
obtained from G by adding the virtual edge (i, j) to the graph. This procedure will
be referred to as the updating of the virtual edge (i, j). The adjacency matrix of the
resulting graph is

Ã = A+ UWT , U = [ei, ej], W = [ej , ei].

Hence, these two operations can both be described as rank-two modifications of the
adjacency matrix of the original graph.

The operation of downdating an edge and successively updating a virtual edge
will be referred to as rewiring.

Remark 1. These operations are all performed in a symmetric fashion, since in
this paper we consider exclusively undirected networks.

2.1. Centrality and total communicability. One of the main goals when
analyzing a network is to identify the most influential nodes in the network. Over the
years, various measures of the importance, or centrality, of nodes have been developed
[11, 18, 35]. In particular the (exponential) subgraph centrality of a node i (see [22])
is defined as the ith diagonal element of the matrix exponential [27]:

eA = I +A+
A2

2!
+ . . . =

∞∑

k=0

Ak

k!
,

where I is the n × n identity matrix. As it is well known in graph theory, given
an adjacency matrix A of an unweighted network and k ∈ N, the element

(
Ak
)
ij

counts the total number of walks of length k starting from node i and ending at
node j. Therefore, the subgraph centrality of node i counts the total number of
closed walks centered at node i, weighting walks of length k by a factor 1

k! , hence
giving more importance to shorter walks. The subgraph centrality then accounts
for the returnability of the information to the node which was the source of this
same information. Likewise, the off-diagonal entries of the adjacency matrix

(
eA
)
ij

(subgraph communicability of nodes i and j) account for the ability of nodes i and j

to exchange information [20, 21].
Starting from these observations and with the aim of reducing the cost of the

computation of the rankings, in [7] it was suggested to use as a centrality measure the
total communicability of a node i, defined as the ith entry of the vector eA1, where 1
denotes the vector of all ones:

(2.1) TC(i) := [eA1]i =
n∑

j=1

[
eA
]
ij
.

This measure of centrality is given by a weighted sum of walks from every node in
the network (including node i itself), and thus quantifies both the ability of a node
to spread information across the network and the returnability of the information to
the node itself.

The value resulting from summing these quantities over all the nodes can be
interpreted as a global measure of how effectively the communication takes place

Network updating and downdating 5

across the whole network. This index is called total (network) communicability [7]
and can be written as

(2.2) TC(A) := 1T eA1 =

n∑

i=1

n∑

j=1

(eA)ij =

n∑

k=1

eλk(qT
k 1)

2.

This value can be efficiently computed, e.g., by means of a Krylov method as im-
plemented in S. Güttel’s Matlab toolbox funm kryl see [1, 26] or by Lanczos-based
techniques as discussed below. In the toolbox [26] an efficient algorithm for evaluating
f(A)v is implemented; with this method the vector eA1 can be constructed in roughly
O(n) operations (note that the prefactor can vary for different types of networks) and
the total communicability is easily derived.

As it is clear from its definition, the value of TC(A) may be very large. Several
normalizations have been proposed; the simplest is the normalization by the number
of nodes n (see [7]), which we will use throughout the paper. It is easy to prove that
the normalized total communicability satisfies

(2.3)
1

n

n∑

i=1

(
eA
)
ii
≤ TC(A)

n
≤ eλ1 ,

where the lower bound is attained by the graph with n nodes and no edges and the
upper bound is attained by the complete graph with n nodes.

Remark 2. The last equality in equation (2.2) shows that the main contribution
to the value of TC(A) is likely to come from the term eλ1‖q1‖21.

2.2. Rationale for targeting the total communicability. As already men-
tioned, the total communicability provides a good measure of how efficiently informa-
tion (in the broad sense of the term) is diffused across the network. Typically, very
high values of TC(A) are observed for highly optimized infrastructure networks (such
as airline routes or computer networks) and for highly cohesive social and information
networks (like certain type of collaboration networks). Conversely, the total network
communicability is relatively low for spatially extended, grid-like networks (such as
many road networks) or for networks that consist of two or more communities with
poor communication between them (such as the Zachary network).1 As a further
example, reduced values of the communicability between different brain regions have
been detected in stroke patients compared to healthy individuals [14]. We refer to
[21] for an extensive survey on communicability, including applications for which it
has been found to be useful.

Another reason in support of the use of the total communicability as an objective
function is that it is closely related to the natural connectivity (or free energy) of the
network, while being dramatically easier to compute; see section 6 below. Sparse
networks with high values of TC(A) are very well connected and thus less likely
to be disrupted by either random failures or targeted attacks leading to the loss of
edges. This justifies trying to design sparse networks with high values of the total
communicability.

An important observation is that the total network communicability TC(A) can
be interpreted in at least two different ways. Since it is given by the sum of all the

1 Numerical values of the normalized total network communicability for a broad collection of
networks are reported in the experimental sections of this paper, in the Supplementary Material,
and in [7].

6 Francesca Arrigo and Michele Benzi

pairwise communicabilities C(i, j) = [eA]ij , it is a global measure of the ability of
the network to diffuse information. However, recalling the definition (2.1) of total
node communicability, the normalized total communicability can also be seen as “the
average total communicability” of the nodes in the network:

TC(A)

n
=

1

n

n∑

i=1

TC(i).

Since the total node communicability is a centrality measure [7], our goal can then be
rephrased as the problem of constructing sparse networks having high average node
centrality, where the node centrality is given by total node communicability. Since
this is merely one of a large number of centrality measures proposed in the literature,
it is a legitimate question to ask why the total node communicability should be used
instead of a different centrality index. In other words, given any node centrality
function f : V −→ R+, we could consider instead the problem of, say, adding a
prescribed number of edges so as to maximize the increase in the global average
centrality

f̄ =
1

n

n∑

i=1

f(i).

As it turns out, most other centrality indices are either computationally too ex-
pensive to work with (at least for large networks), or lead to objective functions
which do not make much sense. The following is a brief discussion of some of the
most popular centrality indices used in the field of network science.

1. Degree: Consider first the simplest centrality index, the degree. Obviously,
adding K edges according to any criteria will produce exacty the same vari-
ation in the average degree of a network. Hence, one may as well add edges
at random. Doing so, however, cannot be expected to be greatly beneficial if
the goal is to improve the robustness or efficiency of the network.

2. Eigenvector centrality: Let q1 be the principal eigenvector of A, normal-
ized so that ‖q1‖2 = 1. The eigenvector centrality of node i ∈ V is the
ith component of q1, denoted by q1(i). It is straightforward to see that the
problem of maximizing the average eigenvector centrality

q1(1) + q1(2) + · · ·+ q1(n)

n

subject to the constraint ‖q1‖2 = 1 has as its only solution

q1(1) = q1(2) = · · · = q1(n) =
1√
n
.

This implies that A has constant row sums or, in other words, that the graph
is regular — every node in G has the same degree. Hence, any heuristic
aimed at maximizing the average eigenvector centrality will result in graphs
that are close to being regular. However, regular graph topologies are not, per
se, endowed with any especially good properties when it comes to diffusing
information or being robust: think of a cycle graph, for example. Regular
graphs can be very well connected and robust (this is the case of expander
graphs), but there is no reason to think that simply making the degree distri-
bution of a given network more regular will improve its expansion properties.

Network updating and downdating 7

3. Subgraph centrality: the average subgraph centrality of a network is known
in the literature as the normalized Estrada index:

1

n
EE(A) =

1

n
Tr(eA) =

1

n

n∑

i=1

[eA]ii =
1

n

n∑

i=1

eλi .

It can also be interpreted as the average self-communicability of the nodes. As
we mentioned, this is a lower bound for the average total communicability.
Evaluation of this quantity requires knowledge of all n diagonal entries of
eA, or of all the eigenvalues of A and is therefore much more expensive to
compute. The heuristics we derive in this paper have a similar effect on
TC(A) and on the Estrada index, as we demonstrate in section 6. So, using
subgraph centrality instead of total communicability centrality would lead to
exactly the same heuristics and results, with the disadvantage that evaluating
the objective function, if necessary, would be much more expensive.

4. Katz centrality: the Katz centrality of node i ∈ V is defined as the ith row
sum of the matrix resolvent (I − αA)−1, where the parameter α is chosen in
the interval (0, 1

λ1

), so that the power series expansion

(I − αA)−1 = I + αA+ α2A2 + · · ·
is convergent [31]. Since this centrality measure can be interpreted in terms
of walks, using it instead of the total communicability would lead to the same
heuristics and very similar results, especially when α is sufficiently close to
1
λ1

or if the spectral gap λ1 − λ2 is large; see [8]. Using Katz centrality,
however, requires the careful selection of the parameter α, which leads to
some complications. For example, after each update one needs to recompute
the dominant eigenvalue of the adjacency matrix in order to check whether
the value of α used is still within the range of permissible values or if it
has to be reduced, making this approach computationally very expensive.
This problem does not arise if the matrix exponential is used instead of the
resolvent.

5. Other centrality measures: So far we have only discussed centrality mea-
sures that can be expressed in terms of the adjacency matrix A. These cen-
trality measures are all connected to the notion of walk in a graph, and they
can often be understood in terms of spectral graph theory. Other popular
centrality measures, such as betweenness centrality and closeness centrality
(see, e.g., [35]) do not have a simple formulation in terms of matrix proper-
ties. They are based on the assumption that all communication in a graph
tends to take place along shortest paths, which is not always the case (this
was a major motivation for the introduction of walk-based measures, which
postulate that communication between nodes can take place along walks of
any length, with a preference towards shorter ones). A further disadvantage
is that they are quite expensive to compute, although randomized approxi-
mations can bring the cost down to acceptable levels [11]. For these reasons
we do not consider them in this paper, where the focus is on linear algebraic
techniques. It remains an open question whether heuristics for manipulating
graph edges so as to tune some gloabl average of these centrality measures
can lead to networks with desirable connectivity and robustness properties.

Finally, in view of the bounds (2.3), the evolution of the total communicability
under network modifications is closely tied to the evolution of the dominant eigenvalue

8 Francesca Arrigo and Michele Benzi

λ1. This quantity plays a crucial role in network analysis, for example in the definition
of the epidemic threshold; see, for instance, [35, p. 664] and [42]. In particular, a
decrease in the total network communicability can be expected to lead to an increase
in the epidemic threshold. Thus, edge modification techniques developed for tuning
TC(A) can potentially be used to alter epidemics dynamics.

3. Bounds via quadrature rules. In the previous section we saw the simple
bounds (2.3) on the normalized total network communicability. More refined bounds
for this index can be obtained by means of quadrature rules as described in [5, 6, 25,
23].

