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Abstract Three factors, including tenderness, juiciness and flavour, are found to have an 

impact on lamb eating quality, which determines the repurchase behaviour of customers. In 

addition to these factors, the surface colour of lamb can also influence the purchase decision 

of consumers. From a long time ago, meat industries have been looking for fast and non-

invasive objective quality evaluation approaches, where near-infrared spectroscopy (NIRS) 

and hyperspectral imaging (HSI) have shown great promises in assessing beef quality 

compared with conventional methods. However, rare research has been conducted for lamb 

samples. Therefore, in this paper the feasibility of the HSI system for evaluating lamb quality 

was tested. In total 80 lamb samples were imaged using a visible range HSI system and the 

spectral profiles were used for predicting lamb quality related traits. For some traits, noise 

was further removed from HSI spectra by singular spectrum analysis (SSA) for better 

performance. Considering support vector machine (SVM) is sensitive to high dimensional 

data, principal component analysis (PCA) was applied to reduce the dimensionality of HSI 

spectra before feeding into SVM for constructing prediction equations. The prediction 

results suggest that HSI is promising in predicting some lamb eating quality traits, which 

could be beneficial for lamb industries. 

Keywords: Hyperspectral imaging; lamb quality; singular spectral analysis; principal 

component analysis; support vector machine. 

1 Introduction 
Similar to beef production, lamb also plays an important role in UK agriculture, contributing 

over 10% of total livestock output [1]. To facilitate abattoirs classifying carcasses into 

different grading levels, lamb quality, especially eating quality, needs to be effectively 

predicted before entering the market. Eating quality of lamb is related to many chemical and 

physical properties. It was found that three key factors, which are tenderness, juiciness and 

flavour, have an influence on the repurchase behaviour of consumers. Among all these 

factors, tenderness is usually accepted as the most significant quality trait influencing lamb 

eating quality [2]. In addition to those factors, meat surface colour is considered as the most 
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significant factor determining retail selection of consumers [3]. However, the evaluation of 

the above mentioned quality traits is usually achieved by measuring some mechanical 

properties of the meat sample, which can be costly, destructive and time-consuming. 

Therefore, meat industries are looking forward to computer based technology for automatic 

and non-destructive on-line quality assessment [4]. 

Some objective approaches for predicting meat quality traits have been developed over the 

past a few decades, including ultrasound [5], near infrared spectroscopy (NIRS) [1, 6], 

multispectral imaging [7, 8], hyperspectral imaging (HSI) [9] and various computer vision 

techniques [10]. Among these approaches, NIRS is the most widely used technique for meat 

quality evaluation due to its simplicity, rapidity and effectiveness, but one major drawback 

of this technique is its low spatial resolution for analysing non-homogeneous composition of 

meat samples, resulting in mismatches between predicted and measured traits [6, 11]. To 

this end, HSI integrating both spatial and spectral information has emerged, which shows 

great potential in remote sensing applications [12, 13] as well as non-invasive food quality 

control and analysis [14-16]. In recent years, some researchers have demonstrated that HSI 

presents great promise for predicting beef quality traits [9]. But to our knowledge, limited 

research has been conducted using HSI to predict quality traits of lamb samples. 

The objective of the paper is to investigate the feasibility of HSI in predicting lamb quality 

related traits. In this study, ultimate pH was measured as the flavour reference and a 

tenderness measuring standard defined by Meat Industry Research Institute of New Zealand 

(MIRINZ) named as MIRINZ shear force (SF) was measured as the tenderness reference. 

Surface colour was measured in CIE (Commision Internationale de l’Eclairage) colour space 

as L*, a* and b*, where L* is the lightness, a* is redness and b* is yellowness. The prediction 

equation was constructed by the support vector machine (SVM) on a calibration dataset and 

the performance was assessed on the additional validation dataset. Details will be explained 

in the following sections. 

2 Material and Methods 

2.1 Lamb Sample Preparation and Image Collection 
A total of 80 lamb samples were purchased from a commercial abattoir in Scotland, 

regardless of sex, age and breed groups. Storing at 3 ± 2 ◦C for 7 days after being slaughtered, 

left lamb loins were removed from packaging. After blooming for 2 minutes [17], HSI 

samples were collected using a push-broom HSI system (Gilden photonics) with wavelength 

ranging from 400 to 862.90 nm at a spectral resolution of about 2.5 nm. Figure 1 shows a 

schematic diagram of the imaging system. 

