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Abstract

Spatial interdependencies commonly drive the spread of violence in civil conflict. To

address such interdependence, scholars often use spatial lags to model the diffusion

of violence, but this requires an explicit operationalization of the connectivity matrices

that represent the spread of conflict. Unfortunately, in many cases, there are mul-

tiple competing processes that facilitate the spread of violence making it difficult to

identify the true data-generating process. We show how a network driven methodol-

ogy can allow us to account for the spread of violence, even in the cases where we

cannot directly measure the factors that drive diffusion. To do so, we estimate a la-

tent connectivity matrix that captures a variety of possible diffusion patterns. We use

this procedure to study intrastate conflict in eight conflict-prone countries and show

how our framework enables substantially better predictive performance than canoni-

cal spatial lag measures. We also investigate the circumstances under which canonical

spatial lags suffice, and those under which a latent network approach is beneficial.
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Introduction

Patterns of violence tend to exhibit strong degrees of spatial correlation, clustering,

and diffusion (Dorff, Minhas and Ward, 2017). Violence can diffuse spatially across nu-

merous pathways: intuitively, it might propagate through geographic proximity wherein

violence in one province, neighborhood, or country is liable to spread to a neighboring

area (Buhaug and Gleditsch, 2008). Similarly, socio-economic conditions across regions,

such as horizontal inequalities and shared ethnicity might also drive trends behind vi-

olent events (Cederman, Weidmann and Gleditsch, 2011). Scholars have shown that

climate factors such as precipitation and temperature have a demonstrated relation-

ship to the risk of violence (O’Loughlin et al., 2012) and geographic barriers linking vital

borders such as mountain ranges, or infrastructure like roads, can influence the spread

of conflict (Braithwaite, 2010). Modeling these diffusion pathways has become increas-

ingly common through a spatial lag framework (yt ∼ ρWyt−1) in which scholars specify

a set of weighting matrices, W , to account for suspected drivers of conflict diffusion.

Yet, given the diverse plausible drivers of civil conflict diffusion highlighted above, the

task of determining and operationalizing an appropriate set of weighting matrices is

difficult for scholars to accurately identify ex ante.
The question of how to identify diffusion processes is especially relevant due to the

increased interest in prediction and use of machine learning techniques in the study of

violence. It is easy to understand why prediction has taken on particular significance

for conflict scholars (Guo, Gleditsch and Wilson, 2018). For researchers and policy prac-

titioners alike, preventing loss of human life means successfully identifying locations

where political violence is likely to be high in the near future. This goal of prediction,

predicated on the prevention of violence, has led researchers to turn towards machine

learning techniques that can typically handle more complex data generating processes
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and out-perform traditional approaches in forecast accuracy.

Of course, machine-learning techniques have important limitations. First, such

models are only as good as the features the user is able to construct for the model’s

input. Dealing with this problem in the context of conflict prediction is especially rele-

vant as we need to think carefully about how to account for the variegated pathways

through which conflict may spread across a country. Second, high quality, fine-grained

data is often not available at the sub-national unit of analysis in a time series context.

If our goal is to predict violence within a relatively small time-frame at any sub-national

level, these data problems limit the benefit of adopting these approaches.

To overcome these obstacles, we propose an unsupervised network approachwhich

estimates a weighting matrix with probabilistic measurements of diffusion pathways

within a country. This approach enables us to take advantage of previous method-

ological advances in the spatial modeling literature and supplement them with recent

advances in network science to generate a set of features that embed sub-national ge-

ographic units onto a latent conflict space. Sub-national units more proximate in the

latent space are more likely to spread conflict to one another. We apply this technique

to eight countries that have experienced particularly high counts of intrastate conflict

during the 21st century according to the Uppsala Conflict Data Project (UCDP). Each

of the countries ranks among the most violent civil conflicts in Africa during the 21st

century. For each of these eight countries, we show that simply integrating our net-

work based feature into machine learning pipelines for conflict prediction enables us

to better predict the occurrence of conflicts in an out-of-sample context.

Spatial Dimensions of Conflict

For decades, scholars have recognized the importance of spatial factors in the study

of interstate violence (Richardson, 1960; Bremer, 1992), with an early focus on shared
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borders and a later focus on both distance and the regional context of regime type

(Ward and Gleditsch, 2002). While Ward and Kirby (1987) find significant spatial auto-

correlation in conflict, they argue that treating borders as a cause of conflict misses

the strategic and contingent nature of borders. Gartzke (2006) shows that the effect of

contiguity on violence depends on the relative development of states, where distance

has less of a pacifying effect on richer states.