The following theorem contains our result on the bounds for the normalized total
communicability.

Theorem 3.1. Let A be the adjacency matrix of an unweighted and undirected
network. Then

Φ

(
β, ω1 +

γ2
1

ω1 − β

)
≤ TC(A)

n
≤ Φ

(
α, ω1 +

γ2
1

ω1 − α

)

where [α, β] is an interval containing the spectrum of −A (i.e., α ≤ −λ1 and β ≥
−λn), ω1 = −µ = − 1

n

∑n
i=1 di is the negative mean of the degrees, γ1 = σ =√

1
n

∑n
k=1(dk − µ)2 is the standard deviation, and

(3.1) Φ(x, y) =
c (e−x − e−y) + xe−y − ye−x

x− y
, c = ω1.

A proof of this result can be found in the Supplementary Materials accompanying
the paper.

Analogous bounds can be found for the adjacency matrix of the graph after per-
forming a downdate or an update. These results are summarized in the following
Corollaries.

Corollary 3.2. [Downdating] Let Â = A − UWT , where U = [ei, ej] and
W = [ej, ei] be the adjacency matrix of an unweighted and undirected network obtained
after the downdate of the edge (i, j) from the matrix A. Let ω1 = −µ = − 1

n

∑n
i=1 di

and γ1 = σ =
√

1
n

∑n
k=1(dk − µ)2, where di is the degree of node i in the original

graph. Then

Φ

(
β−, ω− +

γ2
−

ω− − β−

)
≤ TC(Â)

n
≤ Φ

(
α−, ω− +

γ2
−

ω− − α−

)

where




ω− = ω1 +
2
n
;

γ− =
√
γ2
1 − 2

n

(
di + dj − 1 + 2ω1 +

2
n

) ,

α− and β− are approximation of the smallest and largest eigenvalues of −Â respec-
tively, and Φ is defined as in equation (3.1) with c = ω−.

Note that if bounds α and β for the extremal eigenvalues of the original matrix are
known, we can then use α− = α and β− = β+1. Indeed, if we order the eigenvalues of

Network updating and downdating 9

Â in non–increasing order λ̂1 > λ̂2 ≥ · · · ≥ λ̂n we obtain, as a consequence of Weyl’s
Theorem (see [29, Section 4.3]), that

α− 1 ≤ −λ1 − 1 < −λ̂1 < −λ̂2 ≤ · · · ≤ −λ̂n < −λn + 1 ≤ β + 1.

Furthermore, the Perron–Frobenius Theorem ensures that, when performing a
downdate, the largest eigenvalue of the adjacency matrix cannot increase; hence, we
deduce the more stringent bounds α ≤ −λ̂1 ≤ −λ̂2 ≤ · · · ≤ −λ̂n ≤ β + 1.

Similarly, we can derive bounds for the normalized total communicability of the
matrix Ã obtained from the matrix A after performing the update of the virtual edge
(i, j).

Corollary 3.3. [Updating] Let Ã = A + UWT , where U = [ei, ej] and W =
[ej , ei] be the adjacency matrix of an unweighted and undirected network obtained after
the update of the virtual edge (i, j) in the matrix A. Let ω1 = −µ = − 1

n

∑n
i=1 di and

γ1 = σ =
√

1
n

∑n
k=1(dk − µ)2, where di is the degree of node i in the original graph.

Then

Φ

(
β+, ω+ +

γ2
+

ω+ − β+

)
≤ TC(Ã)

n
≤ Φ

(
α+, ω+ +

γ2
+

ω+ − α+

)

where




ω+ = ω1 − 2
n
;

γ+ =
√
γ2
1 + 2

n

(
di + dj + 1+ 2ω1 − 2

n

) ,

α+ and β+ are bounds for the smallest and largest eigenvalues of −Ã respectively, and
Φ is defined as in equation (3.1) with c = ω+.

Notice that again, if bounds α and β for the extremal eigenvalues of−A are known,
we can then take α+ = α − 1 and β+ = β. In fact, the spectrum of the rank-two
symmetric perturbations UWT and −UWT is {±1, 0} and hence we can use Weyl’s
Theorem as before and then improve the upper bound using the Perron–Frobenius
Theorem.

In the next section we will see how the new bounds can be used to guide the
updating and downdating process.

4. Modifications of the adjacency matrix. In this section we develop tech-
niques that allow us to tackle the following problems.

(P1) Downdate: select K edges that can be downdated from the network without
disconnecting it and that cause the smallest drop in the total communicability
of the graph;

(P2) Update: select K edges to be added to the network (without creating self–
loops or multiple edges) so as to increase as much as possible the total com-
municability of the graph;

(P3) Rewire: select K edges to be rewired in the network so as to increase as much
as possible the value of TC(A). The rewiring process must not disconnect
the network or create self–loops or multiple edges in the graph.

As we will show below, (P3) can be solved using combinations of methods devel-
oped to solve (P1) and (P2). Hence, we first focus on the downdate and the update

10 Francesca Arrigo and Michele Benzi

separately. Note that to decrease as little as possible the total communicability when
removing an edge it would suffice to select (i∗, j∗) ∈ E so as to minimize the quantities

1TAk1− 1T (A− UWT)k1 ∀k = 1, 2, . . . ,

since TC(A) =
∑∞

k=0
1
TAk

1

k! . Similarly, to increase as much as possible TC(A) by

addition of a virtual edge, it would suffice to select (i∗, j∗) ∈ E that maximizes the
differences

1T (A+ UWT)k1− 1TAk1 ∀k = 1, 2, . . .

However, it is easy to show that in general one can not find a choice for (i∗, j∗) that
works for all such k. Indeed, numerical experiments on small synthetic graphs (not
shown here) show that in general the optimal edge selection for k = 2 is different from
the one for k = 3. Because of this, it is unlikely that one can find a simple “closed
form solution” to the problem, and we need to develop approximation techniques.

The majority of the heuristics we will develop are based on new edge centrality
measures. The idea underlying these is that it seems reasonable to assume that an
edge is more likely used as communication channel if its adjacent nodes are given a lot
of information to spread. We thus introduce three new centrality measures for edges
based on this principle: edges connecting important nodes are themselves important.

Definition 4.1. For any i, j ∈ V we define the edge subgraph centrality of an
existing/virtual edge (i, j) as

(4.1) eSC(i, j) =
(
eA
)
ii

(
eA
)
jj
.

This definition, based on the subgraph centrality of nodes, exploits the fact that
the matrix exponential is symmetric positive definite and hence (eA)ii(e

A)jj > (eA)2ij .

Therefore, the diagonal elements of eA somehow control its off-diagonal entries, hence
they may contain enough information to infer the “payload” of the edges or of the
virtual edges of interest.

Definition 4.2. For any i, j ∈ V we define the edge total communicability
centrality of an existing/virtual edge (i, j) as

(4.2) eTC(i, j) = [eA1]i[e
A1]j .

It is important to observe that when the spectral gap λ1 − λ2 is “large enough”,
then the subgraph centrality

(
eA
)
ii

and the total communicability centrality [eA1]i
are essentially determined by eλ1q1(i)

2 and eλ1q1(i)‖q1‖1, respectively (see, e.g., [7,
8, 17]); it follows that in this case the two centrality measures introduced and a
centrality measure based on the eigenvector centrality for nodes can be expected to
provide similar rankings. This is especially true when attention is restricted to the
top edges (or nodes). This observation motivates the introduction of the following
edge centrality measure.

Definition 4.3. For any i, j ∈ V we define the edge eigenvector centrality of an
existing/virtual edge (i, j) as

(4.3) eEC(i, j) = q1(i)q1(j).

As a further justification for this definition, note that

Network updating and downdating 11

λ1 − 2 (eEC(i, j)) ≤ λ̂1 ≤ λ1, λ̃1 ≥ λ1 + 2 (eEC(i, j)) ,

where λ̂1 is the leading eigenvalue of the matrix Â and λ̃1 is the leading eigenvalue
of the matrix Ã, as defined in section 2. These inequalities show that the edge
eigenvector centrality of an existing/virtual edge (i, j) is strictly connected to the
change in the value of the leading eigenvalue of the adjacency matrix, which influences
the evolution of the total communicability when we modify A (see Remark 2).

Remark 3. The edge eigenvector centrality has been used in [41, 42] to devise
edge removal techniques aimed to reduce significantly λ1, so as to increase the epidemic
threshold of networks.

Note that we defined these measures of centrality for both existing and virtual
edges (as in [9]). The reason for this as well as the justification for these definitions
will become clear in the next subsections.

We now discuss how to use these definitions to tackle the problems previously
described. The computational aspects concerning the implementation of the heuristics
we are about to introduce and the derivation of their computational costs are described
in the Supplementary Materials.

(P1) Downdate. The downdate of any edge in the network will result in a
reduction of its total communicability. Note that since we are focusing on the case
of connected networks, we will only perform downdates that keep the resulting graph
connected. In practice, it is desirable to further restrict the choice of downdates to a
subset of all existing edges, on the basis of criteria to be discussed shortly.

An “optimal” approach would select at each step of the downdating process a
candidate edge corresponding to the minimum decrease of communicability.2 Note
that for large networks this method is too costly to be practical. For this reason
we aim to develop inexpensive techniques that will hopefully give close–to–optimal
results. Nevertheless, for small networks we will use the “optimal” approach (where
we systematically try all feasible edges and delete the one causing the least drop in
total communicability) as a baseline method against which we compare the various
algorithms discussed below. This method will be henceforth referred to as optimal.

The next methods we introduce perform the downdate of the lowest ranked ex-
isting edge according to the edge centrality measures previously introduced whose re-
moval does not disconnect the network. We will refer to these methods as subgraph,
nodeTC, and eigenvector, which are based on definitions 4.1, 4.2, and 4.3, respec-
tively. From the point of view of the communicability, these methods downdate an
edge connecting two nodes which are peripheral (i.e., have low centrality) and there-
fore are not expected to give a large contribution to the spread of information along the
network. Hence, the selected edge is connecting two nodes whose ability to exchange
information is already very low, and we do not expect the total communicability to
suffer too much from this edge removal. This observation also suggests that such
downdates can be repeatedly applied without the need to recompute the ranking of
the edges after each downdate. As long as the number of downdates performed re-
mains small compared to the total number of edges, we expect good results at a greatly
reduced total cost. Note also that such downdates can be performed simultaneously

2Strictly speaking, this would correspond to a greedy algorithm which is only locally optimal. In
general, this is unlikely to result in “globally optimal” network communicability. In this paper, the
term “optimal” will be understood in this limited sense only.