Figure 1: Schematic diagram of the HSI system: components 1-5 refer to the EMCCD 
camera, spectrograph and lens, halogen lamp, sliding track and scanning tray, respectively. 

The HSI system, which consists of an 12-bit Andor Luca electron multiplying charge-coupled 

device (EMCCD) camera and a Specim V8E spectrograph, could acquire the high spatial and 

spectral resolution information of the investigated object. Samples were illuminated with an 

Armley 150 W halogen lamp and the exposure time was set as 6 ms. Since the illuminating 



conditions were probably different for several imaging batches, calibration was needed as a 

pre-processing step and details about calibration are covered in section 2.3. For each pixel, 

light was reflected from the target sample onto the entrance slit (width of 30 µm and length 

of 11.84 mm) and dispersed into a spectrum by the grating in the spectrograph. With the 

help a Zolix KSA 11-200S4N motorised stage set at a scanning speed of 10 deg/s for the 

screw, the system could achieve the undistorted hyperspectral image in the push-broom 

way, which only scans a single line of the investigated target at a time. The push-broom 

technique allows rapid and stable image acquisition, which is ideal for production line 

measurement in meat industry. 

2.2 Measurements of Quality related Traits 
Right after imaging, ultimate pH was determined by probing into the lamb sample directly 

using a calibrated Hanna pH meter with a glass electrode (HI 99613). The surface colour was 

measured in the L*a*b* scale with a Minolta CR-410 colourimeter, where the machine was 

set to take 3 scans and then average the results. Then, each lamb sample was labelled, 

vacuum packaged and frozen at −30 °C to prevent from further ageing. On the night before 

tenderness measurement, samples were placed in plastic bags and sub-merged in a water 

bath until reaching an internal temperature of 70 °C and then chilled in the fridge. On the 

following day, 10 sub-samples with a 10 mm × 10 mm cross section were prepared parallel 

with the muscle fibre axis. All sub-samples were then sheared orthogonal to the fibre axis 

with a Tenderscot tenderometer (Pentland Precision Engineering Ltd) according to the 

MIRINZ protocol [18]. As suggested by the MIRINZ protocol, a wedge shape tooth blade was 

attached in the tenderometer for imitating the chewing behaviour of human beings. The 

peak force was extracted during each shear process and the average value of 10 

measurements was considered as the MIRINZ SF to avoid error. Therefore, there are 5 lamb 

quality related traits in total for each sample, which are pH, L*, a*, b* and MIRINZ SF. 

2.3 HSI Data Pre-processing 
During the imaging process, reflectance of the sample was acquired by the HSI system. But 

before that, the HSI system has to be calibrated using a white reference image (nearly 100% 

reflectance) and a dark reference image (0% reflectance), which are 2 extreme illumination 

conditions. The reason is that the ‘dark current’ generated from thermal effects of the 

detectors should be deducted from the produced signal. Thus, the calibration procedures 

make sure that the sample reflectance is separated from system responses [9]. The following 

equation shows how the calibrated reflectance is achieved, 
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where R  is the calibrated reflectance image at one spectral band, I  is the raw image at that 

band, B  is the dark reference image and 0I  is the white reference image. 

There were 250 spectral bands for each acquired hyperspectral image. However, due to the 

fact that the camera and the spectrograph did not have the same spectral range, not all 

bands contained useful information. By removing redundant data in the hyperspectral image, 



170 spectral bands were left, with working wavelength ranging from 469.47 nm to 862.90 

nm.  

In order to save computing time, for each lamb sample, a region of interest (ROI) with size of 

200 × 100 pixels (approximately 100 × 50 mm2) was mainly selected from the lean part and 

then the median reflectance value at each spectral band was calculated to achieve the 

median reflectance spectrum. This process is illustrated in Figure 2. As suggested by other 

researchers, before conducting any data analysis, reflectance spectra ( R ) should be 

converted to absorbance ( A ) by logarithm transformation to linearise the relationship 

between the concentration of an absorbing compound and the absorption spectrum [19], 

where the equation is shown below, 
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Figure 2: HSI median reflectance spectrum extraction. (a) Pseudo colour image of one lamb 
sample, with ROI marked by the white frame. (b) The median reflectance spectrum of the 
same sample. 