In more recent years, scholars have investigated not just the spatial diffusion of

conflict across states, but also how conflict spreads within a country. Weidmann and

Ward (2010) find strong spatial correlation in patterns of violence in Bosnia during the

1990s, and Townsley, Johnson and Ratcliffe (2008) find similar spatial and temporal cor-

relations in the use of improved explosive devices in Iraq. O’Loughlin and Witmer (2011)

show how conflicts spread from hotspots in the caucuses and highlight how conflicts

are driven, not just by distance, but by shared religious affiliations between groups.

Schutte and Weidmann (2011) distinguish between conflict flows due to relocation (vio-

lence that is no longer in location 1 but has moved into location 2) and escalation (when

violence appears in location 1 and then, in the next time period, also in location 2) and

find that escalation is more common than relocation in several civil conflicts.

Literature on the spatial diffusion of intrastate conflict has offered multiple mech-

anisms that might explain the spread of violence across sub-state regions (Gleditsch,

2007). Salehyan and Gleditsch (2007) find that refugees are an important vector in the

spread of conflict due to shared networks and shifts in population composition in the

host state. Similarly, a number of studies have shown that countries that share ethnic

kin are more likely to be linked in the spread of conflict (Buhaug and Gleditsch, 2008;

Cederman, Gleditsch and Girardin, 2009; Wucherpfennig et al., 2011; Cederman, Hug

and Krebs, 2010; Metternich, Minhas and Ward, 2017).

Focusing on governments’ role in enabling or constraining violence, Kathman (2010),
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Beardsley (2011), and Danneman and Ritter (2014) find that the spread of civil conflict is

conditional on states’ policy choices—intervention, peacekeeping, and repression re-

spectively. Research on the micro-foundations of conflict and peace suggest that both

violent and non-violent actions are often driven by localized conditions, such as his-

torical legacies of repression (Osorio, Schubiger and Weintraub, 2018), competition be-

tween anti-government groups (Metternich et al., 2013) and the distribution of civilian

collective action efforts (Dorff and Braithwaite, 2018).

Undoubtedly, previous scholarship has consistently found that spatially distributed

conditions are substantively important to our understanding of conflict processes, but

the particular ways in which these spatial factors manifest can change substantially

from conflict to conflict. (Franzese and Hays, 2008) provide a useful typology of the

ways that spatial effects can manifest. Spatially-driven patterns can arise when an ex-

ogeneous common-shock has similar effects in a number of areas, or they can occur

because the processes we study are actually interdependent. For example, Franzese

and Hays (2008) point to five different mechanisms that might drive interdependence

among actors: coercion, competition, strategic learning, emulation, and migration. Of

course, multiple factors may be at play in a given conflict. Thus, the state of the litera-

ture suggests that there are many barriers to identifying appropriate measures for the

spatial dimensions of conflict.

Conflict Prediction
While research identifying the drivers of diffusion has led to important advances in

the field, the focus on prediction is a welcomed addition to the literature. Increasingly,

scholars have begun to pay attention to prediction both as a way of evaluating the ef-

fects of important variables and as an end in and of itself. Both Ward, Greenhill and

Bakke (2010) and Schrodt (2014) have criticized the emphasis on statistical significance
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in the field and suggest that scholars instead aim to generate models that can pre-

dict out-of-sample. As a number of scholars have pointed out, many extant empirical
models in conflict are quite lacking when it comes to predicting conflict out-of-sample

(Ward, Siverson and Cao, 2006; Beck, King and Zeng, 2000; Gleditsch and Ward, 2010).

Recently, however, more conflict researchers have developedmodels explicitly focused

on the prediction of conflict related processes, such as humanitarian crises (Gurr and

Harff, 1996), civil war onset (Hegre and Sambanis, 2006; Ward et al., 2013), civil war du-

ration (Bennett and Stam, 2009), incidences of armed conflict over a 40 year period

(Hegre et al., 2013), mediation in civil conflict Clayton and Gleditsch (2014), and dissi-

dent groups’ turns towards violence (Shellman, Levey and Young, 2013), among others.

