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Orientational alignment in cavity quantum electrodynamics
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We consider the orientational alignment of dipoles due to strong matter-light coupling for a nonvanishing
density of excitations. We compare various approaches to this problem in the limit of large numbers of emitters
and show that direct Monte Carlo integration, mean-field theory, and large deviation methods match exactly in this
limit. All three results show that orientational alignment develops in the presence of a macroscopically occupied
polariton mode and that the dipoles asymptotically approach perfect alignment in the limit of high density or low
temperature.
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I. INTRODUCTION

When light couples to matter strongly enough, it can change
material properties. This general idea has recently seen an
explosion of interest across a variety of materials and for a
range of physical phenomena as reviewed briefly below. The
most dramatic such effects occur when matter-light coupling
induces a phase transition, leading to changes in material
properties. Phase transitions occur in the thermodynamic limit
and so rely on understanding matter-light coupling with large
numbers of particles. It is therefore important to test approxi-
mate theoretical methods that describe matter-light coupling in
this limit. Here we provide a comparison of two such methods,
mean-field theory and large deviation approaches in the context
of orientational ordering of dipoles coupled to light.

One context in which changes to material properties due
to matter-light coupling have been extensively studied is
that of organic molecules, which already have interesting
photophysics and chemistry even without strong coupling
[1–3]. In particular, the possibility to manipulate chemical
reaction rates or allow photocatalysis of multiple reactions by
a single photon [4–10] has been studied in such materials.
Similarly, the idea of modifying electrical transport [11–13]
by strong coupling to a cavity has also been explored. Another
developing area is in using strong coupling to affect singlet
fission [14], potentially improving solar cell performance.
There have also been many works exploring whether the
configuration, vibrational state, or orientation of a molecule
can be affected by strong coupling to light [7,15–20] and how
strong matter-light coupling may lead to the breakdown of the
Born-Oppenheimer approximation [17,21,22]. Recently, there
have been several reviews discussing these developments, see,
for example, Refs. [19,23–25].

In other contexts, strong driving by external light has
been used as a way to induce transient superconductivity
[26,27] with a variety of proposed mechanisms [28–32].
Superconductivity can also be affected by strong matter-light
coupling of phonon modes to an infrared cavity mode [33] or
using multimode terahertz cavities to induce cavity-mediated
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electron pairing [34]. Similarly structural phase transitions in
perovskites have been found to be modified by strong coupling
[35]. In the context of organic molecules, strong coupling
between infrared cavities and vibrational modes has also been
studied [16,36–40].

For many of the above effects, a particularly interesting
feature is the possibility of collective effects—i.e., effects
of there being many molecules coupled to the same cavity
mode. To understand such collective effects, it is necessary
to consider the behavior in the limit of a large number N

of emitters. Although for small N it is possible to consider
exact numerical methods, such as adapting density functional
theory to include cavity QED [41], such exact approaches are
challenging for macroscopic numbers of emitters. A number
of different theoretical frameworks have been used for tackling
these problems. These include using symmetries to reduce
the problem size and mean-field theories [6,42–45]. From the
context of condensed-matter physics, mean-field theory is a
natural approach. For N emitters coupled to a single mode,
mean-field theory is expected to become exact as N → ∞ with
corrections scaling as 1/N . We have shown elsewhere [45] how
the absorption spectra of vibrationally dressed molecules can
indeed be recovered by such an approach. Here we consider
other forms of dressing and the comparison between mean-
field theory and exact numerical methods.

In this article, we focus on the question, first discussed by
Cortese et al. [44], of how a strong coupling can lead to orien-
tational alignment of molecular dipoles. We compare various
approaches to answer this question using mean-field theory
[46,47], direct Monte Carlo integration, and large deviation ap-
proaches [48]. We find that, in the limit of large N , these results
all agree (when considering parameter values for which agree-
ment can be expected). We also show the versatility of mean-
field approaches to include saturation effects expected at high
excitation density. In the Appendix, we also show how these
methods can be easily adapted to a wider set of related models.