12 Francesca Arrigo and Michele Benzi

rather than sequentially. We will refer to these variants as subgraph.no, nodeTC.no,
and eigenvector.no.

Finally, we consider a technique motivated by the bounds obtained via quadrature
rules derived in section 3. From the expression for the function Φ in the special case
of the downdate (cf. Corollary 3.2), we infer that a potentially good choice may be
to remove the edge having incident nodes i, j for which the sum di + dj is minimal,
if its removal does not disconnect the network. Indeed, this choice reduces the upper
bound only slightly and the total communicability may mirror this behavior. Another
way to justify this strategy is to observe that it is indeed the optimal strategy if we
approximate eA with its second-order approximation I + A + 1

2A
2 in the definition

of total communicability. This technique will be henceforth referred to as degree.

We note that a related measure, namely, the average of the out-degrees
di+dj

2 , was
proposed in [9] as a measure for the centrality of an edge (i, j) in directed graphs.

(P2) Update. Most real world networks are characterized by low average degree.
As a consequence, the adjacency matrices of such networks are sparse (m = O(n)).
For the purpose of selecting a virtual edge to be updated, this implies that we have
approximately 1

2

(
n2 − cn

)
possible choices if we want to avoid the formation of mul-

tiple edges or self–loops (here c is a moderate constant). Each one of these possible
updates will result in an increase of the total communicability of the network, but
not every one of these will result in a significant increment.

One natural updating technique is to connect two nodes having high centralities,
i.e., add the virtual edge having the highest ranking according to the corresponding
edge centrality. Its incident nodes, being quite central, can be expected to have an
important role in the spreading of information along the network; on the other hand,
the communication between them may be relatively poor (think for example of the
case where the two nodes sit in two distinct communities). Hence, giving them a
preferential communication channel, such as an edge between them, should result in
a better spread of information along the whole network. Again, we will use the labels
subgraph, nodeTC, and eigenvector to describe these updating strategies. As be-
fore, in order to reduce the computational cost, we also test the effectiveness of these
techniques without the recomputation of the ranking of the virtual edges after each up-
date. These variants (referred to as subgraph.no, nodeTC.no, and eigenvector.no)
are expected to return good results as well, since the selected update should not rad-
ically change the ranking of the edges. Indeed, they make central nodes even more
central, and the ranking of the edges remains consequently almost unchanged. Note
again that these updates can be performed simultaneously rather than sequentially.

As for the case of downdating, the bounds via quadrature rules derived in section
3 suggest an updating technique, i.e., adding the virtual edge (i, j) for which di + dj
is maximal. Indeed, such a choice would maximize the lower bound on the total
communicability, see Corollary 3.3. Again, this choice can also be justified by noting
that it is optimal if eA is replaced by its quadratic Maclaurin approximant. We will
again use the label degree to refer to this updating strategy.

All these techniques will be compared with the optimal one, based on systemat-
ically trying all feasible virtual edges and selecting at each step the one resulting in
the largest increase of the total communicability. Due to the very high cost of this
brute force approach, we will use it only on small networks.

The heuristics introduced to tackle (P1) and (P2) are summarized in Table 1.

Network updating and downdating 13

Table 1
Brief description of the techniques introduced in the paper.

Method Downdate: (i, j) ∈ E Update: (i, j) 6∈ E

optimal argmin{TC(A) − TC(Â)} argmax{TC(Ã) − TC(A)}
subgraph(.no) argmin{eSC(i, j)} argmax{eSC(i, j)}
eigenvector(.no) argmin{eEC(i, j)} argmax{eEC(i, j)}
nodeTC(.no) argmin{eTC(i, j)} argmax{eTC(i, j)}
degree argmin{di + dj} argmax{di + dj}

(P3) Rewire. As we have already noted, there are situations in which the rewire
of an edge may be preferable to the addition of a new one. There are various pos-
sible choices for the rewiring strategy to follow. The greatest part of those found in
literature are variants of random rewiring (see for example [10, 32]). In this paper,
on the other hand, we are interested in devising mathematically informed rewiring
strategies. For comparison purposes, however, we will compare our rewiring methods
to the random rewire method, random, which downdates an edge (chosen uniformly
at random among all edges whose removal does not disconnect the network) and then
updates a virtual edge, also chosen uniformly at random.

Combining the various downdating and updating methods previously introduced
we obtain different rewiring strategies based on the centralities of edges and on the
bounds for the total communicability. Concerning the methods based on the edge sub-
graph, eigenvector, and total communicability centrality, we note that since a single
downdate does not dramatically change the communication capability of the network,
we do not need to recompute the centralities and the ranking of the edges after each
downdating step, at least as long as the number of rewired edges remains relatively
small (numerical experiments not shown here support this claim). On the other hand,
after each update we may or may not recalculate the edge centralities. As before, we
use subgraph/subgraph.no, eigenvector/eigenvector.no and nodeTC/nodeTC.no
to refer to these three variants of rewiring. Additionally, we introduce another rewiring
strategy, henceforth referred to as node, based on the subgraph centrality of the nodes.
In this method we disconnect the most central node from the least central node among
its immediate neighbors; then we connect it to the most central node among those it
is not linked to. It is worth emphasizing that this strategy is philosophically differ-
ent from the previous ones based on the edge subgraph centrality in the downdating
phase (the updating step is the same). In fact, in those methods we use information
on the nodes in order to deduce some information on the edges connecting them; on
the other hand, the node algorithm does not take into account the potentially high
“payload” of the edges involved, whose removal may result in a dramatic drop in the
total communicability.

5. Numerical studies. In this section we discuss the results of numerical stud-
ies performed in order to assess the effectiveness and efficiency of the proposed tech-
niques. The tests have been performed on both synthetic and real-world networks, as
described below. We refer to the Supplementary Materials for the results of compu-
tations performed on four small social networks, aimed at comparing our heuristics
with optimal. These results show that for these small networks, the resulting to-
tal communicabilities are essentially identical to those obtained with the optimal

strategy.

5.1. Real-world networks. All the networks used in the tests can be found
in the University of Florida Sparse Matrix Collection [15] under different “groups”.

14 Francesca Arrigo and Michele Benzi

Table 2
Description of the Data Set.

NAME n m λ1 λ2 λ1 − λ2

Minnesota 2640 3302 3.2324 3.2319 0.0005
USAir97 332 2126 41.233 17.308 23.925
as–735 6474 12572 46.893 27.823 19.070
Erdös02 5534 8472 25.842 12.330 13.512

ca–HepTh 8638 24806 31.034 23.004 8.031
as–22july06 22963 48436 71.613 53.166 18.447
usroad–48 126146 161950 3.911 3.840 0.071

The USAir97 and Erdös02 networks are from the Pajek group. The USAir97 network
describes the US Air flight routes in 1997, while the Erdös02 network represents the
Erdös collaboration network, Erdös included. The network as–735, from the SNAP
group, is the communication network of a group of autonomous system (AS) measured
over 735 days between November 8, 1997 and January 2, 2000. Communication oc-
curs when routers from two ASs exchange information. The Minnesota network from
the Gleich group represents the Minnesota road network. These latter three networks
are not connected, therefore the tests were performed on their largest connected com-
ponent. We point out that the original largest connected component of the network
as–735 has 1323 ones on the main diagonal which were retained in our tests. The
network ca–HepTh is from the SNAP group and represents the collaboration network
of arXiv High Energy Physics Theory; the network as–22july06 is from the Newman
group and represents the (symmetrized) structure of Internet routers as of July 22,
2006. Finally, the network usroad–48, which is from the Gleich group, represents
the continental US road network. For each network, Table 2 reports the number of
nodes (n), the number of edges (m), the two largest eigenvalues, and the spectral gap.
We use the first four networks to test all methods described in the previous section
(except for optimal, which is only applied to the four smallest networks — see the
Supplementary Materials) and the last three to illustrate the performance of the most
efficient among the methods tested.

We first consider the networks Minnesota, as735, USAir97, and Erdös02, for which
we perform K = 50 modifications. For these networks the set E (the complement
of the set E of edges) is large enough that performing an extensive search for the
edge to be updated is expensive. Hence, we form the set S containing the top 10% of
the nodes ordered according to the eigenvector centrality and we restrict our search
to virtual edges incident to these nodes only. An exception is the network USAir97
where we have used the set S corresponding to the top 20% of the nodes, since in
the case of 10% this set contained only 52 virtual edges. In Figures 1 and 2 we show
results for the methods eigenvector, eigenvector.no, subgraph, subgraph.no and
degree. Before commenting on these, we want to stress the poor performance of node
when tackling (P3); this shows that the use of edge centrality measures (as opposed
to node centralities alone) is indispensable in this framework. The results for these
networks clearly show the effectiveness of the eigenvector and subgraph algorithms
and of their less expensive variants eigenvector.no and subgraph.no in nearly all
cases; similar results were obtained with nodeTC and nodeTC.no (not shown). The
only exception is in the downdating of the Minnesota network, where the eigenvector-
based techniques give slightly worse results. This fact is easily explained in view of

Network updating and downdating 15

Fig. 1. Evolution of the normalized total communicability vs. number of downdates, updates
and rewires for networks Minnesota and as735.

0 20 40
13.7

13.8

13.9

14

14.1

14.2
M

in
ne

so
ta

downdate

eigenvector eigenvector.no subgraph subgraph.no degree

0 20 40
0

100

200

300

400
update

0 20 40
0

100

200

300

400
rewire

node
random

0 20 40
4.34

4.341

4.342

4.343

4.344
x 10

19

as
−

73
5

0 20 40
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

20

0 20 40
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

20

node
random

the tiny spectral gap characterizing this and similar networks3 (see Table 2). Because
of this property, eigenvector centrality is a poor approximation of subgraph centrality
and cannot be expected to give results similar to those obtained with subgraph and
subgraph.no.

The results for the downdate show that the inexpensive degree method does
not perform as well on these networks, except perhaps on Minnesota. The relatively
poor performance of this method is due to the fact that the information used by this
method to select an edge for downdating is too local.

Note, however, the scale on the vertical axis in Figures 1–2, suggesting that for
these networks (excluding perhaps Minnesota) all the edge centrality-based methods
perform well with only very small relative differences between the resulting total
communicabilities.

Overall, these results indicate that the edge centrality-based methods, especially
the inexpensive eigenvector.no and nodeTC.no variants, are an excellent choice in
almost all cases and to tackle all the problems. In the case of downdating networks
with small spectral gaps, subgraph.no may be preferable but at a higher cost.