As a relatively new technique, singular spectrum analysis (SSA), which is commonly used for 

time series analysis and forecasting, was applied to HSI absorbance spectra for de-noising 

because of its excellent performance in this area [20-22]. Based on the singular value 

decomposition (SVD), it is able to decompose the original spectrum into a linear 

combination of a new orthogonal basis, including eigenvectors generated from the 

diagonalisation of the data correlation matrix [23]. By decomposing the original series into 

some interpretable components, such as the trend, oscillations and unstructured noise, SSA 

could easily separate the noise from the original signal. The algorithm of SSA is introduced as 

follows. 

The first step of SSA is transforming each median reflectance spectrum denoted as 

  1 2, , Nx x xX  into a trajectory matrix. With a window length L    1 L N , the original 

spectrum is mapped into K  lagged vectors  
T

1 1, ,i i i i+L-x x xX  for 1,2, ,i K , where 

  1K N L . Then the trajectory matric is formed as follows: 
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After the trajectory matrix T  is achieved, SVD is performed as the next step. Eigenvalues of 
TTT  are calculated and arranged in the decreasing order as      1 2 L 0 , with 

corresponding eigenvectors denoted as  1 2, , , LU U U . Then the result of SVD is shown in (4), 

    1 2 ,dT T T T   (4) 



where d  is the rank of T ,  T
i i i iT U V   1,2, ,i d  are elementary matrices with rank 1, 

and  T /i i iV T U  are principal components of the trajectory matrix T . 

The following procedure of SSA is grouping. First, the set of indices  1,2, ,d  is divided into 

m  disjointed subsets 1 2, , , mI I I . Then the resultant trajectory matrix can be calculated for 

each subset, shown as follows: 

    
1 2

.
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The final step is hankelisation of the grouped matrix 
pI

T   1,2, ,p m  and the denoised 

spectrum with the same length N  could be achieved. Assume 1 1 2( , , , )Ny y yY  is the 

hankelised result of 
1I

T , elements of 1Y  can be represented as (6), 
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where  min( , )L L K ,  max( , )K L K , 

   , 1 , 1j k j j k jy y  if L K  and 

   , 1 1,j k j k j jy y  if L K . 

Hence, the original spectrum  1 2( , , , )Nx x xX  can be decomposed into m  spectra: 

    1 2 .mX Y Y Y        (7) 

Usually the first reconstructed vector 1Y  is regarded as the one containing most useful 

information while the rest are considered as either oscillations or noise. By reconstructing 

the spectrum with only the first component, subtle noise can be discarded. The comparison 

of the absorbance spectra without SSA and with SSA applied are plotted for the tenderest 

sample and the toughest sample in Figure 3. As can be seen, only the trend of the spectrum 

was kept after the treatment of SSA, with oscillations/noise removed. 

Figure 3: HSI absorbance spectra without SSA applied and with SSA applied for the 
tenderest sample and the toughest sample. 

2.4 Regression Analysis 
A variety of statistical regression methods could be applied to construct prediction 

equations, including multiple linear regression, partial least squares regression (PLSR), 

principal components regression (PCR) and neural networks [6]. For predicting meat related 

traits, PLSR is the most common regression approach that researchers choose to build 

prediction models with NIRS [24–28]. However, PLSR is designed based on the linear 

algorithm so that the best performance might only be achieved when there is a linear 



relationship between spectra and quality traits [29], which is not applicable in our study. In 

[29], PLSR was compared with SVM for constructing beef eating quality prediction models 

for NIRS spectra. There were also 5 quality traits involved in the study, including L*, a*, b*, 

pH and slice shear force (SSF). The performance for predicting beef quality traits was 

evaluated quantitatively by the coefficient of determination ( 2R ) and the ratio of 

performance deviation ( RPD ). Equations for these metrics are given below: 
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where iy  is the original quality trait value measured in the lab, if  is the predicted value 

either by SVM or PLSR, y  is the mean of all original trait values, n  is the sample number and 

RMSE  is the root-mean-square error in the investigated dataset. The coefficient of 

determination ranges from 0 to 1, where 0 represents a poor correlation between the 

predicted trait values and the reference trait values and 1 standards for a high degree of 

correlation. For RPD , values higher than 2 indicate that the prediction model is suitable to 

use and values higher than 3 indicate that the model is adequate for analytical purposes. 