Some scholars have even attempted to use predictive accuracy as a substitute for “p-

values" by showing which factors improve on the ability to predict out-of-sample, such

as (Brandt, Colaresi and Freeman, 2008)’s assessment of the effect of public opinion

on conflict in Israel. This research demonstrates the value of prediction for predicting

and–hopefully–ameliorating civil conflict.

The rise in scholarship on the benefits of prediction has led to a growing interest in

the ability of machine learning techniques to aid in the prediction of violent processes.

Notably, Colaresi and Mahmood (2017) argue that machine learning could help to de-

velop better predictors for the study of violent conflict. In early attempts, results were

mixed: in an initial effort to predict interstate conflict using a neural network, Schrodt

(1990) was unable to out-predict more conventional linear models. The prediction of

interstate conflict using a similar technique by Beck, King and Zeng (2000) was the sub-

ject of controversy over whether it could really predict accurately out-of-sample (de

Marchi, Gelpi and Grynaviski, 2004). However, in the decades since, advances in com-

puting power and algorithmic sophistication have increased our ability to use machine

learning techniques to predict conflict. For example, Hill and Jones (2014) have used
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random forests to distinguish which factors best predict government repression and

Jones and Lupu (2018) implement a random-forest like algorithm to explore the rela-

tionship between regime type and violence. Muchlinski et al. (2016) employ a random

forest model to predict civil war onsets, and Perry (2013) also utilize a random forest

(along with a Naive Bayes classifier) to predict the incidence of battles at the district

level. One of the biggest issues with these techniques, however, is that they are quite

data intensive, and require large numbers of features to yield their promised predictive

accuracy. This becomes difficult when the goal is to predict phenomena at increasingly

fine resolutions— both temporally and spatially.

Latent Diffusion
Clearly, conflict processes are exceedingly complex. To accomplish accurate pre-

diction, we turn to a latent variable approach. Latent variable frameworks generate

variables that are not directly observable, but can be constructed from observable in-

formation. This allows for a compression, or reduction, of complex data making it eas-

ier to understand multidimensional data generating processes. We suggest that this

is a particularly useful strategy for conflict prediction, where conditions that predict

violence are often shifting and difficult to identify over time. Further, a singular, dom-

inant ‘cause’ or predictor of diffusion might not actually exist, producing even greater

barriers for prediction. To return to Franzese and Hays (2008)’s typology, a civil conflict

might experience common shocks (due to economic factors, for example, which effect

some but not all regions of a country) or there could be coercion by international actors
to channel or suppress violence in certain regions. In some cases we have even seen

learning, where different non-state actors share tactical and strategic innovations, and
civil conflict often leads to migration where refugees from one region repeat certain
conflict behaviors in a new region. All of these phenomenon will not necessarily map
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onto a proximity-based weight matrix and some of them will cut in different directions.

A latent approach allows us to capture the latent connections between provinces in a

given country, based on past diffusion patterns, and leverage this measurement for

prediction.

These latent connections might be driven by an an assortment of important pro-

cesses even at the sub-state level, such as communal relations between warring par-

ties, shared ethnic ties, or state capacity and reach. For example, in the case of Nigeria,

changes in the location of violent events in the northeast, where Boko Haram engages

in terroristic behavior against civilians, is arguably driven by different factors than con-

flict in the Niger delta where militia groups vie to capture oil production centers. In

South Sudan, though oil revenues and resource management has played a key role in

sustaining conflict, the behavior and presence of international actors is also significant

to the conflict’s development (Johnson, 2014).

Notably, it is beyond the goals and scope of this article to explicitly characterize our

latent variable for each conflict to offer a new, named concept of diffusion that speci-

fies certain processes over others. But focusing too much on perfectly specifying and

measuring one process, or a collection of processes, over others as key determinants

of diffusion, will likely hinder our ability to forecast violence.

Data and Features

Case Selection
In order to study patterns of spatial diffusion and violence we will rely on the UCDP’s

Geolocated Event Data (GED) developed by Sundberg andMelander (2013). This dataset

has 142,902 records of violent events in 118 countries between 1989 and 2017 located

across space and time. To begin, we rank all countries in the data by order of conflict

intensity, by which we define as countries with the highest number of violent events
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per year of conflict, we then examine the longest continuous period of violence.
1
We

first examine the top 20 most violent countries, but choose to drop one case, and thus

added the 21st most violent country.
2
UCDP GED data is used to create our measure of

conflict where yil,t = 1 indicates that a conflict occurred in country i’s region l at time t

(yil,t = 0 if no conflict occurred).

