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The viscous froth model for 2D dissipative foam
rheology is combined with Marangoni-driven surfactant
redistribution on a foam film. The model is used
to study the flow of a 2D foam system consisting
of one bubble partially filling a constricted channel
and a single spanning film connecting it to the
opposite channel wall. Gradients of surface tension
arising from film deformation induce tangential flow
that redistributes surfactant along the film. This
redistribution, and the consequent changes in film
tension, inhibit the structure from undergoing a
foam-destroying topological change in which the
spanning film leaves the bubble behind; foam
stability is thereby increased. The system’s behaviour
is categorised by a Gibbs-Marangoni parameter,
representing the ratio between the rate of motion
in tangential and normal directions. Larger values
of the Gibbs-Marangoni parameter induce greater
variation in surface tension, increase the rate of
surfactant redistribution, and reduce the likelihood
of topological changes. An intermediate regime is
however identified in which the Gibbs-Marangoni
parameter is large enough to create a significant
gradient of surface tension but is not great enough
to smooth out the flow-induced redistribution
of surfactant entirely, resulting in non-monotonic
variation in the bubble height, and hence in foam
stability.
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1. Introduction
The flow of an aqueous foam through a narrow channel with complex geometry is an important
process. For example it occurs in medical testing of small samples of gas [1] and in the treatment
of varicose veins [2]. It is also relevant in foam improved oil recovery and soil remediation [3], in
which foam is injected into the porous media of an oil reservoir or contaminated soil, respectively,
as the displacement fluid [4,5]. The use of foam as a displacement fluid in porous media increases
the sweep efficiency and reduces the amounts of liquid and chemicals required for such a process.
Despite its industrial importance, modelling such a flow is technically challenging [6], and this
has prevented such flows from being fully explored.

The viscous froth model is an established method to predict the flow of a two-dimensional
foam between parallel flat plates [7–9]. It is based on the balance of foam film curvatures and
adjacent bubble pressures with the friction experienced by a film in a flowing foam. The model
is for a dry foam (negligible liquid fraction and vanishingly small Plateau borders). The foam
geometry consists of films, which meet in threes at vertices [10], and the model allows film shapes
to deviate significantly from arcs of circles [11].

Previous studies using the viscous froth model have successfully described the flow of foams
in microfluidic channels [1,6–8]. The model represents a system in which the foam deforms
sufficiently quickly that it deviates from mechanical equilibrium. As a consequence, it can
describe fast flowing foams [11]. Heretofore, the model has employed the simplifying assumption
of uniform and fixed surface tension along the films, and any variation of surface tension has been
neglected. Nonetheless, gradients of surface tension occur due to the elongation or contraction
of the films. On a film with a gradient of surface tension, the Marangoni effect [12,13] should
distribute the surfactant more evenly along the film surface [14], locally changing the surface
tension and therefore affecting the deformation of the film. Viscous froth has previously been
incorporated with the Marangoni effect, but only for a very simple film geometry without any
enclosed bubbles [15]. Here we consider a more realistic foam geometry with an enclosed bubble
such that bubble pressure must be considered. Recording bubble shape and film lengths could
provide a way to validate our results experimentally using similar methods to those employed
previously [1], but now varying the surface elasticity using different surfactants [16].

2. Film deformation in foam flow
When the rate of film deformation is faster than that of mechanical relaxation, a continuous
deformation of the films results [17]. The stretching of a film decreases the surface concentration
of surfactant, while contraction results in denser surfactant coverage on the surface. A gradient
of surface concentration induces a gradient of surface tension via the Langmuir equation of
state [18,19], which results in a flow of surfactant on the film surface [20] from regions with high
surface tension to regions with low surface tension.

(a) Viscous froth model
Three-dimensional models of foam dynamics can be very complex and computationally expensive
[7], and yet do not necessarily lead to any greater insight than a simple two-dimensional (2D)
model. Hence 2D foam systems, consisting of a monolayer of bubbles between two glass plates,
are often used to describe the dissipative dynamics of flowing foams [9]. Further, 2D systems are
of interest in their own right, for example in well-controlled microfluidic foam flows [1,21,22].