Results of [29] using both SVM and PLSR approaches are given for reference in Table 1 and 

Table 2, where PC stands for number of principal components and PLSC represents number 

of partial least squares components. It can be noticed that, for both the calibration dataset 

and the validation dataset, SVM always gave higher prediction results than PLSR, where 2
valR  

of SSF was even more than double of that predicted by PLSR. Therefore, instead of using 

PLSR, SVM was employed to build regression models in the present study.  

Table 1: Performance of NIRS for predicting instrumental meat quality in beef M. 

longissimus thoracis using SVM and PLSR in the calibration dataset with noise-removed  

spectra (495 – 1800 nm) [29]. 

Trait SVM for data modelling  PLSR for data modelling 

n PC R2
cal (%) RMSEcal n PLSC R2

cal (%) RMSEcal 

L* 175 10 83.4 1.05  175 11 83.2 1.04 
a* 175 45 69.6 1.34  175 10 55.3 1.60 
b* 175 25 66.7 1.13  175 10 64.3 1.17 
pH 175 50 90.0 0.07  175 13 76.9 0.11 
SSF 175 10 88.7 14.66  175 5 16.1 38.79 

 

Table 2: Performance of NIRS for predicting instrumental meat quality in beef M. 
longissimus thoracis using SVM and PLR in the validation dataset with noise-removed 
spectra (495 – 1800 nm) [29]. 



Trait SVM for data prediction  PLSR for data prediction 

n PC R2
val (%) RMSEval RPDval  n PLSC R2

val (%) RMSEval RPDval 

L* 59 10 80.3 1.27 2.19  59 11 76.2 1.37 2.03 
a* 59 45 63.7 1.71 1.56  59 10 59.7 1.71 1.56 
b* 59 25 53.6 1.42 1.45  59 10 52.8 1.43 1.44 
pH 59 50 73.6 0.12 1.92  59 13 67.1 0.13 1.77 
SSF 59 10 19.8 42.40 1.06  59 5 7.6 43.39 1.03 

 

The outstanding performance of SVM has been verified in many applications associated with 

HSI. However, a problem of SVM is that it is sensitive to the curse of dimensionality [30]. As 

a result, a commonly adopted feature extraction technique, principal component analysis 

(PCA) [31, 32], is used to reduce the dimensionality of HSI cubes. In this way, only a small 

amount of features could explain the whole dataset and the rest can be discarded. 

With lower dimensional data, SVM could be applied to construct prediction models. For both 

classification and regression problems, SVM maps the data to a high dimensional feature 

space using kernel function. Then it is easy to separate the data by a maximal margin 

hyperplane. As a popular kernel function, the radial basis function (RBF) kernel was chosen 

here. Optimal parameters were tuned using the grid search with four-fold cross-validation to 

avoid model over-fitting. 

3 Results and Discussion 
Eighty lamb samples were split into the calibration dataset and the validation dataset, where 

prediction models were learnt from the calibration dataset and verified on the validation 

dataset. In this way, the ability of HSI for predicting quality of unknown lamb samples could 

be tested. In order to split the dataset, each quality trait was sorted in the ascending order 

of its values. By selecting every 4th sample into the validation dataset, the rest of data which 

contain the interleaving 3 samples were allocated to the calibration dataset [33]. This 

process makes sure that the validation dataset is a representative of the calibration dataset, 

with similar mean, standard deviation (SD) and range. Statistics of each quality trait are 

shown in Table 3, where the unit for MIRINZ SF is Newton (N). The HSI performance for 

predicting lamb quality was also evaluated quantitatively by the coefficient of determination 

( 2R ) and the ratio of performance deviation ( RPD ). 

Table 3: Summary statistics of all quality traits, including mean, standard deviation (SD) 
and range, where subscripts cal and val represent the calibration dataset and the 
validation dataset respectively. 