We obtain data on administrative boundaries in these twenty countries from the

United Nations Organization for Coordination of Humanitarian Affairs, which hasmade

shape files for these countries available on the Humanitarian Data Exchange. In each

of these cases we attempt to choose the administrative divisions that would provide

between ten and fifty units. We do this to avoid having too few units for our network

analysis and to prevent using an overly sparse matrix. In the end, this means we utilize

the level two divisions for South Africa, Sierra Leone, Rwanda, and Senegal, and the

level one divisions for the other 16 countries. In Table 1 we display descriptive informa-

tion for each case. Years is recorded as the number of years with a GED event in the
country; Conflict Years are the periods of time where each year had at least one con-
flictual event; # of Events is the total number of GED events for that country; and Events
per Conflict Year is the number of events divided by the number of years with at least
one event. This collection of cases displays variability across these measures, ranging

from countries that have an average of 140 GED events per year to those that only have

around 6. In the remaining sections, we explain the details of our approach. To do so,

we select South Sudan as an illustrative case in order to clearly demonstrate each step

of our analysis. Of course, all of these steps are applied to all 20 cases in our study.

1
The most consecutive years where there was at least one violent event per year.

2
We dropped Uganda because the country is in the process of persistent adminstrative boundary

changes, making the process of predicting violence in a given district fraught.
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Country Conflict Years # of Events Events per Conflict Year Admin

Algeria 1990 - 2016 3786 140.22 1

Somalia 1989 - 2016 3685 131.61 1

Libya 2011 - 2012,2014 - 2016 621 103.50 1

South Africa 1989 - 2000,2004 - 2004,2016 - 2016 2232 79.71 2

Nigeria 1990 - 1994,1996 - 2016 1981 73.37 1

Sudan 1989 - 2016 1801 64.32 1

Sierra Leone 1991 - 2001 644 58.55 2

Angola 1989 - 2005,2007 - 2011,2013 - 2016 1586 56.64 1

Ethiopia 1989 - 2016 1568 56.00 1

South Sudan 2011 - 2016 262 43.67 1

DR Congo (Zaire) 1993 - 2004,2006 - 2016 1008 42.00 1

Uganda 1989 - 1992,1994 - 2009,2016 - 2016 1110 39.64 Not Used

Burundi 1990 - 1992,1994 - 2008,2012 - 2012,2014 - 2016 882 32.67 1

Central African Republic 2001 - 2003,2006 - 2007,2009 - 2016 313 19.56 1

Kenya 1989 - 1989,1991 - 2016 537 19.18 1

Liberia 1989 - 1996,2000 - 2003 180 12.00 1

Mali 1990 - 1991,1994 - 1994,1997 - 1997,1999 - 1999,2004 - 2005,2007 - 2016 293 10.85 1

Rwanda 1990 - 1994,1996 - 1998,2001 - 2001,2004 - 2004,2012 - 2013 243 10.12 2

Senegal 1989 - 1990,1992 - 1993,1995 - 2006,2008 - 2013 176 7.04 2

Mozambique 1989 - 1992,2004 - 2005,2012 - 2014,2016 - 2016 189 6.75 1

Chad 1989 - 1995,1997 - 2010,2015 - 2016 185 6.61 1

Table 1: Country Case Information, years used are in bold.

Features
Using this data, we generate a set of standard features to account for temporal and

geographic spatial dependence. In particular, we include variables measuring the oc-

currence of battles in surrounding provinces in the previous period, following work by

Neumayer and Plümper (2010), Hays, Kachi and Franzese (2010), Ward and Gleditsch

(2002) among others. This is done using both a binary weight matrix, where province

i and j have a value of 1 if they are directly contiguous and 0 otherwise, and weights

using the distance between each province’s centroid. We also create one to five year

lags for battles in the province itself, and use a cubic spline of these lagged values to

capture more complex and non-monotonic patterns of temporal dependency (Carter

and Signorino, 2010). Finally, we include indicator variables for each province to cap-

ture the differential likelihood of violence in different regions of a country. We will

compare these features to our network approach which we explain in the following

section. These features are shown below in Table 2.