The behavior of the degree method depends strongly on the network on which
it is used. Our tests indicate that it behaves well in some cases (for example, P2 for
Erdös02) but poorly in others (P2 for Minnesota). We speculate that this method
may perform adequately when tackling (P2) on scale-free networks (such as Erdös02)
where a high degree is an indication of centrality in spreading information across the

3Small spectral gaps are typical of large, grid-like networks such as the road networks or the
graphs corresponding to uniform triangulations or discretizations of physical domains.

16 Francesca Arrigo and Michele Benzi

Fig. 2. Evolution of the normalized total communicability vs. number of downdates, updates
and rewires for networks USAir97 and Erdös02.

0 20 40
2.526

2.528

2.53

2.532

2.534

2.536
x 10

17

U
S

A
ir9

7
downdate

eigenvector eigenvector.no subgraph subgraph.no degree

0 20 40
0

0.5

1

1.5

2
x 10

18 update

0 20 40
0

0.5

1

1.5

2
x 10

18 rewire

node
random

0 20 40
2.08

2.09

2.1

2.11

2.12
x 10

10

E
rd

os
02

0 20 40
2

3

4

5

6

7

8

9
x 10

10

0 20 40
0

2

4

6

8

10
x 10

10

node
random

network.

Some comments on the difference in the results for updating as compared to
those for rewiring (downdating followed by updating) are in order. Recall that our
downdating strategies aim to reduce as little as possible the decrease in the value of
the total communicability, whereas the updating techniques aim to increase this index
as much as possible. With this in mind, it is not surprising to see that the trends of
the evolution of the total communicability after rewiring reflect those obtained with
the updating strategies. The values obtained using the updates are in general higher
than those obtained using the rewiring strategies, since updating implies the addition
of edges whereas in rewiring the number of edges remains the same. Experiments
not reported here indicate that the methods based on the edge eigenvector and total
communicability centrality are more stable than the others under rewiring and to
dampen the effect of the downdates.

In Figures 3-4 we show results for the three largest networks in our data set
(ca–HepTh, as-22july06 and usroad-48). In the case of the updating, we have se-
lected the virtual edges among those in the subgraph containing the top 1% of nodes
ranked according to the eigenvector centrality. We compare the following methods:
eigenvector, eigenvector.no, nodeTC, nodeTC.no, subgraph.no and degree; ran-
dom downdating was also tested and found to give poor results. Note that network
usroad-48 behaves similarly to Minnesota; this is not surprising in view of the fact
that these are both road networks with a tiny spectral gap. Looking at the scale
on the vertical axis, however, it is clear that the decrease in total communicability is
negligible with all the methods tested here. The results on these networks confirm the

Network updating and downdating 17

Fig. 3. Downdates for large networks: normalized total communicability vs. number of modifi-
cations.

0 1000 2000
10

10

10
11

ca_HepTh

0 1000 2000
10

29

10
30

as−22july06

0 1000 2000

10
1.185

10
1.188

10
1.191

usroad−48

eigenvector eigenvector.no nodeTC nodeTC.no subgraph.no degree

Fig. 4. Updates for large networks: normalized total communicability vs. number of modifications.

0 1000 2000
10

10

10
15

10
20

10
25

10
30

ca_HepTh

0 1000 2000
10

30

10
35

10
40

as−22july06

0 1000 2000
10

0

10
10

10
20

usroad−48

eigenvector eigenvector.no nodeTC nodeTC.no subgraph.no degree

general trend observed so far; in particular, we note the excellent behavior of nodeTC
and nodeTC.no.

5.2. Synthetic networks. The synthetic examples used in the tests were pro-
duced using the CONTEST toolbox for Matlab (see [39, 40]). We tested two types
of graphs: the preferential attachment (Barabási–Albert) model and the small world
(Watts–Strogatz) model.

The preferential attachment model [4] was designed to produce networks with
scale–free degree distributions as well as the small world property, characterized by
short average path length and relatively high clustering coefficient. In CONTEST,
preferential attachment networks are constructed using the command pref(n,d)

where n is the number of nodes and d ≥ 1 is the number of edges each new node
is given when it is first introduced to the network. The network is created by adding
nodes one by one (each new node with d edges). The edges of the new node connect
to nodes already in the network with a probability proportional to the degree of the
already existing nodes. This results in a scale–free degree distribution.

The second class of synthetic test matrices used in our experiments corresponds
to Watts–Strogatz small world networks. The small world model was developed as
a way to impose a high clustering coefficient onto classical random graphs [43]. The
function used to build these matrices takes the form smallw(n,k,p). Here n is the
number of nodes in the network, originally arranged in a ring and connected to their k
nearest neighbors. Then each node is considered independently and, with probability

18 Francesca Arrigo and Michele Benzi

Fig. 5. Evolution of the total communicability when 50 downdates, updates or rewires are
performed on two synthetic networks with n = 1000 nodes.

0 20 40
2.39

2.4

2.41

2.42

2.43

2.44

2.45

2.46
x 10

4

p
r
e
f

downdate

0 20 40
0

2

4

6

8

10
x 10

5 update

0 20 40
0

1

2

3

4

5
x 10

5 rewire

node
random

0 20 40
65.5

66

66.5

67

67.5

68

68.5

s
m
a
l
l
w

0 20 40
0

500

1000

1500

2000

eigenvector eigenvector.no subgraph subgraph.no degree

0 20 40
0

500

1000

1500

2000

node
random

p, an edge is added between the node and one of the other nodes in the graph, chosen
uniformly at random (self-loops and multiple edges are not allowed). In our tests, we
have used matrices with n = 1000 nodes which were built using the default values for
the functions previously described. We used d = 2 in the Barabási–Albert model and
k = 2, p = 0.1 in the Watts–Strogatz model.

The results for our tests are presented in Figure 5. These results agree with what
we have seen previously on real-world networks. Interestingly, degree does not per-
form well for the downdate when working on the preferential attachment model; this
behavior reflects what we have seen for the networks USAir97, as–735, and Erdös02,
which are indeed scale–free networks.

5.3. Timings for synthetic networks. We have performed some experiments
with synthetic networks of increasing size in order to assess the scalability of the
various methods introduced in this paper. A sequence of seven adjacency matrices
corresponding to Barabási–Albert scale-free graphs was generated using the CON-
TEST toolbox. The order of the matrices ranges from 1000 to 7000; the average
degree is kept constant at 5. A fixed number of modifications (K = 500) was carried
out on each network. All experiments were performed using Matlab Version 7.12.0.635
(R2011a) on an IBM ThinkPad running Ubuntu 12.04.5 LTS, a 2.5 GHZ Intel Core
i5 processor, and 3.7 GiB of RAM. We used the built-in Matlab function eigs (with
the default settings) to approximate the dominant eigenvector of the adjacency ma-
trix A, the Matlab toolbox mmq [33] to estimate the diagonal entries of eA (with a
fixed number of five nodes in the Gauss–Radau quadrature rule, hence five Lanczos
steps per estimate), and the toolbox funm kryl to compute the vector eA1 of total

Network updating and downdating 19

Fig. 6. Timings in seconds for scale-free graphs of increasing size (500 modifications).

1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200
downdate

eigenvector eigenvector.no nodeTC nodeTC.no subgraph.no

1000 7000

0.2

0.4

1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200
update

1000 7000

0.2
0.4
0.6

communicabilities, also with the default parameter settings.

The results are shown in Figure 6. The approximate (asymptotic) linear scaling
behavior of the various methods (in particular of nodeTC.no and eigenvector.no,
which are by far the fastest, see the insets) is clearly displayed in these plots.

5.4. Timings for larger networks. In Tables 3–4 we report the timings for
various methods when K = 2000 downdates and updates are selected for the three
largest networks listed in Table 2.

The timings presented refer to the selection of the edges to be downdated or
updated, which dominates the computational effort. For the method subgraph.no in
the case of downdates, we restricted the search of candidate edges to a subset of E in
order to reduce costs. For the three test networks we used 40%, 45% and 15% of the
nodes, respectively, chosen by taking those with lowest eigenvector centrality, and the
corresponding edges. We found the results to be very close to those obtained working
with the complete set E, but at a significantly lower cost (especially for the largest
network).

These results clearly show that algorithms nodeTC.no and eigenvector.no are
orders of magnitude faster than the other methods; method subgraph.no, while sig-
nificantly more expensive, is still reasonably efficient4 and can be expected to give
better results in some cases (e.g., on networks with a very small spectral gap). The
degree algorithm, on the other hand, cannot be recommended in general since it
gives somewhat inferior results. The remaining methods eigenvector, nodeTC and
subgraph (not shown here) are prohibitively expensive for large networks, at least
when the number K of modifications is high (as it is here).

We also observe that downdating is generally a more expensive process than
updating, since in the latter case the edges are to be chosen among a fairly small
subset of all virtual edges, whereas in the downdating process we work on the whole
set E of existing edges (or on a large subset of E). For some methods the difference
in cost becomes significant when the networks are sufficiently large and the number
of modifications to be performed is high.

Summarizing, the method labelled nodeTC.no is the fastest and gives excellent
results, quite close to those of the more expensive methods, and therefore we can

4It is worth mentioning that in principle it is possible to greatly reduce the cost of this method
using parallel processing, since each subgraph centrality can be computed independently of the others.

20 Francesca Arrigo and Michele Benzi

Table 3
Timings in seconds for K = 2000 downdates performed on the three largest networks in Table 2.

ca–HepTh as–22july06 usroad–48
eigenvector 278.13 599.83 11207.39

eigenvector.no 0.07 1.79 4.08
nodeTC 553.04 1234.49 2634.27

nodeTC.no 0.34 0.83 1.34
subgraph.no 107.36 383.34 1774.07

degree 29.67 53.42 153.52

Table 4
Timings in seconds for K = 2000 updates performed on the three largest networks in Table 2

ca–HepTh as–22july06 usroad–48
eigenvector 192.8 436.9 1599.5

eigenvector.no 0.19 0.33 5.85
nodeTC 561.9 1218.8 2932.

nodeTC.no 0.30 0.55 1.59
subgraph.no 3.13 7.20 121.4

degree 11.1 12.4 175.8

recommend its use for the type of problems considered here. The methods labelled
eigenvector.no and subgraph.no are also effective and may prove useful in some
settings, especially for updating.

