Pseudo credal networks for inference with probability intervals
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ABSTRACT

The computation of the inference corresponds to an NP-hard problem even for a single connected credal net-
work. The novel concept of pseudo networks is proposed as an alternative to reduce the computational cost of
probabilistic inference in credal networks.

The method allows identifying the combination of intervals that optimizes the probability values of each state of
the queried variable from the credal network. In the case of no evidence, the exact probability bounds of the query
variable are calculated. When new evidence is inserted into the network, the outer and inner approximation of the
query variable are computed by means of the marginalization of the joint probability distributions of the pseudo
networks. The applicability of the proposed methodology is shown by solving numerical case studies.

1 Introduction

A Bayesian network is an effective probabilistic graphical model to study and analyze the natural dependencies of
elements that constitute a complex system. Originally, this technique was developed as a tool for artificial intelligence
as it was introduced in the paper presented at the AAAI National Conference on Artificial Intelligence in 1982 by Judea
Pearl [|1]. The probabilistic graphical model called Bayesian Network simplifies the variable conditional representation as
well as the explanation of stochastic process outcomes and decision making under uncertainty [2]. There is a large variety of
applications with satisfactory results in various fields from decision making to risk assessments, e.g. [3,41/5,/6]]. The graphical
representation of the system facilitates the understanding of the problem even for non-expert personnel [7]). The graph of
the network is made of nodes and edges representing the components of the system and their dependencies, respectively. The
posterior probabilities obtained through the built network are based on the application of probability theory concepts, (joint
and conditional probabilities, random variables, etc.), that provide quantitative support to the graphical representation of the
model, [&]].



Bayesian Networks characterize the uncertainty associated with the variables in the model through precise discrete
distributions. Enhanced Bayesian Networks extend the characterization of uncertainty to continuous probability distributions
[9,/10]. However, these approaches constraint the quantification of the epistemic uncertainty of the information available to
model the system [11]. Credal networks follow the same graphical structure of their Bayesian counterpart but utilize a
generalized model of uncertainty called credal set to represent probability mass functions. In this paper, a special class of
credal set known as probability intervals is adopted to represent the epistemic uncertainty attached to a variable. The selection
of such intervals to represent the nodes in the network makes the computation of posterior probabilities considerably harder.

Tractability of Credal networks is itself NP-hard even for simple networks. In practice, this means that the time to
calculate a posterior probability, known as inference computation, increases exponentially with the number of nodes, as it
does in Bayesian networks. Small models, with just about ten nodes, are suitable to use analytical methods to compute
a posterior. However, for networks with several more tens of nodes or with a large number of connections, approximate
algorithms must be used to save computational costs [2].

Pure analytical inference methods for Credal Networks are restricted to the use of relatively small networks due to the
computational cost of the inference estimation, [[12]. Cano et al. proposed a variable elimination method to evaluate the
inner nodes in the search by using the branch-and-bound algorithm. This technique is reliable, however, computationally
expensive for moderately large networks [13|]. Antonucci and Cuzzolin, [14]] suggested an outer approximation algorithm
introducing non-optimal states in the extreme points of the Credal set.

A novel approach is here presented in order to reduce the inference computational time by reducing the search space
to a small number of pseudo networks. The method allows finding the exact bounds of the queried variable in case of
evidence present otherwise it produces an outer approximation from which an inner approximation can be identified in the
case of evidence inserted. The approach works with any exact inference algorithm (e.g., joint tree, marginalization) that are
commonly included on any Bayesian network toolbox.

The paper is organized as follows. Firstly, a brief explanation of Bayesian networks is given in section 2.1} Then, in
section 2.2 credal networks and credal sets are described. The inference computation process is explained in section[2.3] The
proposed method is detailed in section (3| Then, two numerical examples regarding a fire protection system and a railway
system are explained. The results and discussions are given in sections [4|and followed by the conclusions in section 3]

2 Theoretical background
In this section, the concepts regarding Bayesian and Credal networks and associated inference approaches are presented.

2.1 Bayesian networks

In Bayesian Networks random variables are used to model the nodes in the network, providing information about ob-
servable quantities or hypothesis of stochastic problems [15]]. There are two main types of nodes in Bayesian networks,
parents and children. A node is a child of a parent only if there is a direct connection, via an edge, from the latter to the
former node. This connection represents, qualitatively, the child dependency of the parent. If a node has no parents it is
known as a root node, which can be regarded as an original cause. On the other hand, nodes with no descendants are known
as leafs (by referring to a ’tree” analogy), representing a final effect [2]].

The connections that a node maintains with the rest of the network constitute the key structure named, Markov blanket.
Such arrangement consists of the necessary variables to forecast the behaviour of a variable of interest, obeying to the
Markov property (given its parents, a variable is conditionally independent of its non-descendant non-parents). Dependencies
among the variables in the network can be represented mathematically by the Joint Probability Distribution, P(X), that
contains the probability measures of each of the states of the variables in the Markov blanket [8]]. Given a set of random
variables, X; := X1,X>, ..., X;, that belongs to a given Bayesian network, the joint distribution of a particular value is given
as P(x;) := P(X; = x1,X2 = x2,...,X,, = X, ), where x; represents a specific probabilistic value of the random variable X;. The
expression P(x;), can be factorized by P(X) using the chain rule (product of all the probability values in the network) for
Bayesian networks as follows:

n

P(X) = [ [P(xilm) (1)

i=1

Here, P(x;|m;) is known as the probability of x; conditioned to its parents m;. This term represents the probability mass
function of the conditioned random variable X;. Probability distribution functions shown on Eqn. (I} need to be determined
before any further calculation is done. Thus, they receive the name of prior probabilities.

