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Abstract: ‘Destination charging’ – the opportunity for drivers to charge their battery electric vehicles (EVs) while parked at 
amenities such as supermarkets, shopping centres, gyms and cinemas – has the potential to accelerate the rate of EV uptake. 
This paper presents a Monte Carlo (MC)-based method for the characterisation of EV destination charging at these locations 
based on smartphone users’ anonymised positional data captured in the Google Maps Popular Times feature. Unlike the use 
of household and travel surveys, from which most academic works on the subject are based, these data represent individuals’ 
actual movements rather than how they might recall or divulge them. Through a fleet EV charging approach proposed in this 
paper, likely electrical demand profiles for EV destination charging at different amenities are presented. Use of the method 
is presented firstly for a generic characterisation of EV charging in the car parks of gyms, based on a sample of over 2,000 
gyms in around major UK cities, and secondly for a specific characterisation of hypothetical EV charging infrastructure 
installed at a large UK shopping centre to investigate the impact of varying the grid and converter capacity on the expected 
charging demand and level of service provision to the vehicles charging there. 

 

Nomenclature 

Sets 

𝕀j Set of EVs in car park at the beginning of the jth 

timestep, indexed by i 

𝕁 Set of timesteps, indexed by j 

Variables 

𝜆 Arrival rate of vehicles into car park (per hour) 

Ci Battery capacity of ith EV (kWh) 

CRij Charge rate of ith EV evaluated at the beginning of 

the jth minute (kW) 

N Car park occupancy 

nj Number of EVs in car park at the beginning of the 

jth minute 

PC Power rating of converter (kW) 

PEV Power rating of EV (kW) 

PG Available grid capacity (kW) 

PCRij Potential charge rate of ith EV evaluated at the 

beginning of the jth minute (kW) 

SoCij Battery state of charge of ith car evaluated at the 

beginning of the jth minute (kW) 

T Mean parking duration (hours) 

TERj Total energy requirement of car park evaluated at 

the beginning of the jth minute (kWh) 

1. Introduction 

1.1. Motivation 
The UK’s Committee on Climate Change (CCC) has 

stated that in order for the Government to achieve net zero 

carbon dioxide emissions, all new cars and vans sold in the 

UK must be electric by 2035 at the latest, with cost savings 

projected as a result of an earlier switch [1]. Given the current 

market dominance of battery Electric Vehicles (EVs) over 

other EVs such as hydrogen fuel cell-powered vehicles [2], it 

is reasonable to expect that within the next two to three 

decades, a significant proportion of Britain’s 31 million cars 

[3] could be replaced with plug-in EVs. 

While it is often assumed that EVs will be charged 

slowly overnight at home, typically at rates of 3-7 kW, a 

significant proportion of EV charging could exist as 

‘destination’ charging while parked during their users’ visits 

to workplaces or amenities such as supermarkets, shopping 

centres, gyms, cinemas and motorway service stations – 

where cars are left for durations ranging from ten minutes to 

three hours. A move from a solely domestic charging-based 

EV uptake to one focused on the widespread availability of 

public charging could serve to enable EV access to those 

without off-street parking (which, according to a Department 

for Transport survey [4], applies to 43% of households in the 

UK) and has the potential to reduce system cost: according to 

[5], 32% of local electricity networks across GB will require 

intervention when 40% - 70% of customers have at-home EV 

charging. By encouraging users to charge away from home at 

their place of work or other places where they leave their car, 

the installation of charging infrastructure can be directed 

towards areas of greater spare capacity or with more potential 

for ‘smarter’ network operation which could allow a higher 

penetration of EV charging.  

As the EV market continues to grow, it is likely that 

destination charging will become a significant part of overall 

EV charging infrastructure because, as has been shown in [6] 

and [7], EV drivers are likely to actively seek out destinations 

that offer charging opportunities, even at the expense of 

lengthening their own journeys: this places an incentive on 

the proprietors of these destinations to install charging 

infrastructure in order to attract more custom. this is 

demonstrably already happening: in 2018, one of the UK’s 

largest supermarket chains announced plans to install free-to-

use EV charging infrastructure at 600 of its stores by 2020 [8]. 

 

1.2. Mobility Data 
In order to characterise EV charging demand of any 

sort, one must assume a rate of arrival and length of stay of 

the vehicles that require charging. In the majority of works on 

the subject, these are derived from individuals’ responses to 

household or travel surveys [9]–[12]. Although a wide variety 
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of simulation methods are demonstrated, use of such surveys 

as input data introduces systematic unreliability to these 

studies, as they are based on how individuals recall or divulge 

their activities. In contrast, this paper presents a model based 

on anonymous data obtained from individuals’ smartphones, 

representing a realistic impression of their movements. 

