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Abstract 

Direct compaction tabletting, a widely used secondary downstream processing operation, 

has recently received significant research attention. Experimental data can be used to fit 

model parameters for the prediction of single-component tablet thickness and hardness 

with good agreement, and this has been done for two components (Avicel® PH-101 and 

Pharmatose® 50M). These pure component parameters have then been used to predict 

multicomponent tablet properties, with the use of novel modified parameter averaging 

calculations improving predictions. Furthermore, a relation has been developed to 

estimate the required gap between tablet press punch faces for multicomponent tablets 

based on the gaps required for pure components; a quick and efficient way to estimate the 

necessary equipment settings to generate the desired compaction forces is a useful tool. 
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1. Introduction 

Continuous Pharmaceutical Manufacturing (CPM) is a promising alternative to the 

current paradigm of batch production, and mathematical modelling and simulation is a 

useful tool within the methodology of CPM (Lee et al., 2015). The final step in many 

production process is final product formulation. In the case of solid dosage forms such as 

tablets the critical quality attributes include tablet tensile strength and thickness; 

appropriate dissolution rates are also crucial (Velasco et al., 1999). Currently, time-

consuming design-of-experiment (DOE) approaches are commonly used to determine the 

necessary conditions to achieve the required tablet properties, and the need for cost-

effective R&D methodologies brings process modelling and simulation to the forefront 

of initial stages of process option evaluation (Diab and Gerogiorgis, 2018). 

 

In the present work, we predict the properties of multicomponent tablets using parameters 

determined from pure component compaction data; a model by Gavi and Reynolds (2014) 

has been used to fit the parameters for tablet compaction. The use of pure component 

parameters in the prediction of multicomponent tablet properties entails the use of some 

form of mixing or averaging rule, and the appropriateness of currently implemented rules 

are analysed, with novel modifications made where necessary. 
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2. Compaction experiments 

Experiments (Papathanasiou, 2018) were performed for varying tablet weights (200, 250 

or 300 mg) and components (microcrystalline cellulose: Avicel® PH-101; α-lactose 

monohydrate: Pharmatose® 50M). Tablet thickness and hardness were recorded for a 

range of compaction forces. Tablet masses were also measured after ejection (due to 

material flowability, there was always some variation from target tablet mass, 

approximately ± 2 %). For each compaction force, experiments were performed 10 times 

(i.e. 10 tablets were produced). In addition to the above experiments being done for pure 

components, a similar set of experiments were done for binary tablets of lactose and 

cellulose, to allow the assessment of binary tablet predictions. 

 

The pure component experiments showed the expected trends, such as hardness 

increasing with increasing compaction force, and thickness decreasing with increasing 

compaction force (routine data not shown due to space constraints – available in the work 

of Papathanasiou, 2018). Cellulose achieves significantly higher hardness values (up to 

450 N for 250 mg tablets) than lactose (up to approximately 50 N), which is unsurprising 

as Avicel® PH was introduced with direct compaction in mind. The hardness values 

achieved with the mixtures fall between those of pure cellulose and pure lactose, as one 

might expect. 

3. Compaction model 

The compaction model used here is one developed by Gavi and Reynolds (2014), and is 

also included in the FormulatedProducts module of the gPROMS software package 

(henceforth called gFormulate), produced by Process Systems Enterprise (PSE, 2018). 

The model has several key equations. The first computes the tablet relative density 𝜌∗  

(Equation 1). Here, 𝜌0
∗ is the relative density at zero compaction pressure (taken to be the 

tapped density of the powder), 𝑃 is compaction pressure (MPa) and 𝐾 is the 

compressibility constant (a dimensionless fitting parameter). Tablet 𝜌∗  values can be 

calculated from the compressed tablet densities and the true density of the material (𝜌
𝑐𝑟𝑦𝑠

, 

determined experimentally with a gas pycnometer). Equation 1 is used first in the 

calculations – the model is sequential. With relative density calculated, tablet thickness h 

is then calculated for known 𝜌
𝑐𝑟𝑦𝑠

, mass 𝑀, and diameter 𝑑 (Equation 2; assumes flat-

faced cylinders) (Fell and Newton, 1970). 