In the case of Bayesian networks such priors are stored in arrangements known as Conditional Probability Tables (CPT).
In this way, the use of the information contained inside the CPTs as inputs in the joint distribution and, in combination with



the Bayes’ theorem, concede the capability of computing the posterior probability of any single or complex event modelled
in the network. This process is known as belief updating or probabilistic inference and constitutes the warhorse of the
predictive and diagnostic analyses as well as the what-if scenarios that can be produced with the Bayesian networks [16].
Further information about this matter will be treated later on section 2.3

2.2 Credal networks

One of the main drawbacks of Bayesian networks is their restriction to work with precise probabilities, either discrete
or continuous. Adoption of precise variables leaves aside the epistemic uncertainty attached to the quality of the information
available. The use of interval probabilities has become a powerful tool to cope with the lack of data, contradictory judgments
or imperfection in the beliefs of a decision-maker. As a response to these limitations, it has been proposed the use of
interval probabilities in the Bayesian approach. However, there are two main problems with this approach [17]]. The first
has to be with the impossibility to directly apply the Bayes’ rule to interval-valued probability measures hoping to obtain
an interval-valued posterior [[18]. However, the joint probability distribution can be separated into bounds and compute
inference separately for each of the bounds. The second problem is the no-uniqueness of defining independence for interval
probabilities [[19].

Credal Networks are generalization of the Bayesian networks with relaxed parameters while preserving the same graph-
ical structure and probabilistic characteristics [20]. However, probability measurements are not represented by probability
mass functions (P(X)) but by credal sets. The credal set is an imprecise-probabilistic model strictly stated as the convex hull
of a finite set of probability mass functions. The credal structure is extended to the conditional K (x;|7;) and joint credal sets,
each of them differently valued depending on their extreme points as presented in the first formalization of credal networks
by Cozman [17]. A conditional credal set is formed by set of conditional densities P(x;|;), while a joint credal set K (x;)
is defined as the convex hull of the joint probability distributions for all of the extreme points contained in the local credal
sets [[17]]. This is known as the strong extension, the most popular type of credal network due to its similarity with normal
Bayesian networks. It is represented as follows,

n

K(x) = CH{P(X)‘P(X) - HP(xl-|TC,-)} 2)

i=1

Here, x; is in the domain Qy, and m; is in Q,, of the variables that form in the system. Each P(x;|m;) is element of the
extreme point ext[K (X;|m;)]. The strong extension is then, the largest joint credal set in which the extreme points contained
in the set are associated with a quasi-Bayesian network described as in Eqn. [T} In fact, a credal network can be considered
as a finite set of quasi-Bayesian networks, each of them, associated with different extreme points but preserving the same
graphical structure.

An extreme point of a credal set, ext[K(X)], is defined as that that cannot be given as a convex combination of another
points in K(X) [21,[22]]. The sum of the probability values for all states of variable X must be 1, i.e. must be normalized.
More strictly, any probability measures (P(x;) and P(x;) with i # j) forming the intervals ([P(x;), P(x;)] and [P(x;),P(x;)]) of
the extreme points must be consistent with the convex set in the R” space and therefore meet the following conditions [23]],
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According to imprecise probability theory, the posterior probability of a credal network is part of the credal set (Eqn. [2)
expressed as an interval probability. In the strong extension of credal networks, the lower and upper bounds of an event of
interest (queried variable, P(x,)) are obtained by minimizing and maximizing, respectively, the marginal probability of x,
from Eqn. [T} This is,

B(xq) = » min Z In—[P(x,-\n,-) (5)
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This approximation represents a non-linear optimization problem where the joint probability mass function P(x;|m;) is
a multi-linear objective function. This topic will be discussed in the coming sections. These concepts are used to compute
inference with interval probabilities that, although it increases the complexity level, they preserve natural correspondence
with the traditional Bayesian networks. The objective of this work, is to used the interval bounds representation of the strong
extension to carry out the inference computation by using analytical algorithms resulting in an outer approximation of the
queried variable. While an approximate but effective method is used to provide the inner approximation of such queries.

2.3 Probabilistic inference

Probabilistic inference or belief updating consists on the calculation of a posterior probability distribution of a node of
interest, x,, by using prior probabilities, {P(x.|x)P(x)}, and evidence, x, (although not necessarily), in any other nodes [2].
This procedure allows to adapt the network to new conditions and provide outputs according to such updates. Mathemati-
cally, the inference computation in Bayesian networks resides on the application of Bayes’ theorem (Eqn. [7) over the joint
probability P(x,,x.), [8]].

P(xe|xq)P(xq)

PRk ==t

N

In this equation P(x4|x.) represents the posterior probability conditioned to some evidence. This approach is especially
useful when the query variable is conditioned to another one (e.g., in diagnosis analyses).