6. Evolution of other connectivity measures. In this section we want to
highlight another facet of the methods we have introduced for (approximately) op-
timizing the total communicability. In particular, we look at the evolution of other
network properties under our updating strategies. When building or modifying a net-
work, there are various features that one may want to achieve. Typically, there are
two main desirable properties: first, the network should do a good job at spreading
information, i.e., have a high total communicability; second, the network should be
robust under targeted attacks or random failure, which is equivalent to the require-
ment that it should be difficult to “isolate” parts of the network, i.e., the network
should be “well connected”. This latter property can be measured by means of var-
ious indices. One such measure is the spectral gap λ1 − λ2. As a consequence of
the Perron–Frobenius Theorem, adding an edge to a connected network causes the
dominant eigenvalue λ1 of A to increase. Test results (not shown here) show that
when a network is updated using one of our techniques, the first eigenvalue increases
rapidly with the number of updates. On the other hand, the second eigenvalue λ2

tends to change little with each update and it may even decrease (recall that the
matrix UWT = eie

T
j + eje

T
i being added to A in an update is indefinite). Therefore,

the spectral gap λ1 − λ2 widens rapidly with the number of updates.5 It has been
pointed out by various authors (see, e.g., [17, 37]) that a large spectral gap is typical
of complex networks with good expansion properties.

Here we focus on a related measure, the so-called free energy (also known in the
literature as natural connectivity) of the network. In particular, we investigate the
effect of our proposed methods of network updating on the evolution of this index.

5This fact, incidentally, may serve as further justification for the effectiveness of algorithms like
nodeTC.no and eigenvector.no.

Network updating and downdating 21

6.1. Tracking the free energy (or natural connectivity). In [30] the au-
thors discuss a measure of network connectivity which is based on an intuitive notion
of robustness and whose analytical expression has a clear meaning and can be derived
from the eigenvalues of A; they refer to it as the natural connectivity of the network
(see also [44]). The idea underlying this index is that a network is more robust if there
exists more than one route to get from one node to another; this property ensures
that if a route becomes unusable, there is an alternative way to get from the source
of information to the target. Therefore, intuitively a network is more robust if it has
a lot of (apparently) redundant routes connecting its vertices or, equivalently, if each
of its nodes is involved in a lot of closed walks. The natural connectivity aims at
quantifying this property by using an existing measure for the total number of closed
walks in a graph, namely, the Estrada index [16]. This index, denoted by EE(G), is
defined as the trace of the matrix exponential. Normalizing this value and taking the
natural logarithm, one obtains the natural connectivity of the graph:

λ(A) = ln

(
1

n

n∑

i=1

eλi

)
= ln(EE(G)) − ln(n).

It turns out, however, that essentially the same index was already present in the
literature. Indeed, the natural connectivity is only one of the possible interpretations
that can be given to the logarithm of the (normalized) Estrada index. Another,
earlier interpretation was given in [19], where the authors related this quantity to
the Helmholtz free energy of the network F = − ln (EE(G)). Therefore, since λ =
−F − ln(n), the behavior of F completely describes that of λ (and conversely) as the
graph is modified by adding or removing links.

The natural connectivity has been recently used (see [12]) to derive manipulation
algorithms that directly optimize this robustness measure. In particular, the updating
algorithm introduced in [12] appears to be superior to existing heuristics, such as those
proposed in [10, 24, 38]. This algorithm, which costs O(mt+Kd2maxt+Knt2) where
dmax = maxi∈V di and t is the (user-defined) number of leading eigenpairs, selects K
edges to be added to the network by maximizing a quantity that involves the elements
of the leading t eigenpairs of A.6

We have compared our updating techniques with that described in [12]. Results
for four representative networks are shown in Figure 7. In our tests, we use the value
t = 50 (as in [12]), and we select K = 500 edges. Note that, when K is large, the
authors recommend to recompute the set of t leading eigenpairs every l iterations.
This operation requires an additional effort that our faster methods do not need.
Since the authors in [12] show numerical experiments in which the methods with
and without the recomputation return almost exactly the same results, we did not
recompute the eigenpairs after any of the updates.

Figure 7 displays the results for both the evolution of the natural connectivity
and of the normalized total communicability, where the latter is plotted in a semi–
logarithmic scale. A total of 500 updates have been performed. The method labelled
Chan selects the edges according to the algorithm described in [12] choosing from all
the virtual edges of the graph. For our methods we used, as before, the virtual edges
in the subgraph obtained selecting the top 10% or 20% of nodes ranked according to
the eigenvector centrality. As one can easily see, our methods generally outperform
the algorithm proposed in [12]. In particular, nodeTC.no and eigenvector.no give

6A description of the algorithm can be found in the Supplementary Material.

22 Francesca Arrigo and Michele Benzi

Fig. 7. Evolution of the natural connectivity and of the normalized total communicability (in
a semi–logarithmic scale plot) when up to 500 updates are performed on four real-world networks.

0 500
10

0

10
5

10
10

to
ta

l c
om

m
un

ic
ab

ili
ty

eigenvector eigenvector.no nodeTC.no subgraph.no Chan et al.

0 500

0

5

10

15

20

25
Minnesota

na
tu

ra
l c

on
ne

ct
iv

ity

0 500

10
18

10
20

10
22

0 500
35

40

45

50
USAir97

0 500

10
20

10
21

10
22

0 500
38

40

42

44

as−735

0 500
10

10

10
12

10
14

0 500
16

18

20

22

24

26

28

30
Erdos02

generally better results than Chan and are much faster in practice. For instance, the
execution time with Chan on the network ca-HepTh was over 531 seconds, and much
higher for the two larger networks. We recall (see Table 4) that the execution times
for nodeTC.no and eigenvector.no are about three orders of magnitude smaller.

It is striking to see how closely the evolution of the natural connectivity mirrors
the behavior of the normalized total communicability. This is likely due to the fact
that both indices depend on the eigenvalues of A (with a large contribution coming
from the terms containing λ1, see (2.2) and the subsequent remark), and all the
updating strategies used here tend to make λ1 appreciably larger.

Returning to the interpretation in terms of statistical physics, from Figure 7 we
deduce that the free energy of the graph decreases as we add edges to the network.
In particular this means that the network is evolving toward a more stable configura-
tion and, in the limit, toward equilibrium, which is the configuration with maximum
entropy.7

These findings indicate that the normalized total communicability is equally ef-
fective an index as the natural connectivity (equivalently, the free energy) for the
purpose of characterizing network connectivity. Since the network total communi-
cability can be computed very fast (in O(n) time), we believe that the normalized
total communicability should be used instead of the natural connectivity, especially
for large networks.

Indeed, computing the natural connectivity requires evaluating the trace of eA;

7The relation between the free energy and the Gibbs entropy is described in more detail in the
Supplementary Material.

Network updating and downdating 23

even when stochastic trace estimation is used [2], this is several times more expensive,
for large networks, than the total communicability.

7. Conclusions and future work. In this paper we have introduced several
techniques that can be used to modify an existing network so as to obtain networks
that are highly sparse, and yet have a large total communicability.

These heuristics make use of various measures of edge centrality, a few of which
have been introduced in this work. Far from being ad hoc, these heuristics are widely
applicable and mathematically justified. All our techniques can be implemented using
well-established tools from numerical linear algebra: algorithms for eigenvector com-
putation, Gauss-based quadrature rules for estimating quadratic forms, and Krylov
subspace methods for computing the action of a matrix function on a vector. At bot-
tom, the Lanczos algorithm is the main player. High quality, public domain software
exists to perform these modifications efficiently.

Among all the methods introduced here, the best results are obtained by the
nodeTC.no and eigenvector.no algorithms, which are based on the edge total com-
municability and eigenvector centrality, respectively. These methods are extremely
fast and returned excellent results in virtually all the tests we have performed. For
updating networks characterized by a small spectral gap, a viable alternative is the al-
gorithm subgraph.no. While more expensive than nodeTC.no and eigenvector.no,
this method scales linearly with the number of nodes and yields consistently good
results.

Finally, we have shown that the total communicability can be effectively used as
a measure of network connectivity, which plays an important role in designing robust
networks. Indeed, the total communicability does a very good job at quantifying two
related properties of networks: the ease of spreading information, and the extent to
which the network is “well connected”. Our results show that the total communica-
bility behaves in a manner very similar to the natural connectivity (or free energy)
under network modifications, while it can be computed much more quickly.

Future work should include the extension of these techniques to other types of
networks, including directed and weighted ones.

Acknowledgements. We are grateful to Ernesto Estrada for providing some
of the networks used in the numerical experiments and for pointing out some useful
references. The first author would like to thank Emory University for the hospitality
offered in 2014, when this work was completed. We also thank two anonymous referees
for helpful suggestions.

REFERENCES

[1] M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, Implementation of a restarted
Krylov subspace method for the evaluation of matrix functions, Linear Algebra Appl., 429
(2008), pp. 2293–2314.

[2] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit sym-
metric positive semi-definite matrix, J. ACM, 58 (2011), pp. 8:1–8:34.

[3] A.-L. Barabási, Linked: The New Science of Networks, Perseus, Cambridge, 2002.
[4] A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999),

pp. 509–512
[5] M. Benzi and P. Boito Quadrature rule-based bounds for functions of adjacency matrices,

Linear Algebra Appl. 433 (2010), pp. 637–652.
[6] M. Benzi and G. H. Golub Bounds for the entries of matrix functions with application to

preconditioning, BIT 39 (1999), pp. 417–438.

24 Francesca Arrigo and Michele Benzi

[7] M. Benzi and C. Klymko, Total communicability as a centrality measure, J. Complex Networks,
1(2) (2013), pp. 124–149.

[8] M. Benzi and C. Klymko, On the limiting behavior of parameter-dependent network centrality
measures, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 686–706.

[9] M. W. Berry, T. P. Chartier, K. R. Hutson, and A. N. Langville, Identifying influential
edges in a directed network: big events, upsets and non-transitivity, J. Complex Networks,
2(2) (2013), pp. 87–109.

[10] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, Improving network robustness by
edge modification, Physica A, 357 (2005), pp. 593–612.

[11] U. Brandes and T. Erlebach, eds., Network Analysis: Methodological Foundations, Lecture
Notes in Computer Science Vol. 3418, Springer, New York, 2005.

[12] H. Chan, L. Akoglu, and H. Tong, Make it or break it: manipulating robustness in large net-
works, Proceedings of the 2014 SIAM Data Mining Conference (2014), Society for Industrial
and Applied Mathematics, pp. 325–333.

[13] R. Cohen and S. Havlin, Complex Networks: Structure, Robustness and Function, Cambridge
University Press, Cambridge, UK, 2010.

[14] J. J. Crofts and D. J. Higham, A weighted communicability measure applied to complex brain
networks, J. Royal Soc. Interface, 6 (2009), pp. 411–414.

[15] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/.