The 2D viscous froth model is based on three physical phenomena [9]:

• the viscous drag force on a moving film resulting from friction with the confining plates,
• the pressure difference ∆P between two adjacent bubbles across a film,
• the surface tension γ acting along a curved film.
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The force balance on a film with curvature C separating two bubbles b and b′ is:

λv⊥ =∆Pbb′ − γCbb′ , (2.1)

where λ is a viscous drag coefficient and v⊥ is velocity in the direction normal to the film surface.

(b) Marangoni surfactant redistribution
Our model of surfactant transport along a film surface is based on lubrication theory [14].
According to the model, the velocity on the film surface is determined by the competition
between viscous shear stresses, film drainage and the Marangoni effect. In the present work,
for simplicity we assume that neither film drainage nor further film thinning occur. Indeed the
foam is assumed to be in the dry limit, such that the film is already very thin. In the absence of
film drainage, in a film of thickness δ consisting of liquid with bulk viscosity µ, the tangential
velocity v‖ of the film surface is driven only by the Marangoni effect [13,14,23]:

v‖ = δ

3µ
∂γ

∂s
, (2.2)

where s is position along the film.
The surface tension is in equilibrium with the surfactant surface concentration Γ , a

relationship which can be expressed in terms of the Gibbs parameter G (which is assumed
to be constant) using the following Langmuir equation [18]:

dγ/d lnΓ ≈−G. (2.3)

Therefore, the equation for surfactant transport (Eq. (2.2)) can also be expressed in terms of
the surfactant concentration:

v‖ =−Gδ3µ
∂ lnΓ
∂s

. (2.4)

We combine this surfactant transport equation with the viscous froth equation (Eq. (2.1)) to
predict the flow of foam in a narrow channel. Hence there are two components to the movement
of the films: in a direction normal to the film surface, and parallel to the tangent to the film.

These equations for the movement of points on the film do not apply to the vertices where
three films meet and where the films meet the channel walls. We define separate rules to update
position of these vertices in § 4(c). We will use these rules, along with Eqs. (2.1)–(2.4) above,
to study the effect of surfactant redistribution on film deformation in a moving foam. In order
to do so, we consider different channel geometries to highlight different aspects of the system.

3. Geometry of the system
We analyse a two-dimensional “lens” structure [7] flowing through a narrow channel. The
structure consists of a bubble attached to one wall of the channel and connected to the other
side of the channel by a single film. The structure is simple, yet it represents the components of
a foam: films acted on by distinct pressures, a three-fold vertex where films meet, known as a
Plateau border, and vertices where the films meet the walls. Previous work has shown the rich
dynamical response of the lens structure when a driving force is applied [7].

We consider three different channel geometries:

(i) a straight channel with flat walls on both sides of the channel (Fig. 1), which allows us
to establish steady state foam geometries for different driving conditions and material
parameters such as the Gibbs elasticity.

(ii) a channel with an abrupt decrease in width, but which is otherwise straight, which
allows us to probe the relaxation back to steady state flow after a change in channel
geometry.

(iii) a channel with a periodically-varying sinusoidal shape, in which the channel geometry
varies continuously as the lens flows through it.
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Figure 1: Geometry of the straight channel, with channel width W . The bubble area is Ab, h
is the height of the vertex at the top of the bubble, vd is the applied driving velocity, L is the
length of one period of the channel and Lx is the horizontal distance travelled by the vertex.
The different parts of the foam are labelled: the leading and trailing films on the bubble, and
the spanning film, making an angle φ at the vertex, connecting it to the other channel wall. The
area to the left of the lens bubble and spanning film forms a further bubble with area A; this
bubble is inflated to push the lens along the channel.

ε

 

x = xc

wyW

Figure 2: The geometry of the channel with an abrupt change in width of size ε at horizontal
position x= xc.