II. MODEL AND SUMMARY OF PREVIOUS RESULTS

We consider a model of N orientable dipoles, strongly
coupled to a single cavity mode. Such a model was introduced
previously in Refs. [18,44]. The electronic states of the dipoles
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are modeled as two-level systems, corresponding to ground and
first excited electronic states. Such a description is appropriate
when the dipole has an anharmonic spectrum, and this first
electronic transition dominates the optical response. The elec-
tronic state is thus described by Pauli matrices σi and the cavity
mode by the creation operator a†. The coupling strength of a
dipole depends on its orientation relative to the electric-field
direction (we assume a single polarization for simplicity). For
dipoles free to rotate in two dimensions we parametrize this
by a single alignment angle θi . This leads to the generalized
Dicke model [49],

H = ωa†a +
∑

i

g cos(θi)(a
†σ−

i + aσ+
i ) + ω0

2
σ z

i . (1)

The polariton splitting emerging from such a model scales as
g
√

N , so in the following we assume g
√

N is intensive and so
remains finite in the limit of large N . Physically, this scaling
occurs because the matter-light coupling g in Eq. (1) scales as
1/

√
V where V is the quantization volume, so g

√
N scales as

the square root of the density of dipoles, an intensive quantity.
Such a model may be considered as describing the orienta-

tion of organic molecules in solution with strong coupling to
an optical cavity mode. We note that strong coupling between
organic molecules and infrared cavities has also been studied,
however in such a case the electromagnetic mode couples
to the displacement of a vibrational mode of the molecule
[16,36–40]. The model in Eq. (1), involving transitions of
two-level systems, specifically describes coupling to electronic
transitions not vibrational modes, so we focus only on strong
coupling to optical cavities. Closely related models can arise
in other contexts. For example, there is a close connection to
a model considered in the context of cold atoms in an optical
cavity [50] where a Raman process between the cavity light
and the external pump can cause a change in the spin state of
the atoms σ±

i ; in this case θi denotes the position of the atom
in a standing wave of light. Similar models can also be realized
in arrays of superconducting qubits [51].

As Eq. (1) is a modified version of the Dicke model [49],
such a model can naturally be expected to undergo a version
of the Dicke-Hepp-Lieb phase transition [46]. This has been
extensively studied in the absence of an orientational degree
of freedom, i.e., setting θi = 0. In particular, if one considers
Eq. (1) in the grand canonical ensemble with a chemical
potential μ controlling the number of excitations M = a†a +∑

i(σ
z
i + 1)/2, there is a transition at low temperatures or high

densities to a state where there is a macroscopic occupation of
the photon mode [47]. We will discuss further below how this
transition is modified by the orientational degree of freedom.

In Cortese et al. [44], the behavior of angular orientation
following from Eq. (1) in the M excitation sector ground state,
i.e., the evolution of 〈cos2 θ〉 as a function of density, M/N and
temperature was studied. For reference, we summarize these
results here. Focusing on the resonant case ω0 = ω, we may
approximately write the energy of the M polariton states as
εM � −Mg

√∑
i cos2 θi , which leads to an effective partition

function,

Z =
∏

i

∫
dθi exp

⎛
⎝βMg

√∑
i

cos2 θi

⎞
⎠. (2)

This expression neglects any saturation of the polariton split-
ting at finite excitation density, i.e., it assumes the energy to
create M excitations is exactly M times the energy to create one
excitation. This is not true for the model in Eq. (1) because the
two-level systems are saturable. However, such effects were
shown in Ref. [44] to not significantly change the behavior.
(We also consider this further below.)