[16] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. (319): 713 (2000).
[17] E. Estrada, Spectral scaling and good expansion properties in complex networks, Euro-

phys. Lett., 73 (2006), pp. 649–655.
[18] E. Estrada, The Structure of Complex Networks. Theory and Applications, Oxford University

Press, 2012.
[19] E. Estrada and N. Hatano, Statistical–mechanical approach to subgraph centrality in complex

networks, Chem. Phys. Lett. 439 (2007), pp. 247–251.
[20] E. Estrada and N. Hatano, Communicability in complex networks, Phys. Rev. E, 77 (2008),

036111.
[21] E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex networks,

Phys. Rep., 514 (2012), pp. 89–119.
[22] E. Estrada and J. A. Rodŕıguez-Velázquez, Subgraph centrality in complex networks,

Phys. Rev. E 71 (2005), 056103.
[23] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Network analysis via partial spectral

factorization and Gauss quadrature, SIAM J. Sci. Comput, 35 (4) (2012), pp. A2046–A2068.
[24] H. Frank and I. Frisch, Analysis and design of survivable networks, IEEE

Trans. Comm. Tech., 18 (5) (1970), pp. 501–519.
[25] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with Applications, Prince-

ton University Press, Princeton, NJ 2010.
[26] S. Güttel, funm kryl: A Restart Code for the Evaluation of Matrix Functions,

http://guettel.com/funm kryl/
[27] N. J. Higham, Function of Matrices. Theory and Computation, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2008.
[28] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications,

Bull. Amer. Math. Soc., 43 (2006), pp. 439–561.
[29] R. A. Horn and C. R. Johnson, Matrix Analysis. Second Edition, Cambridge University Press,

2013.
[30] W. Jun, M. Barahona, Y. Tan, and H. Deng, Natural connectivity of complex networks,

Chinese Physical Letters, 27 (2010), 078902.
[31] L. Katz, A new status index derived from sociometric data analysis, Psychometrika, 18 (1953),

pp. 39–43.
[32] V. H. P. Louzada, F. Daolio, H. J. Herrmann, and M. Tomassini, Smart rewiring for

network robustness, J. Complex Networks, 1(2) (2013), pp. 150–159.
[33] G. Meurant, MMQ toolbox for MATLAB, http://pagesperso-orange.fr/gerard.meurant/.
[34] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
[35] M. E. J. Newman, Networks. An Introduction, Oxford University Press, 2010.
[36] A. Pınar, J. Meza, V. Donde, and B. Lesieutre, Optimization strategies for the vulnerability

analysis of the electric power grid, SIAM J. Optimiz., 20 (4) (2010), pp. 1786–1810.
[37] D. Puder, Expansion of Random Graphs: New Proofs, New Results, arXiv:1212.5216v2, 2013.
[38] B. Shargel, H. Sayama, I. R. Epstein, and Y. Bar-Yam, Optimization of robustness and

connectivity in complex networks, Phys. Rev. Letters, 90 (6) (2003), 068701.
[39] A. Taylor and D. J. Higham, CONTEST: Toolbox files and documentation,

Network updating and downdating 25

http://www.mathstat.strath.ac.uk/research/groups/ numerical analysis/contest/toolbox.
[40] A. Taylor and D. J. Higham, CONTEST: A controllable test matrix toolbox for Matlab, ACM

Trans. Math. Softw., 35 (2009), pp. 26:1–26:17.
[41] H. Tong, B. A. Prakash, T. Eliassi–Rad, M. Faloutsos, and C. Faloutsos, Gelling, and

melting, large graphs by edge manipulation, in proceedings of the 21st ACM international
conference on Information and knowledge management, ACM 2012, pp . 245–254.

[42] P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. van de Bovenkamp, D. Liu, and
H. Wang, Decreasing the spectral radius of a graph by link removals, Phys. Rev. E, 84
(2011), 016101.

[43] D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 393
(1998), pp. 440–442.

[44] J. Wu, M. Barahona, Y. Tan, and H. Deng, Robustness of random graphs based on graph
spectra, Chaos, 22 (2012), 043101.

26 Francesca Arrigo and Michele Benzi

Appendix A. Supplementary Materials to the paper.

Abstract. In this document we summarize a few supplementary results to the accompanying
paper. We give a detailed proof of the bounds on the normalized total communicability obtained via
quadrature rules (Theorem 3.1, section 3). We also derive the computational costs for the heuristics
introduced. Moreover, this document contains the results of some numerical experiments performed
on four small networks to assess the valuability of our techniques. We provide full descriptions four
our downdating and updating algorithms and for the updating algorithm developed in [4]. Finally,
we briefly recall the approach used to relate the Estrada index of a graph to its Helmholtz free energy.

A.1. Bounds via quadrature rules: a proof of Theorem 3.1. In this sec-
tion we give a proof of Theorem 3.1. In order to make this document self-contained,
we briefly recall here the technique used to derive bounds via quadrature rules on
bilinear forms.

Bounds on bilinear forms uT f(A)v can be derived based on Gauss–type quadra-
ture rules when f is a strictly completely monotonic (s.c.m.) function on the interval
[a, b] containing the spectrum of A by working on a 2×2 matrix derived from one step
of the symmetric Lanczos iteration (see [2, 10]). Recall that a function is s.c.m. on
[a, b] if f (2l)(x) > 0 and f (2l+1)(x) < 0 for all x ∈ [a, b] and for all l ≥ 0, where f (k)

denotes the kth derivative of f and f (0) ≡ f . In order to compute bounds for the
normalized total communicability, this means that we need to use f(x) = e−x and
therefore we work with the matrix −A.

The starting point is to observe that bilinear forms uT f(A)v can be thought of
as Riemann–Stieltjes integrals with respect to the spectral measure associated with
the symmetric matrix A:

uT f(A)v =

∫ b

a

f(λ)dm(λ), m(λ) =





0, λ < a = λn∑n
k=i+1 wkzk, λi+1 ≤ λ < λi∑n
k=1 wkzk, b = λ1 ≤ λ

where A = QΛQT , w = QTu = (wi), and z = QTv = (zi).
This integral can be approximated by means of Gauss–type quadrature rules,

which can be used to obtain lower and upper bounds on the bilinear forms of interest.
In particular, our bounds are derived using the Gauss–Radau quadrature rule:

(A.1)

∫ b

a

f(λ)dm(λ) =

p∑

j=1

cjf(tj) + v1f(τ1),

where the nodes {tj}pj=1 and the weights
{
{cj}pj=1, v1

}
are to be determined, whereas

τ1 is prescribed and equal either to a or to b. The Gauss–Radau bounds are then as
described in the following theorem.

Theorem A.1 (6.4 in [10]). Suppose f is such that f (2l+1)(ξ) < 0 for all l and
for all ξ ∈ (a, b). Let UGR be defined as

UGR[f] =

p∑

j=1

caj f(t
a
j) + va1f(a),

caj , v
a
1 , t

a
j being the weights and nodes in (A.1) with τ1 = a, and let LGR be defined as

LGR[f] =

p∑

j=1

cbjf(t
b
j) + vb1f(b),

Network updating and downdating 27

cbj , v
b
1, t

b
j being the weights and nodes in (A.1) with τ1 = b. The Gauss–Radau rule is

exact for polynomials of degree less than or equal to 2p and satisfies

LGR[f] ≤
∫ b

a

f(λ)dm(λ) ≤ UGR[f].

Moreover for all p there exists ηU , ηL ∈ [a, b] such that

∫ b

a

f(λ)dm(λ) − UGR[f] =
f (2p+1)(ηU)

(2p+ 1)!

∫ b

a

(λ− a)




p∏

j=1

(λ− taj)



2

dm(λ),

∫ b

a

f(λ)dm(λ) − LGR[f] =
f (2p+1)(ηL)

(2p+ 1)!

∫ b

a

(λ− b)




p∏

j=1

(λ− tbj)



2

dm(λ).

It is therefore necessary to evaluate two quadrature rules, one for the upper bound
and one for the lower bound. However, the explicit computation of nodes and weights
can be avoided. Indeed, the evaluation of the quadrature rules is mathematically
equivalent to the computation of orthogonal polynomials via a three–term recurrence,
or, equivalently, to the computation of entries and spectral information of a certain
tridiagonal matrix via the Lanczos algorithm. In fact, the right hand side of equation
(A.1) can be computed from the relation (Theorem 6.6 in [10]):

(A.2)

p∑

j=1

cjf(tj) + v1f(τ1) = eT1 f(Jp+1)e1,

where

Jp+1 =




ω1 γ1
γ1 ω2 γ2

. . .
. . .

. . .

γp−1 ωp γp
γp ωp+1




is a tridiagonal matrix whose eigenvalues are the Gauss–Radau nodes (and hence
Jp+1 is built so as to have the prescribed eigenvalue τ1), whereas the weights are
given by the squares of the first entry of the normalized eigenvectors of Jp+1. An
efficient implementation of this technique is provided in G. Meurant’s mmq toolbox for
Matlab [14]. This toolbox, adapted to handle sparsity, has been used for some of the
numerical experiments presented in the paper.

We can now prove Theorem 3.1, which contains the bounds for the normalized
total network communicability. The proofs of the subsequent corollaries follow the
same line.

Proof. First we derive an explicit expression for the right–hand side of equation
(A.2) when f(x) = e−x and J2 is 2×2 with the help of the Lagrange interpolation for-
mula for the evaluation of matrix functions [12]. Let µ1 and µ2 be distinct eigenvalues
of a given 2× 2 matrix B = (bij), then

e−B =
e−µ1

µ1 − µ2
(B − µ2I) +

e−µ2

µ2 − µ1
(B − µ1I)

28 Francesca Arrigo and Michele Benzi

where I is the 2× 2 identity matrix. It follows that

eT1
(
e−B

)
e1 =

b11(e
−µ1 − e−µ2) + µ1e

−µ2 − µ2e
µ1

µ1 − µ2
.

Next, we build explicitly the matrix J2 and compute its eigenvalues. The values
of ω1 = −µ and γ1 = σ are derived applying one step of Lanczos iteration to the
matrix −A with starting vectors x−1 = 0 and x0 = 1√

n
1. We want to compute the

value of ω2 in such a way that the matrix J2 has the prescribed eigenvalue τ1 = α or
τ1 = β. Note that γ1 = 0 if and only if the graph is regular, i.e., if and only if the
nodes in the graph have all the same degree. In such case we simply take ω2 = τ1 and
the matrix J2 is diagonal with eigenvalues µ1 = −µ and µ2 = τ1. Thus, let us assume
γ1 6= 0. In order to compute the value for ω2, we use the three–term recurrence for
orthogonal polynomials:

γjpj(λ) = (λ− ωj)pj−1(λ)− γj−1pj−2(λ), j = 1, 2, . . . , p,

with p−1(λ) ≡ 0, p0(λ) ≡ 1 to impose that p2(τ1) = 0 and hence derive ω2 = τ1− γ1

p1(τ1)
.