Computation of P(x,) by the summation of the product of all possible combinations of a local joint probability is known
as a marginalization process. This concept is closely related to the probabilistic inference over a queried variable x, so that,
P(x4) can be obtained by marginalizing out of the joint distribution (Eqn. |I) the variables different than x,. This method is
NP-hard since computational time increases exponentially with the number of nodes and connections in the network.

As an example, suppose the variable elimination method to infer the probability P(x,) of the queried variable x,. The
marginalization of the non-queried variables out of the joint probability P(X) withing the variables universe U is given as,

Pay)= Y TTPCalm) ®)

U\(xg) =]

In the case of the queried probability, P(x,), conditioned to a given evidence, x., Eqn. is modified as shown in Eqn. E}

U\(xg) P %e)

Pk =)
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Inference computation in credal networks is carried out over the lower and upper bounds, like shown in Eqn. [6] in an
extension of the network. This task is now a combinatorial optimization due to the number of combinations that need to be
tested in order to provide an output, [12]. Exact inference methods can be used to find the bounds of the queried variables.
However, in cases of large networks, the use of approximations from the inside of the real bounds (inner approximation) and
the outside (outer approximation) seems to be the feasible option [24]]. This work introduces an efficient inference method
providing outer and inner approximation of queried variables when no evidence is inserted, and exact bounds when evidence
is present.

3 Methodology
3.1 Pseudo networks

This introduces the novel concept of pseudo network: a discrete network containing a particular combination of all the
upper (or lower) bounds from the initial intervals of the credal network. Preliminary results were presented by some of the
authors in [25[]. The result is considered as pseudo network since the elements inside such array do not represent a real
combination of the original interval bounds but it preserves the dependency among the variables in the joint distribution. In
other words, there is no such element inside the pseudo network that corresponds to any convex combination of the initial
credal sets K (X).

Pseudo networks allow to reduce the complexity of inference calculation since the number of interval combinations
is restricted to the number of crisp networks that actively contribute to the calculation of the query bounds, i.e. the crisp
networks with probability values lying within the interval queried variable are hence discarded. This provides a significant
reduction on the computational time required to compute the inference of a queried node.

The joint probability bounds for each pseudo network are defined as:



Definition 1. The joint probability distributions P(X) of a pseudo network, corresponds to the union over all the variables
m in the network (since all variables are different in the network). The complete joint distribution contains the combination
of the upper (or lower) bounds of the states n of each of the variables. Since each state is a mutually exclusive event of that
variable, their combination is regarded as the union of the n states.

The joint probability distribution can be written as follows,

P(X) = {U [9P(xi?)] } (10)

Two joint probabilities are found, one containing all the upper bounds P(x;) and the other containing all the lower bounds
of each of the variable states P(x;). Each element inside the array in Eqn. corresponds to the pseudo network for each
possible combination for the upper (or lower) bounds. All the components of the array can be computed with traditional
inference algorithms (e.g. variable elimination, junction tree, etc).

Fig. 1. A very simple credal network.

Let’s consider a simple credal network as shown in Fig. [I] The network is formed by three nodes, two parents (A and
B) and a child node (C). The nodes represent binary variables (i.e. only two states are allowed). The intervals of each of the
variables, e.g., P(a;) < P(a;) < P(a;), are represented as P(a;) = [P(a;), P(a;)]. The term P(A) = {p(ay),p(az)} indicates
the upper probability bounds of the states a; and a; of the event A, respectively. Following the definition of the pseudo
network in Eqn[I0} the array containing the combinations of the upper bounds is,

o e

i P@anIaPa Pa723Pb27Pa

PABC=1 (p(@), P(br), P@)] [Plar).P(b), P(e) (v
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The computation of a queried variable namely, P(a; ), by the marginalization method is obtained by summing over all the
combination of states of the variables different than A, i.e., using Eqn. [§](Eqn. 9] would be used in the case of a conditioned
queried variable). Each of the factors for Eqn. [I]is obtained from the pseudo network array. Each element in the summation
of Eqn. [§|corresponds to one element inside the pseudo network. This result is certainly higher than any probability measure
that could have been obtained on any of the initial Bayesian networks included in the credal network. This is due to the
complement rule (Eqns. 3|4) that states that no bound combination will include the upper bounds of complementary states.
Thus, the marginalization over the joint probability of the lower and upper bounds, obtained through the pseudo network
method, provides a coarse but efficient outer approximation.

3.2 Outer approximation computation

An outer approximation, i.e. an overestimation of the respective lower and upper bounds, is obtained by the direct
marginalization of the joint probabilities (corresponding to the pseudo networks).

The outer approximation can be obtained for intervals as well for precise probability measures adopting existing exact
inference algorithms available in a number of software toolboxes [[26L27}28]].

The procedure consists of the following steps,

1. Pseudo networks definition. Identification of bounds combination of the initial network that optimizes the probability
values of each state (Eqn. [T0).

2. Inference computation. Marginalization over the initial joint distribution containing the lower and upper combination of
bounds obtained in the pseudo networks.