There are works that, as in this paper, use alternative 

forms of mobility data. In [13], authors present analysis of the 

temporal variation of EVs passing through a fast charging 

station based on the frequency and duration at which 

conventional vehicles are visiting petrol stations, which is 

analogous to how data are collected for charging destinations 

in this study. However, as the data are manually collected, the 

sample size is small (four petrol stations). The authors in [14] 

use traffic flow data to drive an EV charging demand model 

at various charging stops, which although uses real data as in 

this paper, a dependency is assumed between traffic (vehicles 

being on the roads) and their seeking to stop and charge. It is 

suggested that in reality, the likelihood of individual drivers 

stopping to charge is related to their remaining range and the 

time of day (and hence the EV charging activity in relation to 

other planned activities in the day). In [15], a model is 

presented which analyses the likely demand for en route EV 

charging stations based on a large dataset of over a million 

mobile phone call records over a four-month period. While 

the approach of using a large-scale mobile phone-based 

dataset is similar to that proposed in this paper, it is suggested 

that call records are of limited value when analysing 

individuals’ mobility: aside from it generally being against 

the law to use a mobile phone while driving, use of mobile 

phones for calling is in significant decline in favour of 

internet-based communication apps such as WhatsApp and 

Facebook (whose usage would not be recorded in call 

records), with a quarter of UK smartphone users reportedly 

using their phones to make calls less than once per week [16]. 

It is proposed that the method presented in this paper 

can be used to grow the body of knowledge in the topic of EV 

charging demand characterisation. The method of using 

large-scale smartphone locational data from such a ubiquitous 

source as Google Maps to inform the models represents a shift 

towards utilising big data in the effective planning of 

transport and energy systems. 

 

1.3. Objective 
The objective for this work is to present a method for 

the characterisation of EV destination charging from a Monte 

Carlo (MC) method based on the activity of amenities at 

which it is likely to exist, derived from data in the Google 

Maps ‘Popular Times’ feature. The method can be used by 

transport and energy system planners to understand the likely 

temporal variation in demand from EV charging at various 

locations; either considering a general characterisation based 

on a given type of amenity, or a specific characterisation on a 

particular business. The use of the method for both types of 

analysis is presented in this paper via the following studies: 

1 Characterisation of EV charging in the car parks of 

gyms, based on Popular Times data from a sample of 

2,221 gyms in and around major UK cities. 

2 Characterisation of EV charging at Braehead, a large 

(6,500 car parking spaces) shopping centre in Scotland, 

based on its Popular Times data and a case study 

detailing the required specification of necessary 

charging infrastructure for a given level of EV charging 

service provision. 

2. Synthesis of Arrivals Profile of Vehicles using 
Google Maps Popular Times Data 

2.1. Google Maps Popular Times Data 
The Popular Times feature [17] within the Google 

Maps website and smartphone application allows users to see 

when a certain business is likely to be crowded, based on 

anonymised positional data collected from smartphone users 

with the Google Maps application installed and location 

history enabled over the last several weeks. The display 

shows an average popularity for each hour of each day of the 

week, as a percentage value of the peak popularity. An 

example is shown in Fig. 1.  

 

Fig. 1. Example of Google Maps Popular Times data for 

a particular large gym in the West of Scotland 

Aside from displaying occupancy, the data also 

contains the average recorded duration of stay at a given 

business. Fig. 2 shows the variation in stay duration for a 

sample of 50 supermarkets, 50 gyms and 20 large shopping 

centres in the UK. All amenities chosen were with car parks 

at which EV charging infrastructure could reasonably be 

installed. 

 

Fig. 2. Box plot showing variation of stay duration 

between supermarkets, shopping centres and gyms 

according to Google Maps Popular Times 

Fig. 1 and Fig. 2 exemplify the extent to which the 

arrival times and parking durations of vehicles at these 

amenities are predictable. Fig. 1 shows that there is clear 

difference between weekday and weekend behaviour at that 

particular gym, with the weekly peak likely to occur in the 

evening in the beginning of the week (Monday-Wednesday). 

Fig. 2 shows that the distribution of stay duration at different 

businesses varies; at supermarkets, the majority queried 
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reported typical stay durations of 20 minutes. Gyms have a 

tight distribution of stay duration about their median of 69 

minutes; the interquartile range representing 7 minutes. 

Although the median stay duration queried from shopping 

centres was the same as for gyms, they are shown to have a 

wider distribution; typically, large out-of-town shopping 

centres reported longer stay durations up to 2 hours. 