Trait ncal Meancal SDcal Rangecal nval Meanval SDval Rangeval 

pH 60 5.59 0.07 5.46 - 5.90 20 5.61 0.12 5.48 - 6.08 
L* 60 41.47 1.83 36.69 - 46.64 20 41.83 2.31 38.74 - 49.63 
a* 60 23.28 0.91 20.44 - 25.37 20 23.77 0.83 22.28 - 25.71 
b* 60 7.77 0.58 5.89 - 9.15 20 7.85 0.57 7.02 - 9.17 
SF 60 51.05 13.32 28.17 - 92.03 20 53.89 18.80 33.69 - 117.65 

 



The number of principal components was tried from 5 to 50 in a step of 5, and both raw HSI 

absorbance spectra and SSA-treated absorbance spectra were tested. Combinations of best 

prediction results are shown in Table 4, where ‘A’ stands for raw absorbance spectra and ‘A 

+ SSA’ means SSA-treated absorbance spectra. 

Table 4: Performance for predicting quality traits in lamb using the visible range HSI 
system. 

Trait Pre-
treatment 

No. of principal 
components 

R2
cal RMSEcal R2

val RMSEval RPDval 

pH A 45 0.54 0.06 0.38 0.11 1.07 
L* A 15 0.83 0.67 0.77 1.34 1.72 
a* A + SSA 40 0.95 0.22 0.48 0.76 1.09 
b* A + SSA 15 0.83 0.34 0.26 0.50 1.13 
SF A + SSA 40 0.82 6.76 0.41 14.90 1.26 

 

As the study is to test the ability of HSI in predicting unknown lamb quality for on-line use, 

the results of the extra validation dataset are particularly important. For the prediction of 

ultimate pH, 2
valR  is higher than those reported in [1] ( 2

cvR  = 0.03 − 0.19). For colour 

parameters and MIRINZ SF prediction, limited research has been found on lamb. 

Nevertheless, our results agree with those predicted with beef sample using NIRS [24–28], 

whose average 2R  values are 0.76 and 0.44 for L* and a*. However, our result of b* is 

poorer than that of others ( 2R  = 0.57), which may be due to variation between different 

samples. Similarly, we compare the MIRINZ SF with Warner-Bratzler SF predicted by others 

on beef sample. It is found that the average 2R  of their research is 0.30, which is lower than 

ours ( 2
valR  = 0.41). The RPD  values of the resulting models did not give as much information 

as 2R . A possible reason is that all lamb samples were purchased from the abattoir fulfilling 

market standards. Therefore, the standard deviation of those quality traits is low and the 

range of values are also limited. 

In the present study some colour parameters were found to be more correlated with the 

hyperspectral data, while pH and MIRINZ SF were less predictable. As mentioned previously, 

pH and SF contribute to tenderness, juiciness and flavour of lamb. However, as admitted by 

authors in [1], these complex quality parameters could be affected by many factors during 

production process, and their variation has multiple biological causes, which also lowers the 

prediction performance with HSI. 

4 Conclusion 
In this paper, a visible (400-863 nm) HSI system was employed for acquiring hyperspectral 

images of 80 lamb loins purchased from a commercial abattoir, where these images were 

used for predicting lamb quality parameters, including ultimate pH, MIRINZ SF and related 

colour parameters in L*a*b* scale. Before applying machine learning techniques on lamb 

spectra achieved from calibrated hyperspectral images, SSA was introduced for removing 

subtle noise from the spectra for some quality traits. Due to the fact that the performance of 

SVM will be impeded by data with high dimensionality, PCA was applied for feature 



extraction and data reduction. After applying models constructed by SVM to external 

validation datasets, we obtained predictions of pH, L*, a*, b* and MIRINZ SF in terms of 2R

as 0.38, 0.77, 0.48, 0.26 and 0.41, respectively. 

The study has shown that HSI system offers an alternative choice for non-destructive 

measurement of lamb quality traits. Even though prediction performance for some complex 

quality traits was low and requires further improvement, HSI was still proved to be superior 

to conventional NIRS by comparing with others. Most importantly, this research has 

provided a reference for other researchers, since limited research has been conducted in the 

area of HSI based lamb quality prediction. In conclusion, this paper has demonstrated that 

HSI could be promising in offering additional information for predicting lamb quality, which 

might bring beneficial to lamb industries in the future. Further research is needed to 

investigate more samples with a wider quality range to improve the robustness of the 

regression models. 
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