The integrals over θi can be transformed to an integral
over the end-to-end distribution of a polymer. Specifically, we
consider

R ≡
(

Rx

Ry

)
=

∑
i

(
cos(2θi)
sin(2θi)

)
,

which is the vector formed by adding unit vectors each oriented
at angle 2θi . Then, using

∑
i cos2 θi = ∑

i[1 + cos(2θi)]/2 =
(N + Rx)/2, the integral can be rewritten as

Z =
∫

dR PN (R) exp

(
Na

√
1 + Rx/N

2

)
,

where a = β(M/N)g
√

N and PN (R) is the probability distri-
bution of the vector R, which can be considered as a polymer
chain of N links. The peak of this probability distribution
is at R = 0, corresponding to entirely disordered dipoles,
and the variance of this distribution scales as 〈R2〉 ∝ N as
expected for a random walk. In writing the exponent above,
we have explicitly separated the scaling with system size N

from the intensive quantity a which depends on the excitation
density M/N and the quantity g

√
N which, as discussed

above, remains finite in the limit of large N . As discussed in
Ref. [44], for the record polariton splitting of g

√
N � 0.5 eV,

this quantity would at room temperature correspond to a �
20(M/N). The length Rx can also be used to evaluate an order
parameter for the orientational ordering, i.e.,

〈cos2 θ〉 = 1 + x

2
, x =

〈
Rx

N

〉
.

To explore ordering, we are interested in how x evolves with
the parameter a.

Under the assumption that one may replace PN (R) with its
largeN approximation from the central limit theoremPN (R) �
exp(−R2/N )/(πN ), one could evaluate the partition function.
(However, as discussed further below, this approximation has
limited validity.) Due to the large parameter N , one may use a
saddle-point evaluation, leading to the statement that x is given
by the minimum of x2 − a

√
(1 + x)/2, given by

a = 4x0

√
2(1 + x0). (3)

The solution of this equation increases from x0 = 0 at a = 0
to reach x0 = 1 when a = 8. By definition, |x0| < 1, and so
this Gaussian polymer approximation predicts that, at a = 8,
a second-order transition occurs to a fully ordered state [44].

III. MEAN-FIELD THEORY OF
ORIENTATIONAL ORDERING

In this section we discuss an alternate approach to finding
the partition function of Eq. (1): mean-field theory as has
been discussed many times for variants of the Dicke model
[46,47,52,53]. As discussed above, we consider the grand
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canonical ensemble, so the effective Hamiltonian becomes
H − μM . In making a comparison to Ref. [44], we will tune
the excitation density by adjusting μ. Within mean-field theory,
there is a transition between a normal state with a zero photon
number and a condensed state. Mean-field theory proceeds by
assuming a coherent state |α〉 for the photons and performing
a variational minimization over the coherent field amplitude.
In the normal state, the minimum occurs at α = 0, whereas
for the condensed state, the minimum occurs at finite α.
Such an approach can be rigorously justified by evaluating
a path-integral form of the partition function and noting that,
in the limit N → ∞, a saddle-point expression becomes exact
[47]. Such a procedure implies Z = exp(−βF ) where

F = inf
α

[(ω − μ)|α|2 − NkBT ln(Tr e−βh)t], (4)

with h being the Hamiltonian of a single dipole in the presence
of the coherent field α,

h = 1

2

(
ω0 − μ 2g cos θiα

∗
2g cos θiα −(ω0 − μ)

)
.

The trace appearing in the partition function involves both
a trace over 2 × 2 matrices as well as a trace over angular
orientations.

One can rewrite the above in terms of only intensive
quantities by noting the photon density |α|2 scales with N in
the condensed state [46] and so writing |α|2 = Nρ. One then
finds

F

N
= inf

ρ>0
[(ω − μ)ρ − kBT ln Z2LS], (5)

Z2LS =
∫

dθ 2 cosh

(
βE(θ )

2

)
, (6)

where we have used the two-level system energy,

E(θ ) =
√

(ω0 − μ)2 + 4(g
√

N )2ρ cos2 θ.