One issue with adopting this approach is that it leads to the generation of a large

number of features that are likely correlated with one another. Correlations between

the features would not be surprising as we are generating multiple lagged versions of

9



[W]hat lies beneath December 21, 2019

Features Dependence Baseline Networks

Spatial Lag using Contiguity Matrix Spatial X X
Spatial Lag using Centroid Matrix Spatial X X
1-5 year Lag of DV Temporal X X
Cubic splines of DV Temporal X X
State Level Indicator Heterogeneity X X
Spatial Lag using Latent Diffusion Matrix Unobserved Spatial X
Total Number of Features 9 10

Table 2: Feature construction of available dependence measures in both baseline and network

models

the same variable. To deal with this, we conduct a principal component analysis (PCA)

over our set of spatial and temporal features. PCA reduces the dimensionality of a

dataset by finding a set of linearly uncorrelated principal components while still retain-

ing key patterns in the original dataset. The new, uncorrelated variables (the principal

components) are what we pass as features to the classifiers in all of the analyses pre-

sented in the following sections.

Network Based Feature Construction
The set of spatial variables we include in the model all operate under the princi-

ple that there is an explicit geographic connection which explains how conflict diffuses

from one province to another. However, there might be factors beyond just geogra-

phy that explain why conflict diffuses within a country. Measuring these kind of latent

connections is possible through a network based approach. The first step in doing this

is to construct a set of socio-matrices from of our events of interest. Specifically, the

measure we construct should represent the ways in which conflict may diffuse across

provinces. To do this, we employ a simple decision rule:

• given province i has a value of 1 at time t & province j has a value of 0 at time t

• if at time t + 1 j also experiences an event, then we code the i, jth value in our

diffusion matrix as 1
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• alternatively, if at time t + 1, j does not experience an event, then we code the

i, jth value of our diffusion matrix for that value as 0

We generate socio-matrices using this decision rule for every time period and coun-

try.
3
. Next we generate our low-dimensional representation of connectivity between

provinces using the multiplicative effects portion of the Additive &Multiplicative Effects

(AME) model (Hoff, 2005; Minhas, Hoff and Ward, 2019). Generally, the AME model can

be used to represent network dependencies through a set of random effects. We use

the multiplicative effects portion of this model to develop a latent factor space that

measures how likely an event is to spread from one province to another. The model is

specified as follows:

yij = f(θij), where

θij = u>i Dvj (1)

Themultiplicative term here is: u>i Dvj =
∑

k∈K dkuikvjk. K denotes the dimensions

of the latent space. The construction of the LFM here is actually quite similar to the

recommender systems that companies like Amazon and Netflix have used to model

customer behavior (Resnick and Varian, 1997; Bennett and Lanning, 2007). This model

posits a latent vector of characteristics ui and vj for each sender i and receiver j. The

similarity or dissimilarity of these vectors will then influence the likelihood of activity,

and provide a representation of third-order interdependencies. The LFM parameters

are estimated by a variant of the singular value decomposition (SVD) of the observed

3
aggregated to a monthly level due to sparsity when attempting to use a weekly level

11



[W]hat lies beneath December 21, 2019

network.
4

These latent factors are calculated to account for homophily and stochastic equiv-

alence in relational data. These factors map well onto the phenomenon that we are

attempting to measure through our latent diffusion matrix. Homophily captures the

idea that certain unobserved factors make two provinces more or less similar, and that

we are more likely to see the diffusion of violence across similar provinces. We can

again turn to the example of regions with similar populations of an ethnic minority,

in which violence in either region is likely to spread to the other through ethnic mo-

bilization. The essential message here is that while we may not know exactly which

characteristics across provinces influence processes of diffusion, the AME model, by

using the SVD, is very good at inferring latent similarity by using previously observed

instances of diffusion.

Stochastic equivalence captures the idea that two provinces might play similar roles

in the diffusion of violence within a state. In particular, this means that violence is

equally likely to diffuse from either province to a common third province: for example

violence is likely to diffuse from either state i or state j to states k but not to state l. We

could see an example of this in cases of separatist violence against the government.

Violence is likely to begin in potential breakaway provinces on the periphery and move

towards the center. So we might observe that different peripheral states with large

separatist groups are stochastically equivalent, as violence is unlikely to diffuse be-

tween these states, but is very likely to move from these states to the country’s capital.

On the other hand, in cases of violence between rival groups in the core of a country,

we should see the central provinces of that country exhibite stochastic equivalence, as

4
Unlike in traditional SVD, in the latent factor model, the singular values are not restricted to be

positive, this allows us to account for both positive and negative homophily.
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violence is likely to diffuse between them first, and later spread to the periphery.