 
2.2. Limitations to Using the Data 

Firstly, the data is captured from visitors to these 

amenities only if they are smartphone users with the Google 

Maps application installed and have not actively disabled 

location services. While this method is likely to capture a 

great many users (37 million people – 81% of UK adults – 

were smartphone users in 2016 [9] and Google Maps was 

installed on 57% of US smartphones in 2017 [10]), this could 

introduce a selection bias in the results if those who are less 

likely to be captured in the data are more likely to visit these 

amenities at certain times. In this paper, it is assumed that the 

throughflow of smartphones with Google Maps installed on 

them through an amenity is proportional to the throughflow 

of vehicles. It is noted that this could lead to inaccuracies due 

to some people taking alternative means of transport to these 

amenities, or some vehicles containing more than one – or 

zero – Google Maps-connected smartphones. However, the 

advent of EV charging and route-planning apps, many of 

which connect to Google Maps (e.g. the Zap-Map Journey 

Planner [18]), could make it possible for planners and 

charging operators to use data from these apps to develop a 

more accurate impression of the destination charging habits 

of EV drivers. 

Secondly, the popularity data is presented as an 

averaged percentage of the peak and there is no indication of 

the absolute number of visitors. This paper assumes that 

amenities are well-suited to their local markets and, although 

it is expected that not all users of these amenities will travel 

there by car, ‘100% busy’ in the Google data is taken to 

correspond to a 100% full EV charging car park. If using this 

method to examine amenities in a particular location, such as 

in section 5, more detailed work to ascertain the peak 

popularity should be carried out. 

Thirdly, as the data is compiled and presented for 

seven days of the week, no seasonal variation can be derived. 

Despite these limitations, it is suggested that using 

smartphone locational data for activity holds distinct 

advantages over using survey-based data. Firstly, the data 

encapsulates individuals’ actual movement patterns rather 

than what they recall or divulge. Secondly, the burdensome 

nature of surveys results in a relatively low sample size: while 

15,840 individuals were polled in the 2016 UK National 

Travel Survey [11], the approach used in this paper has the 

potential to cover tens of millions of UK vehicle users. 

 

2.3. Synthesis of Arrivals Profile of Vehicles 
In order to translate the occupancy of the amenity, as 

in Fig. 1, to an arrival rate of vehicles for input to the fleet 

charging algorithm (section 3.4), the peak popularity was 

assumed equal to the capacity of the EV charging car park. 

For each hour, the arrival rate λ (number of vehicles arriving 

per hour) was sampled from a Poisson distribution (1), where 

T is the mean parking time and N is the car park occupancy 

(e.g. in Fig. 1).  

 

𝑃(𝜆) = 𝑒−
𝑁
𝑇

(
𝑁
𝑇

)
𝜆

𝜆!
 

 

(1) 

T was fixed depending on the amenity in question. For 

MC analysis based on gyms presented in section 4, the mean 

parking duration was assumed as 69 minutes, based on the 

result presented in Fig. 2. For the case study based on 

Braehead shopping centre presented in section 5, the mean 

parking duration was taken as 134 minutes from [19]. 

 

Fig. 3. Example arrivals profile based on Monday data 

for a particular large gym in the West of Scotland 

with 100 EV charging spaces 

3. Electric Vehicle Fleet Charging 

3.1. Charging Philosophy 
‘Smart’ (i.e. controlled) EV charging can be used to 

minimise stress to the network [20], match times of high 

charging demand to times of low energy cost [21] or high 

renewable output [22], [23], or maximise service provision to 

the EV user [24]. 

Proposals for smart charging presented in [20]–[24] all 

rely on bidirectional flow to and from the vehicle – ‘Vehicle 

2 Grid’ (V2G) – and some extent of consumer engagement 

over and above parking and plugging in, ranging from the EV 

user entering their intended stay time [22] to having the EV 

user enter four separate ‘preference parameters’ upon parking 

[24]. Although the approaches in these studies can lead to 

optimised charging schemes in an ideal world, in providing 

user engagement the system is inherently vulnerable to 

unpredictable non-ideal behaviour likely to compromise the 

economic benefits of smart charging [25]. For example, users 

could ‘game’ the system by entering a false intended stay time 

in [22] to prioritise the charging of their EV over others. The 

option to allow V2G operation would have to be consented 

by the vehicle owner, as it has been shown that doing so has 

a detrimental effect on battery longevity: according to [26], a 

‘base case’ EV following the median trip distances from the 

UK National Travel Survey could face a 57-fold increase in 

daily battery degradation rate from providing ancillary 

services and a 115-fold increase from providing bulk energy 

services by operating in V2G mode. 

For these reasons, this paper proposes a simpler EV 

fleet charging algorithm with unidirectional operation that 

seeks to provide optimal service provision to all users with no 

consumer engagement over plugging the car in to the charger, 

given the available grid capacity. This is presented in section 

3.4. 
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3.2. Destination Charging Car Park Topology 
The work presented in this paper is based on the 

concept of a multi-terminal DC charging network with one 

central AC/DC converter and a separate DC/DC converter at 

each car parking space. The concept is well established; 

presented in more detail in [23], [27] and replicated in Fig. 4.  