We create a geometry with periodicity in the flow direction for the first and the third cases, so
that situations in which long-time relaxation to a periodic state with transients eliminated can
be simulated. Thus the lens structure passes through each channel geometry repeatedly: when
it leaves the channel at the downstream end it re-appears upstream.

A periodic boundary condition is not required for the channel with an abrupt change in
width, as the relaxation can be observed using a single long channel with a length determined
by our simulations in the previous geometry. Specifically, we consider a constricted region of
depth ε initiated at horizontal position x= xc (see Fig. 2). The transition in channel width from
wide to narrow is determined by a parameter β, giving the width profile:

wy(x) =W − ε

2

{
1 + tanh

[
x− xc

β

]}
. (3.1)

In our simulations we take β = 0.03W , 10W ≤ xc ≤ 30W (which is sufficient for the lens to
relax to steady state before reaching the constriction) and find that, for the driving velocities
considered, a constricted channel length of 10W after x= xc is sufficient for the lens structure
either to relax to steady state in the constricted part of the channel or else to break up. Once
either of those events occurs, depending on the applied driving velocity, the simulation is stopped.

The third channel geometry has a constriction in which one wall is sinusoidal, as shown in
Fig. 3. This shape provides a gradual change of channel width and a sinusoid is selected to
maintain the periodicity of the channel geometry. The depth of the constriction is ε and, with
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wy

ε

Figure 3: Illustration of the lens structure in a sinusoidally-constricted channel with depth profile
wy(x) given in Eq. (3.2).

one period of the channel length denoted by L, we use the equation

wy(x) =W − ε

2

(
1− cos

(2πx
L

))
. (3.2)

In our simulations we set the length of one period to be twice the channel width (L= 2W ).

4. Numerical simulation
The equations of motion must be solved numerically, so in § 4(a) we first use dimensional
analysis to simplify them. This indicates that a key parameter is the ratio of velocities of the
tangential and the normal motions, namely the Gibbs-Marangoni parameter, which is presented
in Eq. (4.4). We explain the discretisation used in the numerical implementation of the model
in § 4(b) and how this adapts to accommodate the motion tangential to the film, Eq. (4.9), due
to surfactant redistribution. In § 4(c) we explain how we treat vertices where three films meet
and where the film meets the wall. Our pressure calculation is described in § 4(d).

(a) Dimensional analysis
The computations were carried out with the governing equations in dimensionless form.
The unconstricted width of the channel W is used as the relevant length scale, surfactant
concentrations are taken relative to the equilibrium value Γeq, which is related to the equilibrium
surface tension γeq. We use a superscript asterisk to denote dimensionless variables.

The dimensionless viscous froth equation, from Eq. (2.1), is

v∗⊥ =∆P ∗ − γ∗C∗, (4.1)

where v∗⊥ = v⊥Wλ/γeq is the dimensionless velocity in the direction normal to the film surface,
P ∗ = PW/γeq is the dimensionless bubble pressure, γ∗ = γ/γeq is the dimensionless surface
tension and C∗ =CW is the dimensionless film curvature. Similarly, the Marangoni equation
(2.4) for surfactant transport becomes:

v∗‖ =−1
3
∂ lnΓ ∗

∂s∗
, (4.2)

where v∗‖ = v‖µW/(Gδ) is the dimensionless tangential velocity, Γ ∗ = Γ/Γeq is the dimensionless
surfactant surface concentration and s∗ = s/W is the dimensionless position along the film.

These two equations have different time scales. For the viscous froth model the dimensionless
time scale is t∗V = tγeq/(W 2λ) and for the Marangoni equation the dimensionless time scale is
t∗M = tGδ/(W 2µ). The time scales are related by

t∗M = Gδλ

γeqµ
t∗V . (4.3)

The prefactor in Eq. (4.3) is defined as the Gibbs-Marangoni parameter:

GM =Gδλ/(γeqµ). (4.4)
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If GM � 1 the tangential movement (that endeavours to keep the surface tension uniform) is fast
compared with the normal motion. On the other hand, when GM � 1, the tangential movement
is slower than the normal motion. To simplify the notation, from this point on, the dimensionless
variables will be presented without asterisks.