To compute the SVD we factorize our observed network into the product of three

matrices: U,D, andV. This provides us with a low-dimensional representation of our

original network.
5
Values in U provide a representation of how stochastically equiva-

lent certain provinces are as signal markers for where conflict will occur next. ûi ≈ ûj

would indicate that provinces i and j experience conflict at the same time as a specific

set of other provinces. V provide a similar representation but from the perspective of

how similar actors are as receivers. The values inD, a diagonal matrix, represent levels

of homophily in the network.

These third order interdependencies can capture the different patterns and path-

ways in which violence spreads within a given country. It is important to note here

that while we will see high variance between states based on differential patterns of

homophily and stochastic equivalence, our technique allows us to account for these

interdependencies in our latent diffusion matrix without needing to specify them be-

forehand or determine the appropriate covariates.

This model is estimated through a Bayesian probit framework. The algorithm pro-

ceeds as follows until convergence:

• For each k ∈ K:

– SampleU[,k] | U[,−k],V (Normal)

– SampleV[,k] | U,V[,−k] (Normal)

– SampleD[k,k] | U,V (Normal)6

Once we estimate these models for every country and time period, we calculate the

5
The dimensions ofU andV are n×K andD is aK ×K diagonal matrix.

6
Subsequent to estimation,Dmatrix is absorbed into the calculation forV as we iterate throughK.
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likelihood that conflict diffuses from one province to another based on this model. We

then proceed to use the predicted probabilities from our model as a new weighting

matrix, through which we generate a new set of spatial lags that we include in our

set of features for predicting conflict across our sample of twenty countries. Figure 1

summarizes our framework for developing weighting matrices to account for diffusion

patterns. For each country, we include all of the features discussed in table 2, but

we also include this network derived measure of spatial dependence in the Principle

Component Analysis.

Figure 1: Summary of process to create network based features for South Sudan.

Rule to Convert from
Spatial to Network-Like Structure

South Sudan Spatial Conflict Data

t = 1

t = 2

Determine Likely Diffusion
Paths Between Provinces 
Accounting for Network 
Dynamics

Save predicted 
probabilities from 
the model
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Simple Machine Learning Pipeline for Modeling Conflict

To provide a framework to test whether or not our network based features improve

our ability to predict the occurrence of conflict, we construct a straightforwardmachine

learning pipeline. To begin, we utilize a wide array of models common to the machine

learning literature that use the features described above as inputs. Each model will

have two versions, one that uses a PCA including the first nine features detailed in

table 2 and one using use those nine features as well as our network measure of spatial
dependence. These set of models are listed below:

• Logistic regression via penalized maximum likelihood (Friedman, Hastie and Tib-

shirani, 2010)

• Support vector machines (Meyer and Wien, 2001; Chang and Lin, 2011)

• Random Forest (Liaw and Wiener, 2002)

• Regularized boosted regression models (Chen and Guestrin, 2016)

These models are run separately on each of the countries in our sample. After hav-

ing run thesemodels for each country we then work towards leveraging the predictions

from each model using Bayesian Model Averaging (BMA) to calibrate a forecast ensem-

ble. Our logic for doing so is straightforward and flows from a long recognized sugges-

tion in the prediction literature that multiple models often provide a better description

of the data generating process (Hoeting et al., 1999). Relying on any one model comes

with the downside of having to rely on that model’s particular distribution or assump-

tions. BMA is an extension of Bayesian inference to the problem of model selection

(Raftery et al., 2005). With BMA, the likelihood of a conflict assigned to a given sub-

national month unit by the overall model is determined by taking the probability of an
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event as predicted by a single model, multiplying by the probability that the model is

true model given a sample of the data, and summing these values across all models in

the hypothesis space. Say that we have data,D, which is comprised of a set of features,

X , and an outcome vector, y. The model space is approximated by a set of learners, L,

with l representing an individual hypothesis in that space. Equation 2 then describes

how the probability of conflict is determined for a given sub-national month unit:

p(yi|xi, D, L) =
∑
l∈L

p(yi|xi, l)p(l|D) (2)

Utilizing Bayes’ theorem, the posterior probability that l is the true model (p(l|D))

can be estimated by Equation 3, where p(l) represents the prior probability of l and the

product of p(di|l) determines the likelihood.7

p(l|D) ∝ p(l)
n∏

i=1

p(di|l) (3)

We follow the typical approach in the BMA literature of assuming a uniform class

noise model to determine the likelihood in Equation 3. The uniform class noise model

assumes that the possible value of each observation is corrupted with probability ε,

thus p(di|l) is 1 − ε if the learner, l, correctly predicts the value of yi and ε otherwise.