 

Fig. 4. Proposed topology for EV destination charging 

car park 

3.3. Simulation of EV Parameters 
Following the arrivals profile synthesised from the 

method described in section 2.3, an array of EVs equal in size 

to the height of the bars in Fig. 3 is instantiated for each hour 

of the day. Each EV is assigned parameters which dictate how 

it is treated by the smart charging algorithm. These are 

discussed in sections 3.3.1-3.3.4 below. 

 

3.3.1. Arrival Time (within the hour) 
Within the hour from which the EV instance was 

instantiated (Fig. 3), the EV’s arrival minute was randomly 

assigned an integer between 0 and 59. 

 

3.3.2. Battery Capacity 
The EV is assigned a battery capacity randomly 

sampled from the distribution of EV battery capacities (kWh) 

for UK sales in 2017 [28] (Fig. 5). Two series are shown; one 

for all EVs, including plug-in hybrid EVs (PHEVs) and 

battery EVs (BEVs), and one for BEVs only. The model can 

be run with either setting; however, all results presented in 

this paper are for the ‘all EVs’ option. Furthermore, this 

distribution can be changed to reflect any credible future 

scenario of EV battery capacities; this is suggested as a piece 

of further work in section 6. 

 

Fig. 5. Histogram showing distribution of battery sizes 

for UK EV Sales, 2017 – data from [28] 

3.3.3. State of Charge (SoC) on Arrival 
The battery’s State of Charge (SoC) upon starting and 

finishing charging is often modelled by a Gaussian 

distribution as in [29]. However, the authors in [30] present 

χ2 test results to argue that a Beta distribution offers a better 

goodness of fit to real charging behaviour than a Gaussian 

distribution does. Furthermore, the fact that the domain of a 

Beta distribution is constrained to [0,1] means that there are 

no ‘lost’ values as there would be in a Gaussian distribution, 

which would allow sampling outside of that region.  

The Beta distribution is characterised by two shape 

parameters 𝛼 and 𝛽. For this work, they are derived using a 

‘method of moments’ estimation [31] from data of the SoC at 

the start of charging for 2,494 charging events at ‘public’ 

locations monitored as part of the SwitchEV electric vehicle 

trial [32], which ran from March 2011 to May 2013 in 

Newcastle & Northeast England to provide insight on how 

individuals use and charge EVs, with an emphasis on 

workplace and public charging. Based on this data, the Beta 

distribution parameters are set at 𝛼 = 2.27, 𝛽 = 2.18 which 

derives a mean SoC on plugin of 51%. A probability 

distribution function (PDF) of this Beta distribution is shown 

in Fig. 6. 

 

Fig. 6. Beta distribution (α=2.27, 2.18) used for 

modelling SoC on arrival 

 

3.3.4. Parking Duration 
The length of time the EV spends in the car park was 

modelled by a Poisson distribution, a method taken from [33] 

which uses the distribution to model an analogous quantity – 

the length of stay of patients in hospital beds. The distribution 

used for this work is the same as that in (1), with the mean 

value set depending on the type of amenity being analysed 

(section 2.3). 

‘Affordable’ 

BEVs 
Long 

range 

BEVs 

PHEVs 

DC/DC 
converters, 
capacity Pc 

Grid 

connection, 
capacity PG 
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3.4. Proposed EV Fleet Charging Algorithm 
From the set of vehicles each with parameters from 

section 3.3, the EV fleet charging algorithm can be applied. 

For the jth minute of the day, (𝑗 ∈ 𝕁, 0 ≤ 𝑗 < 1440), and the 

ith car in the car park, out of a total of nj cars present in the car 

park at the beginning of the jth minute, (𝑖 ∈ 𝕀j, 0 < 𝑖 ≤ 𝑛), TERj 

is the total energy requirement of all cars in the car park at the 

beginning of the jth minute (2).  

 

 

𝑇𝐸𝑅𝑗 =  ∑(1 − 𝑆𝑜𝐶𝑖𝑗) ∙ 𝐶𝑖

𝑛𝑗

𝑖=1

 

 

(2) 

 

where 𝑆𝑜𝐶𝑖𝑗  is the ith car’s SoC at the start of the jth minute 

and 𝐶𝑖 is the ith car’s battery capacity. 