3. Bound identification. The lower and upper bounds identified using traditional inference methods over the optimal pseudo
networks.



4. Precise variable inclusion. In the case that a discrete (non-interval defined) variable is queried, such variable must be
included in the computation of the initial joint probability.

Variable combination has to be understood as the structure that will contain either an upper or lower bound of each of
the states of the variables present in the joint distribution. Under the assumption of binary variables, combinations with the
upper bound of a certain variable, e.g. P(@7) contains automatically its complement, P(a2).

For instance, if a bound P(X) is given in a combination it will necessarily contain its counterpart P(x) due to the com-
plement rule, i.e., P(x) =1 —P(x°) [21].

For the case of the lower bound of the marginal probability of the node A in state 1, P(a;). This quantity can be
computed from the joint probability P(A,B,C) by marginalizing out B and C as follows,

e (12)

After normalizing the result of Eqn. [I2] the value computed necessarily corresponds to a lower probability bound
obtained by variable elimination algorithm. However, it can be computed by any other exact inference method. This would
correspond to a coarse outer approximation of the lower bound. If the same procedure is followed by taking into account
now the upper bounds, the complement for the outer approximation of the interval query variable is found.

Furthermore, if the queried variable, D, is discrete, it has to be included in the joint probability of Eqn. Thus, the
distribution would be as, P(A, B,C, D) for the lower bound and P(A,B,C, D) for the upper one.

3.3 Inner approximation algorithm

In section [3.2] pseudo networks with the combinations of the states of all the variables were defined and then adopted to
search the combination containing the combination relevant to compute the posterior distribution. This process produced an
outer approximation since all the pseudo networks contain only the upper or lower bounds of each of the variables involved.
Now, new combinations are defined over the marginal probability found (Eq. [I2). This time, each combination is defined
changing the bounds of each variable state. Then, a new search is done to find the combination that optimizes the posterior
distribution. The result of this process is an inner approximation and the procedure is explained in this section.

Continuing with the example of section [3.2] if the marginal probability for a specific node, say A, is queried, one of
the bounds for such query is now fixed (e.g., a;). Then, the bound combinations are built keeping the fixed bound, i.e., all
the combinations where @y appears, are the only ones taken into account. The upper bound of P(a;) is obtained from the
maximization of the combination of the bounds for each of the variables different from @ in the joint probability P(a,B,@.
This means finding the combination satisfying P(@r) = max(P(@t)comp;)si = 1,...,n™ ! (where n corresponds to the states
and m to the variables in the network). Suppose that variables in the the joint probability P(ay,B,C) have two states each.
This means that the number of combinations of bounds will be 2°. But, by fixing a@; the number of combinations is reduced
to 22. For example, the combinations are defined as follows,

P(a1)comp1 = P(@i,b1,c1) + P(ar, by, c1) + P(ar, by, c2) + P(ai, by, c2)
P(TI)C())an —P(Wvﬁ,a)+P(671,57a)+13(071,ﬂ7g) +P(CTI;5>C72)
P(a@1)comp3 = P(@i,b1,c1) + P(ar, by, c1) + P(ar, by, ¢2) + P(ai, by, 2)
P(ar)comps = P(a1,by,c1) + P(ai, by, 1) + P(a1, by, 2) + P(a1, ba, ¢2)

Now, if combinations 1 and 2 are compared:

P(@1) compt — P(@1)comp2 = P(@1, by, ¢1) — P(@1, by, 1) + P(ar, ba, 1) — P(a, b, 1)
+P(ar,b1,c2) — P(ai, b1, c2) + P(@i, bz, c2) — P(ar, b2, c2)

13)

Since the only values known (from the previous pseudo nets computed) are those containing all lower/upper bounds, the
law of total probability is considered:

P(A1,B,,Cy) =P(A1,B1|C1)P(C1) (14)

Considering that the bounds of the interval probability only affect the numerical value of its likelihood and not the nature
of the event, Eqn. can be applied to the unknown elements of Eqn. E For instance, P(at,b1,¢1) = P(ar, bi|c1)P(c1) comba-



Here, by on the left-hand side of the equation is the marginalization of the joint distribution of combination one. While,
P(ﬁ )comp2 corresponds to the marginal probability from combination two. It must be noticed that some entries of Eqn.
must be computed by means of marginalization. For this reason, Bayes’ theorem can be used to compute the undefined

combinations. For instance,

P(W7E,H)P(b71)comb2
P(bl)combl

P(aaﬁ;a) -

P(ailvbibcil)P(bi)combl
P(b2)coml72

P(ai,by,cr) =

Substituting Eqn. [I5|and [16]in Eqn. [I3]and grouping similar terms:

P(Fl)conzbl 7P(‘Tl)comb2 = P(W,Eva)

P(E)combl _P(h)come
P(bl)combl

— P(b2)comp2 — P(b2).
—P(Tl,b27a) ( 2) omb2 (72) ombl]

P (E) comb2

From the complement rule, the following conditions are given,

P(E)come =1 _P(E)C()n1b27 P(E)combl =1 _P(E)combl

Subtracting combination 1 from combination 2,

P(bZ)came _P(FZ)combl = P(E)cambl _P(bl)come

15)