The relation between the driving velocity imposed to move the foam structure and the
characteristic velocity associated with the surfactant equilibration mechanism is therefore
important in determining the system behaviour. The relationship, similar to other viscoelastic
systems, can be described using the Deborah number De [24,25], expressed as the ratio of
the driving velocity (non-dimensionalised in the same fashion as v⊥) to the Gibbs-Marangoni
parameter:

De= vd

GM
= γeqµ

Gδλ
vd. (4.5)

The Deborah number distinguishes the time required for tangential Marangoni surfactant
redistribution from the time required to deform a film due to the flow. It therefore represents the
effect of the selected Gibbs parameters on surfactant transport on the film surface when various
driving velocities are applied. Eq. (4.5) relates the Deborah number to the dimensionless Gibbs
parameter G/γeq and the dimensionless driving velocity, as follows:

G

γeq
De= µ

δλ
vd. (4.6)

In our simulations the value of µ/(δλ) is fixed at 0.02, therefore the Deborah number De is a
linear function of the driving velocity vd.

(b) Movement of points on films
A lens bubble with fixed area Ab is pushed along the channel with driving velocity vd. To do so,
an additional bubble which fills the whole channel width is placed upstream. The area A of this
bubble increases at a fixed rate while one end is kept fixed at x= 0, as denoted by the straight
line on the left hand side of Fig. 1.

The computations were carried out using Surface Evolver [26,27] which, although we do not
primarily use it to minimise the surface energy of bubbles, offers tools for ensuring that the
tessellation of the films is well-controlled and for probing their properties, such as curvature.
The dimensionless maximum channel width is set at W = 1. An equilibrium structure was first
obtained using the built-in Surface Evolver length minimisation method. In this step, the films
are divided into short equal length segments with dimensionless lengths in the range 0.004−
0.012, and the surfactant is distributed evenly along the films, resulting in uniform surface
tension throughout the structure.

Once the equilibrium structure is obtained, the surface length minimisation method is turned
off and the area of the driving bubble is increased at a fixed rate. The viscous froth equation,
Eq. (4.1), is applied to each point between segments to move it in the direction normal to the film
surface. The curvature C at any point between two segments is determined using the difference
in the direction of the surface tension force acting on adjacent segments, normalised by their
average length. The dimensionless viscous froth time step is set at ∆tV = 5× 10−6, from which
the Marangoni time step can then be calculated as ∆tM =GM∆tV .

Films deform as they move, according to the viscous froth model. As a result, segments will
stretch or shrink. The number of surfactant molecules on each segment is conserved, so changing
the length of each segment will change the concentration of surfactant upon it and hence its
surface tension. We write the concentration of surfactant on a segment i at any given time j as
Γ(i,j) and the segment length as s(i,j). The update rule for surfactant concentration depends on
its value at the previous time step and the old and new segment lengths according to

Γ(i,j) = Γ(i,j−1)s(i,j−1)/s(i,j). (4.7)
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Figure 4: A schematic showing the movement of the points on film segments due to the viscous
froth movement in the normal direction and the Marangoni surfactant redistribution of points
towards lower surfactant concentrations in the tangential direction.

After the new value of Γ is calculated, the surface tension on each segment is calculated using
the Langmuir equilibrium:

γ(i,j) = 1− G

γeq
lnΓ(i,j). (4.8)

The Marangoni effect arising from gradients of surface tension redistributes surfactant along
the film. We use Eq. (4.2) to update the positions x of the points by moving them in the direction
of the tangent t‖ according to:

x(i,j) = x(i,j−1) −
∆tM

3
lnΓ(i,j) − lnΓ(i−1,j)
(s(i,j) + s(i−1,j))/2

t‖. (4.9)

Fig. 4 shows how points move in a direction normal to the film and how the Marangoni effect
moves points tangentially from regions with high surface concentration to regions with lower
surface concentration. The concentration of surfactant and the surface tension on each segment
are updated via Eqs. (4.7)–(4.8) after every change of segment length. The numerical method is
most reliable when it deals with segments with similar lengths so any segment with length less
than 0.004 is merged with an adjacent segment and the amount of surfactant contained in the
two segments is added. Conversely, if a segment has length greater than 0.012 it is divided into
two shorter segments and the surfactant distributed equally between the new segments.