PCRij is the potential charge rate of the ith car at the 

start of the jth minute, i.e. the maximum charge rate it could 

draw if unconstrained, is (3): 

 

 
𝑃𝐶𝑅𝑖𝑗 =

(1 − 𝑆𝑜𝐶𝑖𝑗) ∙ 𝐶𝑖

𝑇𝐸𝑅𝑗

∙ 𝑃𝐺  
 

(3) 

 

where 𝑃𝐺  is the total available grid capacity. The power 

drawn by each EV in each minute is then subject to a series 

of constraints. Firstly, the maximum power the EV battery 

can accept is limited by a constant current-constant voltage 

(CC-CV) charge profile PEV, taken from [24] (Fig. 7). Below 

an SoC of 90%, the charger will operate in constant current 

mode and the power is not limited. Above 90%, the charger 

switches to a constant voltage mode, and the power drawn 

will linearly decrease to zero at 100%. 

 

Fig. 7. Charging profile used for PE 

The power draw is also limited by the rating of the 

converter, PC, and the maximum power the EV can draw, PEV. 

This is assigned as either 50 kW, if the car’s battery capacity 

is less than 60 kWh, or 120 kW if the car’s batter capacity is 

over 60 kWh. This was done to reflect typical values in EVs 

currently on the market [34], [35]. It is noted that there is no 

consideration given to the effects of temperature or battery 

age on the charge rate of vehicles. 

CRij is the actual charge rate of the ith car in the jth 

minute, given by (4). 

 

 
𝐶𝑅𝑖𝑗 = {

𝑃𝐶𝑅𝑖𝑗 , 𝑃𝐶𝑅𝑖𝑗 < min (𝑃𝐵𝑖𝑗
, 𝑃𝐶 , 𝑃𝐸𝑉𝑖𝑗

) 

min (𝑃𝐵 𝑖𝑗
, 𝑃𝐶 , 𝑃𝐸𝑉𝑖𝑗

), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

 

The SoC of the ith vehicle at the beginning of the next 

(j+1)th minute is then calculated in (5), where Δt is the 

timestep (1 minute). 

 

 𝑆𝑜𝐶𝑖𝑗+1 = 𝑆𝑜𝐶𝑖𝑗 + 𝐶𝑅𝑖𝑗Δt (5) 

The fleet charging method presented requires real-

time monitoring and feedback to work on the basis of 1-

minute timesteps. While the information required is likely to 

be possible to ascertain (based on the SoC at the start of 

charge – which could be estimated using a method such as in 

[36], the arrival time and the EV’s power rating PEV), any 

computational burden could be reduced by increasing the 

timestep. Investigation into the sensitivity of the model to this 

parameter is suggested as a piece of further work in section 6. 

 

3.5. Queueing Model 
If a car arrives such that nj is greater than the number 

of charging spaces, the car joins a queue. The queue continues 

to grow in length as more cars arrive, until any cars within the 

charging spaces leave. When that happens, a car is picked at 

random from the queue to join the charging space to reflect 

real queueing processes in car parks. The time at which that 

car begins charging is adjusted accordingly; it is assumed that 

its parking duration and all other parameters remain the same. 

4. Characterisation of EV Charging at Gym Car 
Parks 

4.1. Monte Carlo Simulation of Amenity Activity 
The Google Maps Popular Times data (Fig. 1) was 

fetched for a sample of 2,221 gyms in and around major GB 

population centres. According to [37], this represents around 

a third of the total number of gyms in the UK. Based on this 

data, an MC-based approach was used to form cumulative 

distribution functions (CDFs) of the percentage popularity for 

each hour of the day. From this, a Monte Carlo approach was 

used to derive a simulated popularity profile for any day of 

the week. This can then be translated to an arrivals profile 

using the same method as in Section 2.3 for a specified 

number of EV charging spaces. The simulation was run for 

10,000 trials based on all gyms in the sample, for a 100-car 

capacity EV charging car park with a 2 MW grid capacity and 

50 kW converter rating. 

 

4.2. Results 
Results are presented in terms of a CDF plot for 

simulations based on the sample of gyms for Monday (Fig. 8) 

and Saturday (Fig. 9) popularity data. 

 

Fig. 8. CDF for MC simulation of EV charging at gym 

car park from Monday popularity data 

Constant Current 

90% 

80% contour 
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Fig. 9. CDF for MC simulation of EV charging at gym 

car park from Saturday popularity data 

As exemplified by Figs. 7 and 8, the weekday demand 

profile for gym-based EV charging is most likely to peak in 

the evening around 18:00-20:00 whereas the (lesser) weekend 

charging demand is most likely to peak in the late 

morning/noon around 10:00-13:00. 

The method demonstrated provides a probabilistic 

evaluation of the likely EV charging demand at a given type 

of amenity. For example, Fig. 8 shows a 20% probability that 

the charging demand peak on a Monday will be greater than 

approximately 1000 kW between the hours of 18:00-20:00. 

This temporal analysis could be invaluable in assessing the 

potential of smart grid technologies to provide a better 

utilised electricity network, exploiting the potential diversity 

between EV charging in different locations and between EV 

charging and the pre-existing network demand. 