This enables us to reformulate Equation 3 as Equation 4, where s is the number of

correct predictions determined by l and ε can be approximated by the average error

rate of the model.

p(l|D) ∝ p(l)(1− ε)s(ε)n−s (4)

Accordingly, this approach enables us to generate a prediction from a set of learn-

ers, such that the final prediction from the BMA is a weighted, linear combination of

7
The prior probability of p(D) is the same for each model and can thus be ignored.
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each learner’s probability distribution. We summarize this approach in Figure 2.

Figure 2: Summary of how we combine classifiers using BMA to generate predictions.

Logistic regression 
via Penalized 

Maximum Likelihood

Support
Vector
Machines

Random
Forest

Regularized
Boosted

Regression

For each country we end up having two sets of predictions from BMAs, one that

includes all ten features, and one that excludes the latent network measure of spatial

dependence.

In sum, our full pipeline to generate predictions for the two approaches is shown

below:

• Baseline: 9 Features8→ PCA9→ 4 ML Models
10→ BMA11→ Prediction

• Baseline +Network : 10 Features12→ PCA→4 ML Models→ BMA→ Prediction

Assessment Strategy

Using our machine learning pipeline, we conduct two out-of-sample exercises. The

first involves a 30-fold cross-validation exercise in which we set observations of our

8
See table 2

9
See pages 9-10

10
See page 15

11
See figure 2

12
Including the network features described on pages 10-14.
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dependent variables for each country to missing, and then see whether we can recon-

struct those missing observations.
13
The second out-of-sample exercise is a forecasting

one in which we set all the observations from the last month of conflict for each country

to missing, and attempt to predict the missing values.

Cross-Validation Results
To evaluate the predictive ability of our model we utilize Receiver Operating Charac-

teristic (ROC) and Precision-Recall (PR) curves. ROC curves depicting our model’s per-

formance for South Sudan are shown on the left-most plot of Figure 3 and PR curves

on the right. To highlight the improvement our framework provides, we compare a ver-

sion of our machine learning pipeline that includes network features (in blue) against a

“base" version of the same pipeline excluding network features (but that includes tradi-

tional spatial measures, this model is shown in red).
14
For both ROC and PR curves we

also provide area under the curve statistics in the bottom right. Last, we include sepa-

ration plots to provide a visual summary of how well the two models fair in predicting

conflict (Greenhill, Ward and Sacks, 2011).

13
The Bayesian approach that we use to generate our network based diffusion features can accom-

modate missing data.

14
The tuning parameters for each of the classifiers were kept static across these two versions.
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Figure 3: Assessments of out-of-sample performance for the prediction of conflict occurrence

in South Sudanese states using ROC curves, separation plots, and PR curves for 30-fold cross-

validation.
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Across each of these tests it is clear that in the case of South Sudan utilizing our net-

work based features as inputs notably improves the predictive ability of the pipeline.

For the remaining seven countries, we summarize the performance results in Figure 4.

For each country we achieve substantively better predictive ability when we include our

network based features. Most importantly, the difference in performance is even more

stark when we examine the area under the PR curves, which indicate that incorporating

our network based features enables us to better capture actual instances of conflict.

Temporal Forecasting
Last, we examine the ability of our pipeline to generate forecasts of future events.

To do this, we compare the two versions of our pipeline in their ability to predict con-

flictual events during the final month of our data. The results are summarized in

Figure 5. In general, we find similar patterns as to what was shown from the cross-

validation analysis. Particularly, we see that incorporating network based features al-
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Figure 4: Out-of-sample AUC statistics from a 30-fold cross-validation exercise across the coun-

tries in our sample. Cases are sorted by the precision-recall (PR) performance of the Base +

Network Features model, from low (left) to high (right).
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ways leads to an improvement in performance, and that improvement is most notable

when we examine our ability to predict actual instances of conflict.