In addition, an “averaging” operation is applied at each time step to return the tessellation
to a more uniform one. The idea, which is already implemented in Surface Evolver as the “V”
command [26], is to move a point towards the mean position of points at the other ends of the
adjacent segments, while preserving the film curvature. The operation narrows the distribution
of segment lengths along a film, thereby reducing the need to delete segments with length below
the minimum threshold. For the case with the Marangoni surfactant redistribution (GM 6= 0),
after the “averaging” operation, the amount of surfactant carried by the segment on each side
of the point needs to be rebalanced, as explained in [14]. Without any Marangoni surfactant
redistribution, such that GM = 0 (or more specifically if G/γeq = 0), there is no need to consider
reassignment of surfactant concentration as this has no bearing on the dynamics of the system.

(c) Movement of vertices
The viscous froth and the Marangoni equations apply only to points along the films. At vertices
where three films meet and/or films meet the channel wall, a separate approach is taken.

In this context, the Fermat-Torricelli problem [28] is to minimise the sum of distances of a
three-fold vertex from three neighbouring points with weights given by the surface tensions. The
algorithm given in [28] is used to determine the position of the vertex based on the positions
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of the three neighbouring points on the three discretised films. The surfactant is assumed to be
tied to each film, and we prohibit transfer of surfactant between films at the vertex.

Where a film meets a channel wall, the wetting layer on the wall is assumed to apply an
equal surface tension force in each direction. In consequence, the film will be perpendicular to
the wall. The position of the vertex where the film meets the wall is therefore adjusted, so that
the segment joining that vertex to the nearest adjacent point on the same film coincides with
the normal to the channel wall.

(d) Calculation of bubble pressures
The pressure within each bubble is calculated based on the principle that any change in the
bubble pressure and/or film curvature could tend to change the bubble area. The change of area
A of a bubble is equal to the integral of the normal velocity v⊥ around it; therefore using the
equation of motion, Eq. (4.1), the change of bubble area can be calculated as [9]:

λ
dA
dt = λ

∮
∂b
v⊥dl=

∮
∂b

(∆P − γC)ds, (4.10)

where the expression ds represents an element of film length. We think of these integrals as a
sum over the discretised segments making up the films, so rearranging and integrating Eq. (4.10)
around a bubble b results in

λ
dAb

dt +
∑

segments i

γiCisi =
∑

bubbles b′

(Pb − Pb′ )sbb′ , (4.11)

where the subscript b′ denotes each of the neighbouring bubbles and therefore sbb′ represents
the length of a segment of film separating two bubbles. Since bubble areas are either conserved
or inflated at a known rate, for a foam of n bubbles there will be n equations, leading to a
matrix system for the vector of pressures, Pb:

Cb =Lbb′Pb′ , (4.12)

where Cb denotes a vector in which each term is obtained from the left-hand side of Eq. (4.11),
consisting of the product of tensions and curvatures summed over segments around each bubble,
plus rates at which bubble areas are inflated if relevant. The vector Cb may include a contribution
from inflating or deflating the area of the lens bubble back towards its target area as a means
of correcting any truncation error that may otherwise cause its area to drift. The term Lbb′ is
the matrix in which the (b, b′)th entry is the length of the film separating bubble b from bubble
b′. We use Surface Evolver’s in-built matrix manipulation routines to solve Eq. (4.12).