Once ρ is known, the angular orientation can be found as

〈cos2 θ〉 = 1

Z2LS

∫
dθ cos2(θ )2 cosh

(
βE(θ )

2

)
. (7)

If we focus on the resonant case ω = ω0, the ordering
parameter depends on two dimensionless quantities βg

√
N

and (μ − ω)/g
√

N . Figure 1 shows the orientational ordering
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FIG. 1. Mean-field theory results. Panel (a) shows orientational
ordering 〈cos2 θ〉, whereas panel (b) shows the corresponding con-
densate density ρ. The dashed line in panel (a) corresponds to the
prediction in Ref. [44] for complete ordering βg

√
N (M/N ) = 8.

and condensate density as a function of these quantities. When
the condensate density is zero, we see immediately from Eq. (7)
that 〈cos2 θ〉 = 0.5 as the energy E(θ ) becomes independent
of θ when ρ = 0. Inside the condensed region the orientational
order grows and approaches 1. However, crucially we see that
it grows smoothly without any sharp transition.

For direct comparison the results of Cortese et al. [44]
Eq. (3), we must extract the total excitation number by con-
sidering the derivative of free energy with chemical potential,

M

N
= ρ + 1

Z2LS

∫
dθ

[
1 + μ

E(θ )

]
cosh

(
βE

2

)
. (8)

The trajectory at a ≡ β(M/N)g
√

N = 8 is marked by the blue
dashed line in Fig. 1. We see this does not correspond to any
sharp transition of the orientational ordering.

IV. MONTE CARLO INTEGRATION

Having seen that the mean-field approach predicts no
complete orientational ordering at any finite occupation or
temperature, we next compare this to exact numerics at finite
N . Specifically, we consider the problem as defined in Eq. (2)
and the corresponding orientational ordering quantified by

〈cos2 θ〉 = 1

Z
∏

i

∫
dθicos2 θ exp(Na

√
cos2 θ ). (9)

where we have denoted cos2 θ ≡ ∑
i cos2 θi/N . This expres-

sion may be evaluated directly by Monte Carlo integration.
Specifically, we sample configurations {θi} and evaluate the ex-
pectation of the order parameter cos2 θ weighted by the Boltz-

mann factor PBoltz = exp(Na
√

cos2 θ ). To sample this effi-
ciently, we draw samples from a Gaussian approximation of the
Boltzmann distribution, i.e., Pdraw({θi}) = ∏

i exp(−aθ2
i /2)

and weight samples by the ratio PBoltz/Pdraw. The distribution
Pdraw is factorizable, hence it is easy to draw samples from this
distribution. In addition PBoltz � Pdraw for small angles; at low
temperatures only small angles are probable, so the sampling
becomes efficient in this limit. We may also note that in this
limit, with independent θi , this problem is self-averaging, so
the sampling error reduces at large N .

The order parameter calculated by this Monte Carlo ap-
proach is shown in Fig. 2 for various values of N in each case
choosing excitation fraction M/N = 0.5. We clearly see that,
although the results have converged with respect to N (indeed,
even N = 10 seems converged), they do not converge on the
result of the polymer model described in Sec. II.

In order to compare these exact numerics to mean-field the-
ory, we must perform a number of modifications to the mean-
field equations. These follow from the fact that Eq. (2) and the
results following from it: (a) assume a thermal population of
only the lower polariton mode and (b) neglect saturation effects
arising from the nonlinearity of two-level systems. To address
point (a), we restrict to the lower-energy branch, modifying the
mean-field theory by writing Z2LS = ∫

dθ eβE(θ)/2 in contrast
to Eq. (6). Such a replacement is valid if βg

√
N � 1. To

address point (b), we work at the low excitation fraction
M/N = 0.5. In the limit M/N → 0, the excitation of each
two-level system is small, and so the saturation at a maximum
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FIG. 2. Order parameter as a function of a = βg
√

N (M/N )
comparing Monte Carlo results to mean-field and Gaussian polymer
results. Monte Carlo results are shown as points with error bars
reflecting the sampling error with each point using 20 000 samples.
The gray short dashed line indicates the Gaussian polymer prediction
[44] (1 + x0)/2 with x0 given by Eq. (3). The black line shows
mean-field prediction in the low-temperature low excitation limit
as discussed in the text. The blue long dashed line shows the large
deviation result.

of one excitation per dipole has little effect. One may note that
the low-temperature and low excitation limits are consistent:
If M/N � 1, then βg

√
N � 1 for all nonzero a. To fix the

excitation fraction M/N , we use Eq. (8) with the replacement
cosh(βE/2) → exp(βE/2) as a self-consistent equation to
fix μ.