Explaining Differences in Performance
We observe significant variation in the benefit of using this network technique to

account for spatial interdependencies across the different cases. While the inclusion

of network features improves predictive performance in all countries, in some cases

(notably Ethiopia, Burundi, and Somalia) the improvement is particularly stark, while in

other cases (South Africa and the Central African Republic being noteworthy examples),

the difference is slight. To try to explain this divergence between countries, we look

at the relationship between our latent spatial lags and more traditional geographically

based features. Figure 6 shows the proportion of variation in our latent diffusionmatrix
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Figure 5: Forecasting occurrences of battles by state. Cases are sorted by the precision-recall

(PR) performance of the Base + Network Features model, from low (left) to high (right).
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that is explained by contiguity and centroid distance in each country.

Evidence shown in Figure 6 suggests that geography does not primarily explain vari-

ation in the latent diffusion matrix, in fact only one of our 20 countries has geography

explaining more than half of the variance in our latent diffusion matrix. This is con-

sistent with findings from the interstate conflict literature on diffusion. More interest-

ingly, the three countries where the correlation is strongest are South Africa, the Demo-

cratic Republic of the Congo, and the Central African Republic, notable for being three

countries where our technique yielded the least improvement in forecasting accuracy.

The countries with the smallest correspondence between spatial weights matrices are

the three countries where the network model had some of the most notable over-

performance. If a country has relatively small patterns of spatial interdependence, or

if these patterns are relatively close to the geographic patterns we included as spatial
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weights in the models, then we should expect to see convergence in predictive perfor-

mance between the models with and without these network features. On the other

hand, when there are strong patterns of spatial diffusion that do not map well onto

adjacency matrixes, models that only include classic weight matrices will fall behind.
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Figure 6: Visualization shows the proportion of variation explained in the latent diffusion ma-

trices by contiguity and centroid distance for each country.
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Discussion

As has been established in the literature on civil conflict, violence diffuses spatially,

but the way it diffuses is conditional on many factors—factors that are difficult to ob-

serve in a granular way. To help account for these varying spatial factors, we turn to a

network approach that allows us to infer a latent diffusion matrix based on the history

of conflict in a given country. When we apply this technique to civil conflict in twenty

African countries, we consistently find that we are able to better predict violence out-

of-sample. Importantly, we are able to bothmore accurately predict where there will be

an absence of conflict, and when and where battles will occur. This improvement holds

when we look at countries with high levels of violence, and those where violence is only

moderate. In addition, by investigating the correlation between the geographic and la-

tent spatial weights matrices, our study offers new insights into the types of cases that

will benefit the most from this new approach.

Our study highlights the potential of our approach to substantially enhance the

prediction of conflict at fine-grained levels of analysis. Though it makes an important

contribution, a critical question remains: what conditions make conflict more likely to

spillover from one region to another? In the future, we hope to examine not only the

regional level covariates that make a particular sub-national unit more or less likely

to spread conflict but also the role played by shared attributes of those units. Doing

so will enable us to both test existing theories of conflict contagion and also provide

insight into how to limit the spread of violence in the future. Most importantly, we

can combine these factors with measures of third-party interventions in civil conflict

– peacekeepers, election-monitors, and military personnel – to determine the extent

to which policy interventions can contain and roll back civil conflict. This will generate

an important contribution not just for scholarship, but to broader audiences including

24



[W]hat lies beneath December 21, 2019

policy practitioners.

While this approach has been quite fruitful in predicting conflict, we believe it can

be applied more broadly to different phenomenon that diffuse spatially. The utility of

this approach depends on a few key requirements. First, there must be a phenomenon

of interest that displays some spatial interdependencies – if these are not present, the

latent network measure will simply be adding noise to an estimator. Second, there

must be multiple variegated pathways in which spatial interdependence can effect the

phenomenon of interest, since if there were only one pathway, it would be preferable

to simply measure that pathway directly. Finally, there should be some reason that you

cannot simply use data on each of the different potential pathways to measure diffu-

sion directly. If these requirements hold, we believe this method can provide signifi-

cant improvements on using a traditional geographic lag, in our ability to predict not

just the spread of conflict, but of many different international phenomena. Notably,

our approach might be particularly useful for studying the diffusion of international

trade agreements and the cross-national spread of civil war. Both political phenomena

express known patterns of interdependence with multiple pathways but often elude

straightforward measurement strategies. As our study demonstrates, it is in these ar-

eas of political science, wheremeasurement is difficult, interdependence is known, and

competing mechanisms might be at play, where a latent network approach will prove

most beneficial.
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