(16)

a7

(18)

19)

These results are substituted in the fractional entries of Eqn. Thus, after grouping similar elements and applying

again the law of total probability, the following expression is obtained,

P(Fl)combl 7P(a71)comb2 = [P(6T175|b1) - ( Cl‘bZ)H (bl)comhl (h)combﬂ
+P(ar,c2|b1)P(b1)comp1 — P(@r,c2|b1)P

( l)comb2
—P(ar,c2|b1)P(b1)comp2 + P(ar, c2|by) P(

P(by
Fl) comb]

grouping similar terms,

P(ail)cvmbl _P(ail)coth = [P(717a|b1) —P(leawz) +P(CTI,QV71) _P(a717072|b2)}
X[P(E)combl 7P(h)comb2}

simplifying,

P(Tl)combl _P(Tl)comb2 = [P(ail|bl) _P(m‘bZ)][P(E)Combl _P(ﬁ)cambﬂ

(20)

21

(22)

Given that P(b1)comp1 > P(b1)comp2, the last term of Eqn. will be positive. Such conditions (P(at|b1) > P(ai|bz)
and P(aj|c1) > P(at|cz2)), has to be satisfied by the middle term of Eqn. [22|so condition (P(a1)comp1 > P(aT1)comp2) Will be
verified. Since values of P(ay|b;) and P(aj|b,) are unknown, an estimation of such probability values is required to justify

such situation.



By repeating the previously described procedure with all the possible combinations the following statements are ob-
tained:

P(@1)comp1 > P(@r)comp2 <= P(ar|b1) > P(ai|b2)
P(@r)comb2 > P(@1)comps <= P(ai|c1) > P(ai|ca)
P(@r)combs > P(@1)comps <= P(ai|b1) > P(ai|bz) 23)
P(@r1) comps > P(@1)comp1 <= P(at|c2) > P(ailcy)
P(@r)comp1 > P(@1)comps <= P(ai|c1) > P(ai|cz)
P(@r)comb2 > P(@1)comps <= P(a@i|c2) > P(ailc1)

From the bounds combinations shown in Eqn. 23]used as input help to identify the maximum value for the upper bound,
i.e., P(ay) = max(P(ar)compi),i = 1,...,4. This maximum corresponds to the upper probability input that maximizes the
marginal probability of the queried variable. Then, the quantities max(P(ay|bs)) and max(P(at|cz)) can be calculated by
using the probability bounds P(A,B,C) and P(A, B,C), obtained for the outer approximation. Thus,

[ Y P(ai,B,C) | [ P(ar,B ]

max(P(ar|B)) = max| 2CP@BC) || PELB) pewaour o
_ZB,CP( ’B7C)_ L P(B)pseudoUP ]
i P ay E 6 ] -P 7?6 DSeudo |

max(P(ar|C)) = max LpP@,B.C) | _ | P@LO) preudoup 25)
_ZA,BP( ’B’C)_ L P(C)pseudoUP i

Since Eqns. and 25| result in max(P(a@|B)) = max(P(az|by)) and max(P(ai|C)) = max(P(ay|cy)), respectively,
combination one delivers the outcome P(a7)comp1 = P(a@1) = max(P(ay)compi),i = 1,...,4. If the same procedure is followed
to identify the combination that minimizes the outcome, the bounds combination that optimizes the queried variable is found.
It has to be noticed that if there is no evidence inserted in the query, the joint probability outcomes correspond to the exact
bounds. However, when inference is present, the proposed analysis produces an approximate result. In fact, the presence
of evidence suggests that the joint probability identified by the pseudo network approach only delivers an approximation to
the real bounds due to the failure of the method to estimate the normalization factor for each probability. Because of this
restriction, the inference computation obtained by the present method corresponds to an inner approximation that is restricted
to binary variables.

3.4 Software and hardware

A variety of software tools were adopted in order carry out the inference computation of the queries during the experi-
ments presented on this paper.

The inner and outer approximation algorithms based on pseudo networks have been implemented on the open source
tool for uncertainty quantification OpenCossan [[29),27)25]]. The software is coded in an object-oriented fashion of the Matlab
programming language and integrated into the developed toolbox for credal network. The types of nodes supported by this
system can be discrete, continuous, imprecise and hybrid (imprecise continuous nodes). The class called Enhanced Bayesian
Network in OpenCossan is capable of performing inference computation and sensitivity analysis in traditional Bayesian,
Enhanced Bayesian and credal networks [[10].

The Branch-and-bound algorithm is part of the decision support tool called Elvira system [|30]. This software is imple-
mented on top of the Java platform JDK (j2sdk 1.5). Elvira system can perform different methods for inference, learning,
abduction and decision making in Bayesian Networks and Influence Diagrams. In this case, only the inference method is
applied for the purposes of this work.

The A-LP method adopts the optimization algorithm named linear programming to minimize/maximize the lower and
upper bounds of the queried variable [31]]. The code is written on Java and packed into a console application based on the
Eclipse platform. To perform the linear programming tasks the free software makes use of the COIN-OR library.

A system with Intel(R) Xeon(R) CPU ES-2670 v2 at 2.50 GHz processors running Linux CentOS 6.7 was used to run
the models on the different software tools during the experiment.