V. LARGE DEVIATIONS

We next turn to consider whether the polymer model
discussed in Cortese et al. [44] can be improved to match the
behavior seen from the above Monte Carlo results. The approx-
imation which leads to the mismatch is the replacing of PN (R)
by a Gaussian distribution. The reason this approximation fails
can be understood as follows: The Gaussian distribution is
valid for “typical” values of R, which means |R| � O(

√
N ).

However, in the limit of large a, the matter-light coupling
biases one towards atypical configurations, where Rx � O(N ).
Such values are deep in the tail of the probability distribution;
they correspond to large deviations from the mean and are
not given by the Gaussian approximation. In fact, in the limit
N → ∞, any nonzero value of x = Rx/N corresponds to a
large deviation.

A. Analytic large deviation formulation

Fortunately, there is simple approach to extract the probabil-
ity of large deviations as reviewed, e.g., by Touchette [48]. We
are interested in finding the probability PN (x = Rx/N), and so
we use the standard results of the large deviation formulation,

PN (x) � e−Nw(x), w(x) = sup
s

[xs − λ(s)], (10)

where λ(s) is the generating function at large N ,

λ(s) = lim
N→∞

[
1

N
ln〈esRx 〉

]
. (11)

This can be directly evaluated for a model of an N -link polymer
chain,

〈esRx 〉 =
∏

i

∫
dθi exp

[
s
∑

i

cos(θi)

]
= [I0(s)]N,

where I0(s) is the modified Bessel function of the first kind.
Thus, we have

w(x) = sup
s

[xs − ln(I0(s))]. (12)

This function w(x) replaces the quadratic exponent in the
Gaussian polymer approximation. We can then use this to find
an alternative to Eq. (3) for determining x0. In terms of x, the
partition function can be written as

Z ∝
∫

dx exp

(
−Nw(x) + Na

√
1 + x

2

)
,

and it is clear that, at large N , this can be approximated by its
saddle-point x0, given by solving

dw

dx

∣∣∣∣
x0

= a

2
√

2(1 + x0)
.

To evaluate w(x), we note that the supremum over s in Eq. (12)
is solved by s0(x) such that

x = d

ds
ln I0(s)

∣∣∣∣
s=s0(x)

= I1(s0(x))
I0(s0(x))

.

We may then use this to evaluate the derivative of w(x) writing

dw(x)

dx
= ∂w(x)

∂x
+ ∂w(x)

∂s0

ds0

dx
= s0(x).

In the final expression we used the explicit form of w(x) to
evaluate the first term and the fact that the second term vanishes
by the definition of s0. Putting these together we find that x0 is
determined by the pair of equations,

s0 = a

2
√

2(1 + x0)
, x0 = I1(s0)

I0(s0)
. (13)

Solving these simultaneous equations gives the blue long
dashed line in Fig. 2 which almost perfectly matches the
Monte Carlo result. One may also explicitly see this expression
predicts perfect orientation only at zero temperature, i.e., as
a → ∞. Assuming x0 � 1 one finds s0 � a/4, giving an
explicit expression forx0 which approaches one asymptotically
from below.

B. Recovering large deviation result from mean-field theory

The mean-field theory results at low excitation and low
temperature appear to match both the large deviation analytic
form and the Monte Carlo results well. Here we show that
this match can in fact be seen analytically by considering the
mean-field equations perturbatively in the limit M/N → 0.
Crucially, since the expression for M/N in Eq. (8) contains a
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term ρ, the limit of low density requires that we consider ρ

small. In this limit we may expand

E(θ ) � |ω0 − μ| + 2ρg2N cos2 θ

|ω0 − μ| .