5. Simulation results
A particular driving velocity (referred to the unconstricted part of the channel) vd = (dA/dt)/W
is applied to move the lens, resulting in film deformation and changes to the vertical height h
and the horizontal position Lx of the three-fold vertex, as indicated in Fig. 1. At low velocity,
the lens structure is stable and the spanning film remains attached to the bubble. For sufficiently
fast flow, the structure breaks up: the spanning film runs ahead, and detaches from the bubble
leaving it behind [6,7]. The deformation of the films and subsequent breakdown is illustrated
in Fig. 5. Note that both the trailing film and (at least in a straight channel) the spanning
film stretch due to the motion while the leading film shrinks. We now examine the effect of
surfactant redistribution on film deformation and on the critical velocity above which foam
breakdown occurs. The dimensionless parameters are summarised in Tab. 1.

Note that the viscous drag coefficient is rescaled here as the dimensionless parameter δλ/µ
(see Eq. (4.6)). The drag coefficient λ is particularly difficult to estimate [1,7,29], with different
authors using different units and suggesting different dependencies on parameters such as channel
height and capillary number. For simplicity, particularly in the calculation of the pressure within
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(a)

(b)

(c)

Figure 5: Each sequence of images illustrates how the lens structure is progressively deformed,
starting from rest, as it moves along a channel at constant velocity. In each case, the velocity is
sufficiently large that significant film deformation occurs and the structure eventually breaks
down. (a) Straight channel. (b) Channel with abrupt change in width. (c) Sinusoidally-
constricted channel.

Table 1: The dimensionless parameters of the simulations (at equilibrium: lens bubble area Ab =
0.074W 2 corresponds to spanning film length ls = 0.769W , whereas Ab = 0.205W 2 corresponds
to spanning film length ls = 0.501W )

Variable Symbol Value
Lens bubble area Ab 0.074W 2 – 0.205W 2

Driving velocity vd 1 – 7
Gibbs parameter G/γeq 0 – 0.125
Gibbs-Marangoni parameter GM =Gδλ/(µγeq) 0 – 6.25
Ratio of viscous drag coefficients δλ/µ 50

the bubbles, we assume a linear drag law in the viscous froth equation [9] and take values of
drag coefficient λ= 290 kg m−2 s−1 and liquid viscosity µ= 1.16× 10−3 Pa s from one particular
experimental study [29]. To illustrate the model, for the present study we selected δλ/µ= 50
suggesting δ≈ 2× 10−4 m, which might correspond to a very thick foam film around the time
a foam is first formed, before film drainage has occurred.

In the following we examine the maximum velocity for which the structure of the lens is
stable for each set of parameters (bubble area Ab, constriction depth ε and Gibbs-Marangoni
parameter GM ). First, in § 5(a) we study the straight channel to determine the effect of these
parameters on the distribution of surface tension and on the film deformation within a uniform
width channel. In § 5(b) we consider flow along the channel with an abrupt change in width
to evaluate how the sudden increase in the effective driving velocity affects the relaxation and
stability of the foam structure. Then in § 5(c) we consider stability in the sinusoidally-varying
channel. In each case, above a critical velocity, the spanning film will leave the bubble behind.

(a) Straight channel
As the lens moves along a straight channel, viscous friction causes its shape to change. The
amount of friction depends upon the length of the film normal to the direction of motion [9,30],
while the pressure in the bubble(s) causes films to move normal to the local inclination of the
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Figure 6: The distribution of surfactant concentration at different positions on the leading film in
a straight channel at early times simulated (a) using G/γeq = 0.0125, GM = 0.625 and (b) using
G/γeq = 0.125, GM = 6.250. This is compared with the corresponding distribution of surface
tension: (c) same parameters as (a); (d) same parameters as (b). The distance between the points
corresponds to the length of each segment. Other parameters are lens bubble area Ab = 0.074
and driving velocity vd = 5.

interface. The channel with constant width allows us to explore various distributions of surfactant
by varying the Gibbs parameter G/γeq while keeping other parameters fixed. At G/γeq = 0 the
surfactant will not be redistributed by tangential motion along the film surface since, according
to the Langmuir equilibrium in Eq. (4.8), the surface tension is constant and uniform in this
case. Surfactant concentration is non-uniform of course in the G/γeq = 0 case, since even purely
normal motion on curved films is sufficient to stretch or shrink film elements [7].