5. Case Study: Transmission-Connected EV 
Destination Charging at Large GB Shopping 
Centre 

Braehead is a large shopping centre and leisure 

complex in Glasgow, Scotland. Due to its proximity to the 

M8 motorway and its total of 6,500 car parking spaces, it has 

the potential to serve as a significant destination charging 

location. Its proximity to local transmission infrastructure 

means that it could be connected directly to a Grid Supply 

Point (GSP), affording the charging car park a large grid 

import capacity. From [19], it is reported that customers 

spend an average of 134 minutes there. Using T = 134 minutes 

in (1), the Google Popular Times data (Fig. 10) can be used 

with the smart charging algorithm (section 3.4) to produce an 

expected demand profile for the period of interest (i.e. when 

the shopping centre is open). 

 

Fig. 10. Google Maps Popular Times data for Braehead 

shopping centre 

Two values for PG and three values for PC were used 

to examine the effect of the car park parameters (Fig. 4) on 

peak demand and service provision (Table 1). Combining the 

values gives six trials; for which the variation in demand 

profile (Fig. 11) and service provision (Fig. 12) are shown.  

Table 1. Values of PG and PC used for Case Study 

Parameter Low Medium High 

PG 10 MW - 25 MW 

PC 10 kW 20 kW 50 kW 
 

 

Fig. 11. Variation of demand profile with parameters PG 

and PC 

 

Fig. 12. Variation of service provision with parameters 

PG and PC 

Figs 11 and 12 show that only PG = 25 MW allows 

fully unconstrained charging on a Saturday and, with 

sufficient PC, allows all vehicles to charge to at least 90% SoC 

during their stay. As the grid capacity is reduced, the service 

provision and peak demand are reduced, but the time spent at 

the maximum demand increases, with the profiles in Fig. 11 

for PG = 10 MW at their upper limit for up to eight hours of 

the day. 

The energy delivered (kWh) throughout the Saturday 

simulated is shown in Fig. 12. Taking the average tariff for a 

non-domestic customer as 10.8 p/kWh [38], the charging car 

park owner could make a profit of around 9 p/kWh if they 

were to match the 20 p/kWh rate currently offered by multiple 

public charging networks in the UK [39]. Multiplying 9 

p/kWh by the energy delivered (kWh) enables a potential 

Saturday revenue to be calculated: this varies between around 

£8,900 for the PG = 10 MW, PC = 10 kW option to £15,900 

for the PG = 25 MW, PC = 50 kW option. By integrating the 

curves in Fig. 10, it can be found that the Saturday footfall 

accounts for approximately 21% of the total. Therefore, it can 

be supposed that the potential annual revenues from such a 

scheme could be in the region of £2-4 million per year. This 

simplistic economic analysis ignores converter losses and 

Period of interest 

(used for Fig. 11) 

80% contour 
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equipment downtime as a result of maintenance, but enables 

the quantification of the potential inflows of finance from 

such charging schemes and provides grounding for more 

robust business case analysis.  

From this potential revenue, the charging 

infrastructure owner would have to finance infrastructure 

capital, operation & maintenance and any connection 

reinforcement costs made necessary by the increase in 

demand. These costs would vary by grid and converter 

capacity, as would the potential revenue: therefore, the sizing 

of car park infrastructure in such applications will likely be a 

question of economics. If the charging is to provide an extra 

revenue stream to the amenity, then maximum service 

provision at an optimal trade off with infrastructure cost may 

be sought. However, if the amenity is using EV charging as a 

‘loss leader’ (i.e. purely to encourage more visitors) then a 

lower service provision may encourage customers to stay 

longer, which may be preferable in the instance of some 

amenities, such as shopping centres. 

6. Conclusion and Further Work 

In this paper, a MC-based method for characterising 

the likely demand profiles of destination charging at popular 

amenities has been presented. It has been applied to a generic 

gym based on a sample of gyms in GB and also to a case study 

of a real shopping centre, to explore the difference in likely 

EV charging demand at different types of amenities and the 

effect of infrastructure specification on service provision. 

Evidenced through the findings in this paper, it is 

shown that EV destination charging demand is likely to vary 

significantly depending on the type of amenity at which it is 

installed and the day of the week. For example, if charging is 

installed at a gym then the weekly peak is expected to occur 

on a weeknight evening, whereas if charging is installed at a 

shopping centre then the weekly peak is expected to occur on 

a weekend afternoon. 

To improve the accuracy of the model presented in this 

paper, the following pieces of further work are suggested: (1) 

a sensitivity study of the effect of the assumed distributions 

of EV battery capacity (Fig. 5) and SoC on arrival (Fig. 6) on 

the resulting demand from destination charging and (2) a 

sensitivity study of the effect of a relaxed timestep in the fleet 

charging simulation (section 3.4) on the resulting charging 

demand. 