Using this expansion, combined with the restriction to the
lower branch in evaluating Z2LS, we find that the density
equation becomes

M

N
= ρ + 1

Z2LS

∫
dθ

g2Nρ cos2(θ )

|ω0 − μ|2 eβE(θ)/2

= ρ

(
1 + g2N〈cos2(θ )〉

|ω0 − μ|2
)

. (14)

The angular average also simplifies as we can write

E(θ ) � E0 + E1 cos(2θ ),

which allows angular integrals to be rewritten in terms of
modified Bessel functions, namely,

〈cos2 θ〉 = 1 + x

2
, x = I1(βE1/2)

I0(βE1/2)
, (15)

where E1 = ρg2N/|ω0 − μ|. We can then combine this with
the self-consistency condition from evaluating the infinum in
Eq. (5) which gives

(ω − μ) = 1

Z2LS

∫
dθ

1

2

dE(θ )

dρ
eβE(θ)/2

� g2N〈cos2(θ )〉
|ω0 − μ| . (16)

In the resonant limit ω = ω0, assuming that ω > μ as is
required for physical solutions, we then find that ω − μ =
g
√

N
√

〈cos2(θ )〉 and thus ρ = M/2N . Inserting this into the
definition of E1 we find

βE1

2
= β(M/N)g

√
N

2
√

2(1 + x)
= a

2
√

2(1 + x)
. (17)

Together, Eqs. (15) and (17) precisely recover the large devi-
ation result, hence the agreement of mean-field theory in this
limit.

VI. SATURATION EFFECTS

As noted earlier, the polymer model and Monte Carlo results
above use the approximation that the energy of an M polariton
state εM is equal to M times the one polariton state εM � Mε1.
Such an assumption is incorrect for Eq. (1) as this model is not
linear—it involves saturable two-level systems. In this section
we discuss how our results change when we take this saturation
and nonlinearity into account.

In contrast to the Monte Carlo results and polymer model,
the mean-field approach makes no assumption of linearity, i.e.,
the mean-field theory is based on solving the exact energies
of two-level atoms in the presence of a coherent field. Thus, for
the mean-field approach we can directly determine the effect
of saturation by considering the behavior at different filling
fractions M/N . This is shown in the solid lines in Fig. 3 which
show the mean-field results for the orientational ordering.
Each line corresponds to a different excitation fraction, and
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FIG. 3. Comparison of mean-field theory results at various exci-
tation fractions to Monte Carlo calculations allowing for saturation
effects. The excitation fraction increases from top (M/N = 0.5) to
bottom (M/N = 4.0). The Monte Carlo results correspond to N = 10
molecules; each point is calculated with 4000 samples.

the horizontal axis is the variable a = βg
√

N (M/N), which
we may still tune by adjusting βg

√
N . We see that the lines

do not fall on top of each other, indicating that the results
depend on the values of M/N and βg

√
N separately—there

is no reduction to a single result depending only on a =
βg

√
N (M/N). This indicates an effect of saturation as it means

we no longer can match the large deviation result as we could
in the limit M/N → 0.

Next, we consider how to modify the Monte Carlo integra-
tion to recover correct results at a finite excitation density. As
noted above, the error in the polymer model comes by assuming
εM ({θi}) � Mε1({θi}) ≡ −Mg

√∑
i cos2 θi . To correct this,

we must therefore replace Eq. (2) with

Z =
∏

i

∫
dθi exp[−βεM ({θi})], (18)

using the true energy of the M excitation state of Eq. (1). We
find this energy numerically: For each configuration of angles
{θi}we construct the Hamiltonian in theM excitation subspace,
find its lowest eigenvalue, and use this value as εM ({θi}). For
M � N , this requires us to find the lowest eigenvalue of a 2N -
dimensional matrix for each configuration {θi}; when M < N

the matrix size can be smaller. For N = 10, we thus require
eigenvalues of a 1024 × 1024 matrix for each configuration,
and this is achievable but computationally costly so we take
only 4000 samples. The results of this are also shown as the data
points in Fig. 3. There is reasonable agreement between the
mean-field and N = 10 Monte Carlo results for M/N = 0.5
and M/N = 2.0; the agreement is less clear at the highest
excitation level; this is likely due to the finite-size effects for
N = 10.