 

Another key equation is that governing tensile strength, 𝜎 (Equation 3). Here, 𝜎0 is the 

tensile strength at zero porosity (i.e. a fitting parameter corresponding to the theoretical 

maximum possible compaction, units of MPa), 𝑘𝑏 is the bonding capacity (also a 

dimensionless fitting parameter), and 𝜀 is tablet porosity (Equation 4). The three key 

parameters, then, are the compressibility constant (𝐾), the tensile strength at zero porosity 

(𝜎0) and bonding capacity (𝑘𝑏). Experimentally, tensile strength can be calculated from 

hardness via Equation 5, where 𝐹 is the compaction force in kN. 

 

𝜌∗ = 𝜌0
∗𝑃

1
𝐾⁄  (1) 

ℎ =
𝑀

𝜌∗𝜌
𝑐𝑟𝑦𝑠

4

𝜋𝑑2
 (2) 
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𝜎 = 𝜎0𝑒
−𝑘𝑏𝜀 (3) 

𝜀 = 1 − 𝜌∗  (4) 

𝜎 =
2

𝜋

𝐹

ℎ𝑑
 (5) 

4. Pure component parameter estimation 

Comprehensive experimental data allows for parameters to be fitted for use in empirical 

and data-driven models. In this work, the parameters being fitted are compressibility 

constant (𝐾), tensile strength at zero porosity (𝜎0) and bonding capacity (𝑘𝑏). 

 

The pure component experimental data were imported into gFormulate, where a digital 

flowsheet of the process was created. The control variables are compaction pressure 𝑃 

and tablet weight M, while the key measured variables are tablet thickness h and hardness 

H (the diametrical load which causes tablet failure). With three fitted parameters and four 

variables (two control, two measured), the problem was straightforward, and 

computationally undemanding; the parameters themselves (for cellulose/Avicel® PH-101 

and lactose/Pharmatose® 50M) are given in Table 1. 

5. Multi-component tablet property prediction 

Pure component parameters that reliably predict single-component tablets have been 

determined. The subsequent use of these for multi-component tablet property prediction 

has been investigated, which entails the use of some form of averaging or mixing rule for 

the model parameters 𝐾, 𝜎0 and 𝑘𝑏. Doing this by pre-compaction component volume 

fractions is one option (Equation 6) (Gavi and Reynolds, 2014). Results for mixtures of 

lactose-cellulose indicate that while predictions for hardness are good at lower 

compaction forces, there is a trend of over-prediction which becomes more evident at 

higher compaction forces (Fig. 1). However, this trend is not present for pure components, 

i.e. pure lactose and pure cellulose tablets are predicted reasonably well, with no 

significant hardness over-prediction at higher compaction forces (Fig. 1B). This implies 

the potential for prediction improvement from using alternative parameter 

averaging/mixing rules. 

 

The volume fractions of the components after compaction (as opposed to prior) can be 

estimated by assuming they compact at similar rates as when they are a pure component 

(i.e. a 25 % volume reduction for pure material i when subjected to a given force implies 

a 25 % reduction for component i when a mixture is subjected to the same force), and can 

be computed via Equation 7 (Reynolds et al., 2017). 

Table 1. Optimal pure component parameter values for Avicel® PH-101 and Pharmatose® 50M. 

Component 

Tensile strength 

at zero porosity 

Bonding  

capacity 

Compressibility  

constant 

σ0 (MPa) 99% CI kb (-) 99% CI K (-) 99% CI 

Avicel® PH-101 12.0067 ±1.9080 7.5847 ±0.6362 4.2008 ±0.1372 

Pharmatose® 50M 1.6789 ±0.3212 11.6020 ±0.8704 9.0901 ±0.2130 
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𝑝𝑚𝑖𝑥 =∑𝜑𝑖𝑝𝑖
𝑖∈𝐶

 ,      𝑝 = {𝐾, 𝜎0, 𝑘𝑏} (6) 

𝜑′𝑖 =

𝑚𝑖

(1 − 𝜀𝑖)𝜌𝑖
𝑐𝑟𝑦𝑠⁄

∑ 𝑚𝑖

(1 − 𝜀𝑖)𝜌𝑖
𝑐𝑟𝑦𝑠⁄𝑖∈𝐶

 (7) 

𝜎𝑇𝑎𝑏 =∏𝜎𝑖
𝜑′𝑖

𝑖∈𝐶

 (8) 

 

The Reynolds et al. (2017) model then use Equation 8 to compute the tensile strength of 

multicomponent tablets. In essence, tensile strengths for each component are calculated 

on a pure basis, then averaged using Equation 8. However, this approach relies on the 

components being of similar particle size (Reynolds et al., 2017). For applications where 

the particle sizes are different, such as in this work (Avicel® PH-101 has an average 

particle size of 50 μm, Pharmatose® 50M has an average size of 360 μm), an alternative 

approach is required. 