Using the same recurrence, we also find that p1(τ1) =
τ1−ω1

γ1

which is nonzero, since
the zeros of orthogonal polynomials satisfying the three–term recurrence are distinct
and lie in the interior of [α, β] (see [10, Theorem 2.14]).

Finally, the matrix

J2 =

(
ω1 γ1

γ1 τ1 − γ2

1

τ1−ω1

)

has (distinct) eigenvalues µ1 = τ1 and µ2 = ω1+
γ2

1

ω1−τ1
. This, together with Theorem

A.1 and the relation (A.2), concludes the proof.

A.2. Computational aspects. In this section we describe some technical de-
tails that need to be kept in mind when implementing our heuristics. Moreover, we
explicitly derive the computational costs of our methods.

There are several important points to keep in mind when implementing the meth-
ods described in the paper. First of all, for the downdates, updates, and rewires based
on the edge subgraph centrality we need to compute the diagonal entries of eA. This
is the most expensive part of these methods. There are, however, techniques that
can be used to rapidly estimate the diagonal entries of eA and to quickly identify the
top ℓ nodes, where ℓ ≪ n; see [1, 3, 9] and references therein. It should be pointed
out that very high accuracy is not required or warranted by the problem. We also
recall that the same techniques (based on quadrature rules and the Lanczos process)
can be used to compute the total communicability 1T eA1 quickly (typically in O(n)
work), although such computation is actually not required by any of the algorithms
tested here except by the optimal strategy, which is only used (for small networks)
as a baseline method. Such methods can also be used for rapidly estimating the node
total communicability centralities, TC(i) = [eA1]i = eTi e

A1.
Secondly, when performing an update or the updating phase of a rewire, it makes

sense to work with a subset of the set of all virtual edges E. Indeed, for a sparse
network E contains O(n2) edges and for large n this is prohibitive. Due to the
particular selection criteria we want to use, it is reasonable to restrict ourselves to the
virtual edges in the subgraph of our network that are incident to a subset S of nodes
containing a certain percentage of the top nodes, ranked according to some centrality

Network updating and downdating 29

Table A.1
Computational costs for the downdating and updating techniques introduced in the accompany-

ing paper.

Method Downdate Update
optimal O(Kn2) O(Kn3)
subgraph O(Kn) O(Kℓn)
eigenvector O(Kn) O(Kℓn)
nodeTC O(Kn) O(Kℓn)
degree O(Kn) O(Kn)
subgraph.no O(n logn) O((K + ℓ)n)
eigenvector.no O(n logn) O((K + ℓ)n)
nodeTC.no O(n logn) O((K + ℓ)n)

measure. We found that for the larger networks considered in the paper, using just
the top 1% of the nodes ranked using eigenvector centrality yields very good results.

Next, we derive the computational costs for the downdating techniques used in
the accompanying paper. Let m be the number of edges in the network and let
K ≪ n, assumed bounded independently of n as n → ∞, be the maximum number of
modifications we want to perform; in this paper, the maximum value of K we consider
is 2000 (used for the three largest networks in our data set).

In the optimal method we remove each edge in turn, compute the total commu-
nicability after each downdate, and then choose the downdate which caused the least
decrease in TC(A); assuming that the cost of computing TC(A) is O(n), we find a
total cost of O(Kmn) for K updates. Since m = O(n), this amounts to O(Kn2).

Next, we consider the cost of techniques based on subgraph centralities. The cost
of computing the node subgraph centralities is not easy to assess in general, since
it depends on network properties and on the approximation technique used. If a
rank-k approximation is used [9], the cost is approximately O(kn); hence, the cost is
linear in n if k is independent of n, which is appropriate for many types of networks.
Computing the edge centralities requires another m = O(n) operations, and sorting
the edges by their centralities costs approximately m lnm comparisons. Note that
sorting is only necessary in the subgraph.no variant of the algorithm; indeed, with
subgraph we recompute the centralities after each update and instead of sorting the
result we only need to identify the edge of minimum centrality at each step, which can
be done in O(m) work. Summarizing, the cost of subgraph is O(K(n+m)) = O(Kn)
for K downdates if we assume the subgraph centralities can be computed in O(n)
time, and the cost for subgraph.no is O(n+m) = O(n) plus a pre-processing cost of
O(m lnm) (= O(n lnn)) comparisons for sorting the edge centralities. Although the
asymptotic cost of subgraph.no appears to be higher than that of subgraph (due to
the n lnn term), in practice one finds that subgraph.no runs invariably much faster
than subgraph for all cases tested here.

The costs associated with eigenvector and eigenvector.no scale like those of
subgraph and subgraph.no, assuming that the dominant eigenvector q1 of a large
sparse n×n adjacency matrix can be approximated in O(n) time. For many real world
networks this is a reasonable assumption, since in practice we found that running a
fixed number of Lanczos steps will give a sufficiently good approximation of q1. The
prefactors can be expected to be much smaller for the methods based on eigenvector
centrality than for those based on subgraph centrality.

The costs for nodeTC and nodeTC.no are comparable to those for eigenvector

and eigenvector.no, with the same asymptotic scalability.

30 Francesca Arrigo and Michele Benzi

Table A.2
Description of the Data Set.

NAME n m λ1 λ2 λ1 − λ2

Zachary 34 78 6.726 4.977 1.749
Sawmill 36 62 4.972 3.271 1.701
social3 32 80 5.971 3.810 2.161
dolphins 62 159 7.193 5.936 1.257

Finally, the cost of degree is O(Km) and hence also O(Kn) for a sparse network.
Note that the cost of checking that the connectivity is preserved after each down-

date does not affect these asymptotic estimates; indeed, using A∗ search [11] this can
be done in O(m) time and hence the additional cost is only O(n) for a sparse network.
Of course, if the removal of an edge is found to disconnect the network we do not
perform the downdate and move on to the next candidate edge.

We consider next the computational cost for the updating strategies. As before
we let K, assumed bounded independently of n as n → ∞, be the maximum number
of updates we want to perform.

It can be easily shown that the optimal method costs O(Kn3) operations. To
estimate the cost of the remaining methods, we assume that the set S ⊂ V consisting
of the top ℓ = |S| nodes (ranked according to some centrality measure) is known. The
cost of determining this set is asymptotically dominated by the term O(n lnn), as
we saw. As already mentioned, ℓ will be equal to some fixed percentage of the total
number of nodes in the network.

Both subgraph and eigenvector cost O(Kℓn) operations, provided a low rank
approximation (of fixed rank) is used to estimate the subgraph centralities. The
same holds for nodeTC. Typically, the prefactor will be larger for the former method.
Since we assumed that ℓ = O(n) (albeit with a very small prefactor, like 10−2) these
methods exhibit an O(n2) scaling. In practice this is somewhat misleading, since the
quadratic scaling is not observed until n is quite large.

Finally, degree costs O(Kℓ) = O(n) while subgraph.no, eigenvector.no and
nodeTC.no all cost O((K + ℓ)n). Again, the latter cost is asymptotically quadratic
but the actual cost is dominated by the linear part until n becomes quite large. We
note that we can obtain an asymptotically linear scaling by imposing an upper bound
on ℓ, i.e., on the fraction of nodes that we are willing to include in the working subset
S of nodes. We stress that because of the widely different prefactors for the various
methods, these asymptotic estimates should only be taken as roughly indicative.

A.3. Numerical tests: small networks. In this section we present the results
obtained when performing numerical tests on four networks of small size. For these
networks it is possible to apply the optimal strategy and to compare the other, more
practical strategies with it. The results of this comparison serve as a justification for
the use of our heuristics on larger networks.

The real-world networks used in the tests (see Table A.2) come from a variety
of sources. The Zachary Karate Club network is a classic example in social network
analysis [17]. The Sawmill and social3 networks were provided to us by Prof. Ernesto
Estrada. The Sawmill network describes a communication network within a small
enterprise (see [15, 16]), whereas social3 is a network of social contacts among college
students participating in a leadership course (see [18]). The network dolphins (see [13])
is in the Newman group from the Florida Sparse Matrix Collection [5] and represents
a social network of frequent associations between 62 dolphins in a community living in

Network updating and downdating 31

Fig. A.1. Evolution of the normalized total communicability vs. number of downdates performed
on small networks.

0 10 20
200

300

400

500

600

Zachary

optimal eigenvector nodeTC subgraph degree

0 10 20
20

40

60

80

100
Sawmill

0 10 20
150

200

250

300

350
social3

0 10 20
550

600

650

700

750

dolphins

the waters off New Zealand. Table A.2 reports the number of nodes (n), the number
of edges (m), the two largest eigenvalues, and the spectral gap. We use these networks
to test all the greedy methods described in the accompanying paper.

We begin by showing results for the four smallest networks. Figure A.1 dis-
plays the results obtained with the downdating methods optimal, eigenvector,
nodeTC, subgraph, and degree. The results for eigenvector.no, subgraph.no, and
nodeTC.no are virtually indistinguishable from those obtained with eigenvector,
subgraph and nodeTC and are therefore not shown. At each step we modify the net-
work by downdating an edge and we then compute and plot the new value of the
normalized total communicability. The tests consist of 25 modifications.

Figure A.1 shows that our methods all perform similarly and give results that
are in most cases very close to those obtained with optimal, and occasionally even
better, as is the case for eigenvector (and eigenvector.no) on the dolphins network
after a sufficient number of downdates have been performed. This result may seem
puzzling at first, however, it can be easily explained by noticing that eigenvector

selects a different edge from that selected by optimal at the third downdate step.
Hence, from that point on the adjacency matrices on which the methods work are
different, and the choice performed by the optimal method may no longer be optimal
for the graph manipulated by eigenvector. Note that even the simple heuristic
degree seems to perform well, except perhaps on the dolphins network after 15 or so
downdate steps. Overall, the methods based on eigenvector and total communicability
centrality appear to perform best in view of their efficacy and low cost.

The results for the updating methods are reported in Figure A.2. As for the down-
dating methods, subgraph.no, eigenvector.no, and nodeTC.no return results that
are virtually identical to those obtained using subgraph, eigenvector and nodeTC,
therefore we omit them from the figure. Once again we see that the methods based
on eigenvector, subgraph, and total communicability centrality give excellent results,
whereas degree is generally not as effective.