It is proposed that further work is carried out to model 

how the usage of destination charging installations at 

different amenities may interact with one another and how 

they might interact with other modes of EV charging, e.g. 

domestic and rapid charging. By building a robust system of 

modelling for this, insights on the overall impact to the 

electricity network from EV charging can be given and this 

can be used to form recommendations as to the policy of the 

development of EV charging infrastructure. 

From these insights, modelling can be developed in 

which smart grid technologies and novel tariff arrangements 

can be assessed in their potential to enable an electricity 

system fit for the electrification of personal transport at the 

lowest possible cost to both the EV user and the energy 

consumer. 

7. References 

[1] Committee on Climate Change, “Net Zero: The 

UK’s contribution to stopping global warming,” 

2019. 

[2] Bloomberg New Energy Finance, “EV Outlook 

2017.” [Online]. Available: https://goo.gl/hRNrBJ. 

[Accessed: 14-Mar-2018]. 

[3] Department for Transport, “Vehicle Licensing 

Statistics: January to March 2017.” [Online]. 

Available: https://goo.gl/xSRLhz. 

[4] Department for Transport, “Public experiences of 

and attitudes towards parking,” 2008. [Online]. 

Available: https://goo.gl/PQo7qX. [Accessed: 20-

Dec-2017]. 

[5] “My Electric Avenue.” [Online]. Available: 

https://goo.gl/dndDmb. 

[6] D. P. Tuttle and K. M. Kockelman, “Electrified 

Vehicle Technology Trends, Infrastructure 

Implications, And Cost Comparisons,” J. Transp. 

Res. Forum, vol. 51, no. 1, pp. 35–51, 2012. 

[7] Z. Lin and D. L. Greene, “Promoting the market for 

plug-in hybrid and battery electric vehicles,” 

Transp. Res. Rec., no. 2252, pp. 49–56, 2011. 

[8] BBC News, “Tesco and VW plan free electric car 

charging points,” 2018. [Online]. Available: 

https://bbc.in/2QguHks. [Accessed: 02-Dec-2018]. 

[9] S. Huang and D. Infield, “Monte Carlo modelling 

for domestic car use patterns in United Kingdom,” 

2014 Int. Conf. on Connected Vehicles and Expo, 

ICCVE, pp. 68–73, 2015. 

[10] A. Beltramo, A. Julea, N. Refa, Y. Drossinos, C. 

Thiel, and S. Quoilin, “Using electric vehicles as 

flexible resource in power systems: A case study in 

the Netherlands,” 14th Int. Conf. European Energy 

Markets EEM, 2017. 

[11] A. Lojowska, D. Kurowicka, G. Papaefthymiou, and 

L. Van Der Sluis, “Stochastic Modeling of Power 

Demand due to EVs Using Copula,” IEEE Trans. 

Power Systems, vol. 27, no. 4, pp. 1960–1968, 2012. 

[12] C. Crozier, D. Apostolopoulou, and M. McCulloch, 

“Mitigating the impact of personal vehicle 

electrification: A power generation perspective,” 

Energy Policy, vol. 118, pp. 474–481, 2018. 

[13] M. Gjelaj, S. Hashemi, P. B. Andersen, and C. 

Træholt, “Grid Services Provision from Batteries 

within Charging Stations by using a Stochastic 

Planning Method of the EVs Demand Grid Services 

Provision from Batteries within Charging Stations 

by using a Stochastic Planning Method of the EVs 

Demand,” 2019. 

[14] S. Bae and A. Kwasinski, “Spatial and Temporal 

Model of Electric Vehicle Charging Demand,” IEEE 

Trans. Smart Grid, vol. 3, no. 1, pp. 394–403, 2012. 

[15] M. M. Vazifeh, H. Zhang, P. Santi, and C. Ratti, 

“Optimizing the deployment of electric vehicle 

charging stations using pervasive mobility data,” 

Transportation Research Part A Policy and 

Practice, vol. 121, pp. 75–91, 2015. 

[16] Ofcom, “The Communications Market 2018: 

Interactive report,” 2018. [Online]. Available: 

http://bit.ly/2R09r2B. [Accessed: 10-Dec-2018]. 

[17] Google, “Popular times, wait times and visit 

duration.” [Online]. Available: 

https://goo.gl/rx3Lm2. [Accessed: 04-Dec-2017]. 

[18] Zap-Map, “Journey Planner.” [Online]. Available: 



8 

 

https://www.zap-map.com/route-planner/. 

[Accessed: 14-May-2019]. 

[19] Intu Braehead, “Corporate Strategy Overview.” 

[Online]. Available: https://goo.gl/rviMoG. 