 

The approach used in this work is to use Equation 6 to average the compressibility 

constant K as before, then use Equation 7 to compute component volume fractions in the 

compact (𝜑′𝑖), and then use these volume fractions to average the post-compaction tensile 

strength (𝜎0) and bonding capacity (𝑘𝑏) parameters (Equation 9) for use with Equation 3. 

 

𝜎0𝑚𝑖𝑥 =∑𝜑′𝑖𝜎0𝑖
𝑖∈𝐶

 , 𝑘𝑏𝑚𝑖𝑥 =∑𝜑′𝑖𝑘𝑏𝑖
𝑖∈𝐶

 (9) 

A) 50-50 (weight) lactose-celluose B) Varying mixture of lactose-cellulose (weight) 

 

  

Figure 1. Predicted (Gavi and Reynolds, 2014) vs measured 250 mg tablet hardness and thickness 

for varying mixtures of lactose-cellulose. For each substance, the predicted curves use the same 

respective set of parameters. The parameters can be found in Table 1. Arrows in B are a visual aid, 

to indicate which predicted curve corresponds with which experimental data set. 
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This approach results in improved predictions (Fig. 2). Compared with the previous 

method (Fig. 1, Fig. 2 dashed lines) the improvements are evident, especially for tablet 

hardness. While predictions using the previous method agreed with measured data at 

lower compaction forces, the method outlined in here produces predictions which match 

the experimental data across the entire range of compaction forces. 

 

The main variable in the compaction model used here is, as with many compaction 

models, the pressure applied (or the force in some cases) (Equation 1). However, in tablet 

presses there frequently is not a setting or dial for pressure, but a way to set the distance 

to which the punch faces compact the material (punch gap, PG); knowing what pressure 

or force is required might not be immediately useful to a user in the lab. We have taken 

the compaction force and PG data, and have been able to determine a relation between 

them, adjusted for tablet weight. An example of this for cellulose is given in Fig. 3A. This 

variable, which we have called the gap-mass factor γ, has units of mm/g. When plotted 

against compaction pressure as in Fig. 3A, a power law relation (Equation 10) can be 

determined for the curved portion corresponding to lower compaction pressures; the 

horizontal portion, corresponding to the limit of zero porosity, is less useful as there is no 

improvement in tablet properties at these compaction pressures. This fitting of the curved 

portion will result in two parameters a and b for a given pure component, and we have 

then used a mass fraction (mi)-based mixing rule (Equation 11) to estimate what PG might 

be required for a binary tablet of given weight M. The predicted PG values are in good 

agreement with the experimentally required values for binary tablets, with the difference 

being of a similar order of magnitude as tablet thickness (Fig. 3B). Such a relation is 

envisaged to be useful to users wishing to apply a certain compaction force. 

 

𝛾𝑖 = 𝑎𝑖𝑃
𝑏𝑖 (10) 

𝑃𝐺 = 𝑀∑𝑚𝑖𝛾𝑖
𝑖∈𝐶

 (11) 

 

Figure 2. Predicted vs measured (experimental) 250 mg tablet hardness and thickness for 250mg 

lactose-cellulose tablets (50-50 by weight), illustrating prediction improvements from using post-

compaction volume fractions to weight the pure component parameters. 
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6. Conclusions 

Pure component parameters can be fitted with good statistical results. The use of these 

pure parameters for the prediction of multicomponent tablet properties is possible, and 

predictions have been improved by a novel use of model equations. In addition, a relation 

between tablet press punch gap values and applied compaction pressures has been 

developed, which predicts necessary punch gaps with good accuracy. 
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Figure 3. A) Punch gap-compaction pressure relation for Avicel® PH-101. Data points have been 

normalized by dividing punch gap values (mm) by tablet weights (g). B) Prediction from pure 
component data of required punch gap values of multicomponent tablets (Equations 10–11).  
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