Rewiring results are displayed in Figure A.3. Clearly, the methods making use
of edge centrality perform quite well, in contrast to random rewiring (which is only
included as a base for comparison). Note also the poor performance of node, showing
that the use of edge centralities (as opposed to node centralities alone) is indispensable
in this context.

32 Francesca Arrigo and Michele Benzi

Fig. A.2. Evolution of the normalized total communicability vs. number of updates performed
on small networks.

0 10 20
0

0.5

1

1.5

2
x 10

4Zachary

optimal eigenvector nodeTC subgraph degree

0 10 20
0

500

1000

1500

2000

2500

3000

3500
Sawmill

0 10 20
0

2000

4000

6000

8000

10000

12000
social3

0 10 20
0

0.5

1

1.5

2
x 10

4dolphins

Fig. A.3. Evolution of the normalized total communicability vs. number of rewires performed
on small networks.

0 10 20
0

0.5

1

1.5

2
x 10

4 Zachary

0 10 20
0

200

400

600

800

1000

1200
Sawmill

0 10 20
0

2000

4000

6000

8000

social3

0 10 20
0

0.5

1

1.5

2
x 10

4 dolphins

eigenvector nodeTC subgraph degree node random

The values obtained using the updates are in general higher than those obtained
using the rewiring strategies, since updating implies the addition of edges whereas
in rewiring the number of edges remains the same. For these methods the effects of
downdates have a great impact, leading to a decrease by up to nearly 70% of the
original value of the total communicability after 25 downdates (cf. Figure A.1). It is
noteworthy that the methods based on the edge eigenvector and total communicability
centrality appear to be more stable than the others under rewiring and to dampen
the effect of the downdates even for small networks.

A.4. Algorithms. This section provides pseudocodes for all the algorithms used
in the accompanying paper. Algorithms 1 and 2 implement our downdating techniques
with or without the connectivity check, while Algorithm 3 implements our updating
heuristics. All these three algorithms can be used with or without the recomputation
of the rankings for the edges after each modification has been performed. They require
as inputs the initial graph G (typically in the form of its adjacency matrix A) and
a budget K, i.e., the number of modifications one wants to perform. The Boolean
greedy indicates whether the rankings of the edges have to be recomputed after each

Network updating and downdating 33

Algorithm 1: Downdating algorithm with connectivity check.

Data: Initial graph G, K ∈ N, greedy ∈ {0, 1}
Result: Set S of K edges to be removed
S = ∅;
c = 0;
E = list of edges in the graph;
if greedy then

while (c < K) && (|E| > 0) do

found edge = 0;
Compute the centrality measure of interest ∀(i, j) ∈ E;
while (found edge == 0) && (|E| > 0) do

G′ = G;
s = element in E with the smallest centrality;
Downdate s from G′;
if G′ is connected then

G = G′;
found edge = 1;
S = S ∪ {s};
c = c+ 1;

end

E = E \ {s};

end

end

else

l = 1;
Compute edge centrality measure of interest ∀(i, j) ∈ E;
Sort the edges in ascending order;
while (c < K) && (l ≤ |E|) do

G′ = G;
s = lth edge in the sorted array;
Downdate s from G′;
if G′ is connected then

G = G′;
c = c+ 1;
S = S ∪ {s};

end

l = l+ 1;

end

end

Return S.

modification (greedy = 1) or not (greedy = 0).

For the updating algorithm, it is also required to give in input a subset S ⊂ V of
nodes. The K modifications will be selected among the virtual edges in the subgraph
containing the nodes in S and the corresponding edges.

Finally, Algorithm 4 contains a detailed description of the technique introduced
in [4]. This algorithm requires as input the adjacency matrix A and a budget K, as
our methods do. Moreover, this methods requires as input an integer t, which is the
number of leading eigenpairs to be considered and updated during the search for the
K modifications.

A.5. Free energy in networks. In this section we recall the approach used
in [7] to relate the Estrada index of a network with its Helmholtz free energy and,
consequently, with its Gibbs entropy.

Consider a network in which every edge is weighted by a parameter β > 0 and
consider its adjacency matrix βA. The eigenvalues of this new matrix are βλj for all

34 Francesca Arrigo and Michele Benzi

Algorithm 2: Downdating algorithm without connectivity check.

Data: Initial graph G, K ∈ N, greedy ∈ {0, 1}
Result: Set S of K edges to be removed
S = ∅;
c = 0;
E = list of edges in the graph;
if greedy then

for iter = 1 : K do

Compute the centrality measure of interest ∀(i, j) ∈ E;
s = element in E with the smallest centrality;
Downdate s from G;
S = S ∪ {s};
E = E \ {s};

end

else

Compute edge centrality measure of interest ∀(i, j) ∈ E;
Sort the edges in ascending order;
S = top K elements in the sorted array;

end

Return S.

Algorithm 3: Updating algorithm.

Data: Initial graph G, K ∈ N, S ⊂ V nodes in the subgraph, greedy ∈ {0, 1}
Result: Set S of K edges to be added
S = ∅;
E = list of virtual edges in the subgraph containing nodes in S;
if greedy then

for iter = 1 : K do

Compute edge centrality measure of interest ∀(i, j) ∈ E;
s = element in E having the largest centrality;
Update s in G;
S = S ∪ {s};
E = E \ {s};

end

else

Compute edge centrality measure of interest ∀(i, j) ∈ E;
Sort the edges in descending order;
S= top K elements in the sorted array;

end

Return S.

j = 1, 2, . . . , n and its Estrada index becomes EE(G, β) = Tr(eβA), where Tr denotes
the trace. This index can be interpreted as the partition function of the corresponding
complex network:

Z(G, β) := EE(G, β) = Tr(eβA).

Form the standpoint of quantum statistical mechanics, H = −A is the system Hamil-
tonian and β = 1

kBT
is the inverse temperature, with kB the Boltzmann constant

and T the absolute temperature. It is well known [6, 8] that β can be understood as
a measure of the “strength” of the interactions between pairs of vertices; the higher
the temperature (i.e., the lower the value of β), the weaker the interactions. The
eigenvalues λi (for i = 1, . . . , n) give the possible energy levels, each corresponding to
a different state of the system.

The probability that the system is found in a particular state can be obtained by

Network updating and downdating 35

Algorithm 4: Updating algorithm from [4].

Data: A adjacency matrix, K ∈ N, and t ∈ N.
Result: Set S of K edges to be added
S = ∅;
Compute the top t eigenpairs (λk,qk) of A;
for iter = 1 : K do

Compute dmax = max(di), the largest row sum of A ;
Find the set C of dmax nodes with the highest eigenvector centrality;

Select the edge (i∗, j∗) ∈ E that maximizes

eλ1

(

e2q1(i)q1(j) +
t∑

h=2

eλh−λ1e2qh(i)qh(j)

)

and such that i∗, j∗ ∈ C, i∗ 6= j∗;
S = S ∪ {(i∗, j∗)}, E = E ∪ {(i∗, j∗)};
Update A;
Update the top t eigenpairs as

{
λk = λk + 2qk(i)qk(j);

qk = qk +
∑

h6=k

(
qh(i)qk(j)−qk(i)qh(j)

λk−λh
qh

)
k = 1, 2, . . . , t;

end

Return S.

considering the Maxwell–Boltzmann distribution:

pi =
eβλi

EE(G, β)
, i = 1, . . . , n.

Using this notation and the fact that the Estrada index can be seen as the partition
function of the system, in [7] the authors define the Gibbs entropy of the network as

S(G, β) = −kB

n∑

i=1

pi ln(pi) = −kBβ

n∑

i=1

(λipi) + kB ln(EE(G, β))

where in the last equality we have used the fact that
∑

i pi = 1.
Using now the standard relation F = H − TS that relates the Helmholtz free

energy F , the total energy of the network H , the Gibbs entropy S, and the absolute
temperature of the system T , the authors derive:

{
H(G, β) = −∑n

i=1 λipi,

F (G, β) = −β−1 ln(EE(G, β)).

It is then clear that if we set β = 1 and let F := F (G, 1), we then get F =
− ln(EE(G)).

REFERENCES

[1] M. Benzi and P. Boito Quadrature rule-based bounds for functions of adjacency matrices,
Linear Algebra Appl. 433 (2010), pp. 637–652.

[2] M. Benzi and G. H. Golub Bounds for the entries of matrix functions with application to
preconditioning, BIT 39 (1999), pp. 417–438.

[3] M. Benzi and C. Klymko, Total communicability as a centrality measure, J. Complex Networks,
1(2) (2013), pp. 124–149.

36 Francesca Arrigo and Michele Benzi

[4] H. Chan, L. Akoglu, and H. Tong, Make it or break it: manipulating robustness in large net-
works, Proceedings of the 2014 SIAM Data Mining Conference (2014), Society for Industrial
and Applied Mathematics, pp. 325–333.

[5] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/.

[6] E. Estrada, The Structure of Complex Networks. Theory and Applications, Oxford University
Press, 2012.

[7] E. Estrada and N. Hatano, Statistical–mechanical approach to subgraph centrality in complex
networks, Chem. Phys. Lett. 439 (2007), pp. 247–251.

[8] E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex networks,
Phys. Rep., 514 (2012), pp. 89–119.

[9] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Network analysis via partial spectral
factorization and Gauss quadrature, SIAM J. Sci. Comput, 35 (4) (2012), pp. A2046–A2068.

[10] G. H. Golub and G. Meurant, Matrices, Moments and Quadrature with Applications, Prince-
ton University Press, Princeton, NJ 2010.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis for the heuristic determination
of minimum cost paths, IEEE Trans. Systems Sci. Cybernetics, 4 (2) (1968), pp. 100–107.

[12] N. J. Higham, Function of Matrices, Theory and Computation, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2008.

[13] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, The
bottlenose dolphin community in Doubtful Sound features a large proportion of long-lasting
associations, Behavioral Ecology and Sociobiology 54 (2003), pp. 396–405.

[14] G. Meurant, MMQ toolbox for MATLAB, http://pagesperso-orange.fr/gerard.meurant/.
[15] J. H. Michael and J. G. Massey, Modeling the communication network in a sawmill, Forest

Products Journal, 47 (1997), pp. 25–30.
[16] W. de Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network Analysis with Pajek,

Cambridge University Press, 2004.
[17] W. W. Zachary, An information flow model for conflict and fission in small groups, J. An-

thropol. Res., 33 (1977), pp. 452–473.
[18] L. D. Zeleny, Adaptation of research findings in social leadership to college classroom proce-

dures, Sociometry, 13 (4) (1950), pp. 314–328