4 Experiments and results
The method proposed is tested on two different networks to provide a numerical validation. The performance is mea-
sured as the total computational time required by the procedure and the relative error of the approximation to the exact



bounds. These parameters are further compared against similar inference algorithms available in the literature. More specif-
ically, the inner approximation is compared with the A-LP algorithm developed by Antonucci et al., [31]]. While the exact
bounds are computed using the branch-and-bound approach described in Cano et al. [13]].

4.1 Fire protection system

A small-sized network introduced by Tolo [[10] is studied and shown in Fig. The network refers to a benchmark
problem about an expert system to assess the probability of having a fire in a building and consequences produced by the
fire event. The network is made of six nodes representing binary random variables with interval probabilities. The node fire
describes the probability of fire accident. This event can influence the appearance of smoke as well as activating the alarm.
The possibility of the alarm being affected by tampering events is represented by the connection, through the edge, between
the nodes tampering and alarm. In turn, smoke can alert the residents to evacuate the building. This event is modelled by
node leaving. The node report represents the case of neighbours reporting the fire accident even when they are not being
evacuated.

Fire Alarm Tampering

Smoke Leaving Report

Fig. 2. Credal network of fire in a building as proposed in [25].

Two scenarios are considered. The first scenario contains the case when there is a small uncertainty associated to the
probability of the events. This is represented by relative small sized intervals as shown in Appendix (Table ). The events
smoke, report, alarm and leaving are queried and the inner and outer approximation are compared against the exact bounds.
The results of the inference computation with no evidence are shown in Fig. While the posterior probabilities in the
presence of evidence are shown in Fig. 4} The similarity of the values between the inner and the exact bounds demonstrate
that the former bounds correspond to a very good approximation of the true bounds.
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Smoke=True Report=True Alarm=True Leaving=True
Queried variable

Fig. 3. Comparison of posterior probability intervals of queried variables without introducing evidence with small intervals (Table[4).

The second scenario represents the case when large uncertainty is associated to the definition of the probability tables
(i.e. larger intervals). The values presented in [25] are adopted. The results are shown in Figs. [5] and [6] for the cases
when no evidence and when evidence is introduced, respectively. In this case, the proposed approach still producing good
approximations of the true bounds. Since the size of the input intervals is larger also the approximate inference produces
larger bounds. The differences between the approximated and the exact bounds are quantified by means of the relative
errors. Table |1| summarizes the relative errors of the proposed Inner and Outer approximated bounds with respect to the
Exact solution obtained with exact inference tool.
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Fig. 5. Comparison of posterior probability intervals of queried variables without evidence adopting the intervals shown in [25]
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Fig. 6. Comparison of posterior probability intervals of queried variables with evidence adopting the intervals adopted in [25]

4.2 Railway model

A railway model is used to test the feasibility of the method to cope with larger networks containing multi-state variables
since the inference computation complexity increases exponentially with the number of nodes. The model represents a
generic railway system based on the design of [32]] and [33]]. The credal network consists of sixteen nodes with binary and
multiple states. The interval probabilities associated with this model are shown in tables in Appendix (Tables [3}{7).

In this railway model, the node called Viaduct refers to the probability that a part of the rail-track is intersected by a
water or car flow path, i.e. the train transits over or under a bridge. This possibility is represented by the node Overbridge. As
in many cases in the railway system, it is assumed that the majority of the tracks are placed neither over nor under the bridge
but mostly on flat terrain representing a low probability for this event. The Cut slope, Earthworks and, Embankment slope
describe the infrastructure management required to prevent the system from damages by natural threads namely, flooding,
landslips and, debris flow [34], [35]. The quality of materials used to build the embankment slope is modelled by the Fill



Network Query Outer Inner

P(Smoke = True) [0.4600, 0.3422] | [0.0119, 0.0056]

) P(Report = True) | [0.4879,0.3331] | [0.0079, 0.0052]
Simple

P(Alarm = True) [0.4121, 0.2865] | [0.0000, 0.0000]

P(Leaving = True) | [0.4298, 0.2526] | [0.0000, 0.0000]

Table 1. Relative errors between the exact bounds and approximated bounds for the fire in a building example using the original intervals
in [25].

material quality node. These variables condition the probability of having a well preserved Terrain. In turn, the probability
of having Obstructions on the rail-tracks is conditioned to the circumstances of the terrain. In addition to that, the terrain
status also determines the severity (low, medium, high) of the defects on the rail-track structures. This is modelled with
the node Track and structure defects that influences the Maintenance costs node. A last section of the network regards the
status of some primary elements of the train such as Wheel defects and Fault in brakes. These nodes affect directly the Final
train speed assumed here to possess two states only (low, high) conditioned to the states of its parent nodes. Such node is
considered to influence the occurrence of two different accidents: Run over accident and Derailment. These two nodes only
hold the binary probability of having, or not, such accident.