VII. SUMMARY

In this article we have shown that the evolution of ori-
entational order with temperature and density can be cap-
tured both through a large deviation formula and through
mean-field theory. The large deviation approach is derived
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from an approximate partition function valid in the low
excitation density limit. In this limit mean-field theory exactly
reproduces the large deviation approach. Furthermore, we have
shown that, away from this limit, mean-field theory matches
exact numerics well, indicating the validity of mean-field
theory for general excitation densities. The behavior we find
shows a smooth evolution of ordering with excitation and
temperature and does not undergo any sharp transition to a
fully ordered state.

An important conclusion of this paper is that mean-field
theory can indeed be used as a simple and adaptable theoretical
tool to understand a variety of other related models, i.e., one
may replace rotational orientation with a variety of ways of
dressing the Dicke model, such as deformation of a molecule
or vibrational state, etc. The case of vibrational dressing using
this mean-field approach was already considered in Ref. [53].

The validity of mean-field theory for such problems is also
useful in that mean-field approaches can be easily adapted to
nonequilibrium situations. An extension to the nonequilibrium
version of this problem would be an interesting challenge for
future work, exploring how incoherent excitation balanced
with cavity loss can potentially lead to a modification of
orientational ordering. Another related extension involves con-
sidering multiple polarizations of light and the relation between
orientational order and the polarization of the condensate.
This can potentially form a strong-coupling analog to recent
discussions of the polarization state in a weak-coupling photon
BEC [54,55].
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APPENDIX: THREE-DIMENSIONAL ORIENTATION

The approach outlined above allows simple extensions to
other models. For example, we can consider dipoles allowed
to rotate in three dimensions by considering

Z =
∏

i

∫
dθi sin(θi)

∫
dφi exp

⎛
⎝βMg

√∑
i

cos2 θi

⎞
⎠.

(A1)

The φ integral is of course trivial here (as we have chosen the
electric field to be aligned along the z axis). The θ integral is
modified by the changed integral measure.
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FIG. 4. Comparison of Monte Carlo using the one-excitation
state and large deviation results for rotational orientation of three-
dimensional dipoles. The lines are as in Fig. 2; the data correspond to
2000 samples for each point.

The large deviation approach remains applicable in terms
of the variable x = ∑

i cos(2θi)/N . The generating function
λ(s) now takes a different form, namely,

λ(s) = −s − 1
2 ln(s) + ln[Erfi(

√
2s)] + const.

From this expression, we then find the self-consistent equations
for x0,s0 take the form

s0 = a

2
√

2(1 + x0)
, (A2)

x0 = −1 − 1

2s0
+

√
2

πs0

e2s0

Erfi(
√

2s0)
. (A3)

Figure 4 shows these results, again comparing to Monte Carlo
integration of Eq. (A1). Once again, at large a the results
asymptotically approach complete alignment but without any
sharp transition. The behavior at small a differs from the
previous case: At infinite temperatures, the angular average
now gives 〈cos2 θ〉 = 1/3 rather than 1/2.

As well as the large deviation formula, mean-field theory
can also be directly applied to this problem. This corresponds
to replacing the integral over angle θ in Eq. (6) by

Z2LS =
∫

dθ sin(θ )
∫

dφ 2 cosh

(
βE(θ )

2

)
.

It is once again possible to show that the mean-field result in
the limits M/N → 0 and βg

√
N � 1 recovers the same form

as the large deviation expression.
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