Fig. 6 shows values of surface tensions and surfactant surface concentrations on the segments
of the leading film at very early times, when the motion first starts, for two different values
of the Gibbs-Marangoni parameter, GM = 0.625 and GM = 6.25. The surfactant is less evenly
distributed when GM is small, resulting in a large variation of surfactant concentration along the
film (Fig. 6a). Since small GM is associated with a small value of the Gibbs elasticity, the large
range of surfactant concentration does not lead to a particularly broad distribution of surface
tension (Fig. 6c). On the contrary, when the value of GM is large, the surfactant is more evenly
distributed along the film, resulting in a narrower range of surfactant concentration (Fig. 6b),
but since the value of the Gibbs elasticity is large, the Langmuir equation (Eq. (4.8)) implies a
broad range of values of surface tension (Fig. 6d).

Fig. 7 shows the distribution of surface tension on the trailing and spanning films with large
Gibbs-Marangoni parameter GM again at very early time. A high value of the driving velocity
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Figure 7: Distribution of surface tension at early times (a) on the spanning film and (b) on the
trailing film. Parameters as in Fig. 6b.

vd is again chosen, to emphasise how the distribution of surface tension changes as the films
deform. In contrast to the profile of surface tension on the leading film in Fig. 6d, where the
range of variation of surface tension decreases over time, the surface tension on the spanning
and trailing films has a wider variation with increasing time, which we rationalize as follows.

The lens bubble is enclosed by two films (the leading and trailing films) moving downstream,
and therefore experiences a greater effective drag (per unit height) than the spanning film.
To accommodate this difference, while remaining attached to the bubble, the spanning film
becomes curved. In fact, it responds (at least far from the vertex at the top of the bubble) in a
similar manner to an interface under so called “pressure-driven growth” flow [31,32]: the points
connecting segments move downwards as the film slides along the channel, carrying surfactant
with them. Hence the surfactant on the spanning film will accumulate near the vertex, increasing
the surfactant concentration in this region, and consequently lowering the surface tension in
comparison with the other end of the spanning film (Fig. 7a).

A similar argument applies to the leading film of the bubble, although the orientation of the
film, at least initially, is driven more by the pressure inside the lens bubble than any differences
in viscous drag. Surfactant is again carried toward the vertex, so the tension of this film becomes
lower close to the vertex at the top of the bubble compared to near the channel wall. As the
system continues to evolve, in contrast to the uneven stretching rate of the segments on the
spanning film, those on the leading film experience relatively uniform drag during the film
movement as the structure deforms, since they become mostly inclined in the direction normal
to the film movement (see Fig. 5), resulting in a narrower range of shrinking rate of the segments
compared to the other two films. The Marangoni surfactant redistribution is then able to limit
the variation of surface tension on the leading film, bringing about a reduction in the gradient
of surface tension over time, particularly when the Gibbs elasticity is large (Fig. 6d).

On the trailing film, greater drag is experienced by segments near the wall where they are
inclined perpendicular to the direction of the overall motion. Moving up towards the vertex,
the trailing film aligns more with the direction of overall motion, implying less normal motion
and thereby less drag. The smaller drag experienced by the segments near the vertex on the
trailing film results in them running ahead of points lower down, depleting the surfactant near
the vertex, and resulting in higher surface tension there (Fig. 7b).

When the driving velocity is large, the Marangoni surfactant redistribution may not be fast
enough to eliminate any gradient of surfactant concentration. As a result, large gradients of
surfactant concentration can be sustained (Fig. 6a). The balance of the driving velocity and
the Marangoni surfactant redistribution is represented by the Deborah number De in Eq. (4.5).
The Marangoni surfactant redistribution becomes dominant, reducing the gradient of surface
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Figure 8: (a) The length of each film when the lens structure is moving steadily (for long times)
along a straight channel. The length is shown normalized by its length for GM = 0. (b) The
corresponding surface tensions of the segment on each film that is adjacent to the three-fold
vertex. The simulation parameters are Ab = 0.074 and driving velocity vd = 5.