The node Derailment was queried to know the probability of this event happening (P(D = yes)) and the probability of
not having derailment (P(D = no)). Then, the conditional case is studied for both states of derailment by inserting evidence
in node Obstruction. P(D = yes|O = yes) and P(D = no|O = yes) represent the probability of derailment or not-derailment
given that the obstruction event is true. The results are shown in Fig. [§] In this figure, the differences between the Exact
bounds, obtained via the Branch-and-bound algorithm, B&B and the bounds computed with the A-LP algorithm for inner
approximation are reported and compared against the results obtained by means of the pseudo network method for the inner
and outer approximation (displayed in the plot as Inner and Outer, respectively).

Table [2| summarizes the relative errors between the exact solution, Exact, the proposed Inner and Outer bounds and
the Linear programming algorithm for inner approximation, (A-LP). Using the pseudo network method proposed, the outer
approximation can be computed with or without the presence of evidence. However, the inner approximation can only be
computed with evidence and the resulting interval corresponds to the exact bounds (see Table [2).

In order to provide another performance quantification, the proposed method was timed as well as the B& B and A-LP
for each of the models presented in this work (i.e., the Fire protection and Railway system models). Such results are shown in
Table 3| for comparison purposes. The time values reported in Table [3|represent the wall-clock time required by the methods
for running the models shown on Figs. 2]and [7] It must be noticed that the inner approximation can be computed in the case

Viaduct]

Y

[Overbridge] [Fill_material_guality]

[Embankment_slope| [Cut_slope] [Earthworks|

Terrain [Wheel_defects| [Fault_in_breaks|
[Track_and_structure_defects| [Obstructions| [Final_train_speed |

[Maintenance_costs | Derailment [Run_over_accient]| [Missing_stop

Fig. 7. Credal network for a generic railway system.
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Network Query QOuter Inner A-LP
P(D = Yes) [0.7267, 0.9768] [-,-1 [0.0107, 0.0140]
. P(D = No) [0.5275, 0.1461] [-,-1] [0.0597, 0.0042]
Railway
P(D =Yes|O =Yes) | [0.6556,0.2604] | [0.0000, 0.0000] | [0.0018, 0.0115]
P(D = No|O =Yes) | [0.7823,1.0176] | [0.0000, 0.0000] | [0.0015, 0.0062]

Table 2. Relative error of the approximate bounds with respect to the exact bounds for the railway model.

of a network with binary nodes, otherwise, the computational time cannot be measured as shown in Table E}

Network Outer Inner A-LP B&B

Fire (no evidence) 1.003 1.300 20.229 6.51
Fire (evidence) 0.887 1.356 21.063 7.24
Railway (no evidence) | 1.628 - 23.663 | 19139.977

Railway (evidence) 1.440 | 6576.393 | 24.829 | 20354.925

Table 3. Total computational time (wall-clock time) for the inference computation expressed in seconds.

4.3 Discussions

The proposed inference method provides inner and outer approximation with binary nodes. An outer approximation can
also be computed in the case of multi-state nodes. An inner approximation can be computed when evidence is inserted in
any of the multi-state nodes yielding to the calculation of the exact bounds.

Significant overestimation of the bounds are observed in Table [2| This is a consequence of the normalization process
that is carried out during the inference computation. When the lower bound of a query variable is larger than the upper
bound of its complement state, the sum of the two events is smaller than one, the normalization of the marginal distribution
produces an increase of the initial probability of the outer approximation. The quality of the outer approximation depends on
the level of imprecision (interval width) in the prior probabilities. As shown in Fig. [3| the outer bounds are very close to the
real bounds when small intervals are used. However, the accuracy decreases when the size of intervals is increased (see Fig.
B). An inner approximation is obtained when no evidence is inserted in the case of a network with binary variables (Table



[I). Moreover, the inference computation when evidence is present yields inner bounds with a relative error of almost zero
(in the order of 10~!3) even for the case of multi-state variables (Table .

The computational time increases exponentially with the number of nodes in the network (see Table [3) when computing
the inner approximation. Such increase in time can be due to the number of combinations that are tested before finding the
optimum solution. The accuracy of the bounds remains close to the probability intervals obtained with the A-LP method.
As shown in Table [3] the outer approximation provided by the proposed approach are computationally more efficient than
other methods making the the pseudo networks a fast support tool for decision making or any other diagnostic analysis. The
computational cost is also not affected by the presence of evidence. Further research will focus on improving the efficiency of
the inner approximation and supporting the inclusion of multi-state variables when no evidence is introduced in the analysis.

5 Conclusions

The novel concept of pseudo networks has been presented. This approach identifies the combination of interval endpoints
from the initial credal network that extremizes the probability values for each state of the queried variable. This structure is
used for the determination of outer and inner approximations of the probability bounds.