[Accessed: 15-Mar-2018]. 

[20] R. Mehta, D. Srinivasan, A. M. Khambadkone, J. 

Yang, and A. Trivedi, “Smart Charging Strategies 

for Optimal Integration of Plug-in Electric Vehicles 

within Existing Distribution System Infrastructure,” 

IEEE Trans. Smart Grid, vol. 9, no. 1, pp. 299–312, 

2016. 

[21] C. Hutson, G. K. Venayagamoorthy, and K. A. 

Corzine, “Intelligent scheduling of hybrid and 

electric vehicle storage capacity in a parking lot for 

profit maximization in grid power transactions,” 

IEEE Energy 2030 Conf., 2008. 

[22] H. Nguyen, C. Zhang, and J. Zhang, “Dynamic 

Demand Control of Electric Vehicles to Support 

Power Grid with High Penetration Level of 

Renewable Energy,” IEEE Trans. Transportation 

Electrification, vol. 2, no. 1, pp. 66–75, 2016. 

[23] T. Ma, A. Mohamed, and O. Mohammed, “Optimal 

charging of plug-in electric vehicles for a car park 

infrastructure,” IEEE Trans. Ind. Appl., vol. 50, no. 

4, pp. 2323–2330, 2012. 

[24] M. Tabari and A. Yazdani, “An Energy 

Management Strategy for a DC Distribution System 

for Power System Integration of Plug-In Electric 

Vehicles,” IEEE Trans. Smart Grid, vol. 7, no. 2, 

pp. 659–668, 2016. 

[25] C. P. Mediwaththe and D. B. Smith, “Game-

Theoretic Electric Vehicle Charging Management 

Resilient to Non-Ideal User Behavior,” IEEE Trans. 

Intelligent Transport Systems, 2018. 

[26] J. D. K. Bishop, C. J. Axon, D. Bonilla, M. Tran, D. 

Banister, and M. D. McCulloch, “Evaluating the 

impact of V2G services on the degradation of 

batteries in PHEV and EV,” Applied Energy, vol. 

111, pp. 206–218, 2013. 

[27] A. R. Sparacino et al., “Design and Simulation of a 

DC Electric Vehicle Charging Station Connected to 

a MVDC Infrastructure,” in IEEE Energy 

Conversion Congress and Exposition (ECCE), 2012. 

[28] RAC Foundation, “Plug-in grant eligible vehicles 

licensed.” [Online]. Available: 

https://goo.gl/ZnR1fZ. [Accessed: 20-Dec-2017]. 

[29] K. Qian, C. Zhou, M. Allan, and Y. Yuan, 

“Modeling of load demand due to EV battery 

charging in distribution systems,” IEEE Trans. 

Power Systems, vol. 26, no. 2, pp. 802–810, 2011. 

[30] F. Yi and F. Li, “An exploration of a probabilistic 

model for electric vehicles residential demand 

profile modeling,” IEEE Power Energy Soc. Gen. 

Meet., 2012. 

[31] R. C. Tripathi, R. C. Gupta, and J. Gurland, 

“Estimation of parameters in the beta binomial 

model,” Ann. Inst. Stat. Math., vol. 46, no. 2, pp. 

317–331, 1994. 

[32] Newcastle University School of Engineering, 

“SwitchEV,” 2013. [Online]. Available: 

https://bit.ly/2EUw7g0. [Accessed: 02-Nov-2018]. 

[33] E. M. Carter and H. W. Potts, “Predicting length of 

stay from an electronic patient record system: A 

primary total knee replacement example,” BMC 

Med. Inform. Decis. Mak., vol. 14, no. 1, pp. 1–13, 

2014. 

[34] Tesla, “Model S.” [Online]. Available: 

https://goo.gl/zKF5c7. [Accessed: 21-Dec-2017]. 

[35] Nissan, “Leaf.” [Online]. Available: 

https://goo.gl/W1byqZ. [Accessed: 21-Dec-2017]. 

[36] X. Hu, S. E. Li, and Y. Yang, “Advanced Machine 

Learning Approach for Lithium-Ion Battery State 

Estimation in Electric Vehicles,” IEEE Trans. 

Transportation Electrification, vol. 2, no. 2, pp. 

140–149, 2016. 

[37] Leisure DB, “State of the UK Fitness Industry.” 

[Online]. Available: https://goo.gl/CoJZRa. 

[Accessed: 18-Apr-2018]. 

[38] Department for Business Energy & Industrial 

Strategy, “Gas and electricity prices in the non-

domestic sector,” 2018. [Online]. Available: 

https://goo.gl/u4rJXv. 

[39] Zap-Map, “Public Charging Networks.” [Online]. 

Available: https://goo.gl/sX6mYr. [Accessed: 25-

Apr-2018]. 

 