The proposed method significantly reduces the computational cost of the outer bounds for large credal networks. When
evidence is inserted the approach produces the exact bounds. It also supports networks with multi-state variables overcoming
the limitation of existing approaches. The main advantage of the proposed approach resides on its simplicity, making easy
to implement and combine with different exact inference methods in order to find the posterior probability intervals of the
query variable. The low computational cost required to compute the outer approximation allows an quasi-real-time analysis
of the network, a feature required by many decision support tools.
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Appendix

Tampering = False

[0.98999, 0.99111]

Tampering = True

[0.00889, 0.01001]

Fire = False

[0.958978, 0.959989]

Fire = True

[0.040011, 0.041022]

Tampering
False
False
True

True

Fire
False
True
False

True

Alarm = False
[0.999800, 0.999997]
[0.010000, 0.012658]
[0.100000, 0.119999]
[0.400000, 0.435894]

Alarm = True
[0.000003, 0.000200]
[0.987342, 0.990000]
[0.880001, 0.900000]
[0.564106, 0.600000]

Fire
False

True

Smoke = False
[0.897531, 0.915557]
[0.090000, 0.110000]

Smoke = True
[0.010000, 0.102469]
[0.890000, 0.910000]

Alarm
False

True

Leaving = False
[0.585577, 0.599999]
[0.100000, 0.129999]

Leaving = True
[0.400001, 0.414423]
[0.870001, 0.900000]

Leaving
False

True

Report = False
[0.809988, 0.828899]
[0.240011, 0.250000]

Report = True
[0.171101, 0.190012]
[0.750000, 0.759989]

Table 4.

Probabilities of events for the fire protection system in section 4.1



Viaduct = Yes Viaduct = No

[0, 0.01] [0.99, 1]
Fill material quality = High  Fill material quality = Low
[0.7, 0.8] [0.2,0.3]
Cut slope = Yes Cut slope = No
[0.3,0.5] [0.5,0.7]
Earthworks = Yes Earthworks = No
[0.0001, 0.0009] [0.9991, 0.9999]
Wheel defects = Yes Wheel defects = No
[0.0001, 0.0005] [0.9995, 0.9999]
Fault in brakes = Yes Fault in brakes = No
[0.0001, 0.0005] [0.9995, 0.9999]
Viaduct Overbridge = Yes Overbridge = No
Yes [0.99, 1] [0, 0.01]
No [0.8, 0.9] [0.1,0.2]
Terrain Obstructions = Yes Obstructions = No
Yes [1, 1] [0, 0]
No [0.1,0.15] [0.85, 0.9]
Final train speed Run-over accident = Yes Run-over accident = No
High [0.002, 0.006] [0.994, 0.998]
Low [0.0001, 0.0002] [0.9998, 0.9999]
Final train speed Missing stop = Yes Missing stop = No
High [0.005, 0.01] [0.995, 0.999]
Low [0, 0.0001] [0.9999, 1]
Fill material quality Overbridge Embankment slope = Steep Embankment slope = Gradual
High Yes [0.9, 1] [0, 0.1]
High No [0.6,0.7] [0.3,0.4]
Low Yes [0.1,0.2] [0.8,0.9]
Low No [0.1, 0.2] [0.8,0.9]
Fault in brakes Wheel defects Final train speed = High Final train speed = Low
Yes Yes [0.6, 0.7] [0.3, 0.4]
Yes No [0.8,0.9] [0.1,0.2]
No Yes [0.1,0.2] [0.8, 0.9]
No No [0.0001, 0.003] [0.9997, 0.9999]

Table 5. Probability tables of Railway model in section 4.2



Track/structure defects

Terrain Severe Medium Minor
Yes [0.7,0.8] [0.18,0.29] [0.01,0.02]
No [0.05,0.2] [0.1,0.15] [0.7,0.8]
Maintenance costs
Track and structure defects High Medium Low
Severe [0.8,0.9] [0.1,0.15] [0, 0.05]
Medium [0.18,0.29] [0.5,0.55] [0.16,0.32]
Minor [0.1, 0.15] [0.3,0.4] [0.45, 0.6]

Table 6. Probability tables of Railway model in section[4.2} Track/structure defects and Maintenance costs

Embankment slope Cut slope Earthworks Terrain = Yes Terrain = No
Steep Yes Yes [0.5, 0.7] [0.3,0.5]
Steep Yes No [0.35, 0.4] [0.6, 0.65]
Steep No Yes [0.3, 0.4] [0.6, 0.7]
Steep No No [0.02, 0.025] [0.975, 0.98]

Gradual Yes Yes [0.4,0.5] [0.5, 0.6]
Gradual Yes No [0.3, 0.35] [0.65, 0.7]
Gradual No Yes [0.2,0.3] [0.7, 0.8]
Gradual No No [0.001, 0.005] [0.995, 0.999]
Track and structure defects Obstructions Final train speed Derailment = Yes Derailment = No
Severe Yes High [0.9999, 1] [0, 0.0001]
Severe Yes Low [0.75, 0.8] [0.2, 0.35]
Severe No High [0.8, 0.99] [0.01,0.2]
Severe No Low [0.5, 0.6] [0.4,0.5]
Medium Yes High [0.7, 0.8] [0.2,0.3]
Medium Yes Low [0.5,0.6] [0.4, 0.5]
Medium No High [0.3,0.4] [0.6, 0.7]
Medium No Low [0.2,0.3] [0.7,0.8]
Minor Yes High [0.99, 0.9999] [0.0001, 0.01]
Minor Yes Low [0.6, 0.7] [0.3, 0.4]
Minor No High [0.75, 0.8] [0.2, 0.35]
Minor No Low [0.001, 0.005] [0.995, 0.999]

Table 7. Probability tables of Railway model in section[4.2} Nodes Terrain and Derailment
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