concentration along a film, when the Deborah number is small, or equivalently when the driving
velocity is small. The movement of the points due to the Marangoni surfactant redistribution
also reduces the rate of stretching and shrinking of the segments, increasing foam stability.
According to Eq. (4.5), in the limit of large GM , the rate for surfactant to be re-equilibrated
should eventually dominate the deformation rate associated with the driving velocity, and the
system should approach the limit of uniform surfactant concentration. At low GM the film
segments stretch or shrink more, and gradients of surface concentration along the film are
sustained. Gradients of surface tension however depend on gradients of surfactant concentration
multiplied by G/γeq (see Eq. (4.8)), and this is analogous to multiplying by GM since µ/(δλ)
is fixed here. Thus larger GM gives a narrower distribution of surfactant concentration but a
wider distribution of surface tension (Figs. 6d, 7a and 7b).

In between these limiting cases of GM = 0 and large GM , our simulations identify an
intermediate region in which there is significant surfactant redistribution along the trailing
film. This situation persists even in much later times when the configuration has attained a
steady state (t� 1). For small but finite GM , Fig. 8b shows the trailing film being strongly
stretched near the vertex, and hence acquiring a large local surface tension there, but with
only modest changes in surface tension near the vertex for the other two films. Moreover the
nature of Eq. (4.8) is such that surfactant depletion has more impact on surface tension than
surfactant accumulation. The imbalance in the surface tensions at the vertex causes it to move
downwards (according to the Fermat-Torricelli rule), shortening the leading film and lengthening
the spanning film (Fig. 8a). As GM increases however, we see a significant reduction in the
surface tension in the leading film at the vertex (Fig. 8b again). This leads to less downward
and forward pull on the vertex, making it now migrate backwards and upwards. The leading
film then lengthens, at the expense of the trailing and spanning films (Fig. 8a).

The vertex position corresponds to the height h of the bubble. The effect of the Gibbs-
Marangoni parameter on the steady state height of the bubble hss at various driving velocities
is shown in Fig. 9. For a given driving velocity the height decreases at small GM , as per the
length of the leading film, and then asGM increases further, the bubble “rebounds” and increases
in height. This effect is greater at higher velocities, where the film deformation is greater for
a given GM (i.e. when De is greater), resulting in a larger gradient of surface tension along
the film and a greater imbalance of surface tension on the segments surrounding the vertex.
The intermediate regime can be considered to finish around the point at which the Marangoni
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Figure 9: The effect of Gibbs-Marangoni parameter GM on the steady state vertex height hss

at various driving velocities. The height is normalised by the height of the case without the
Marangoni effect (GM = 0) to allow comparison between different driving velocities. The area
of the lens is Ab = 0.074 in all these simulations.

surfactant redistribution starts to overcome structural changes induced by the driving velocity,
which occurs at around GM = 3, where the response, at least for hss and film lengths, is as if
the tensions were again uniform.

(b) Abrupt change in channel width
To see the effect of an abrupt change in the channel width, the lens structure was driven along
the second channel geometry at a set velocity for different values of GM . Fig. 10 shows how the
vertex height first reaches a steady state in the wide part of the channel for the case vd = 2.
The height depends on GM , as explained above, with the shortest bubble being found for an
intermediate value of GM .

As the bubble passes the constriction there is an immediate drop in the vertex height, before
it rebounds to a new steady state, lower than before. Surprisingly, in the new steady state the
shortest bubble is found for the highest value of GM (Fig. 10b). Note also the weaker relaxation
at high GM : when the channel width drops suddenly, the bubble area is conserved and so the
length of the spanning film must decrease. Consequently its surface tension also reduces and
the vertex is pulled downwards by the other two films. After that the system relaxes again,
and surfactant is re-distributed along the spanning film at a rate determined by GM , while
tensions are controlled by the Gibbs elasticity G. Here, it appears that the latter dominates in
determining the subsequent evolution.

The spanning film undergoes a significant change in surfactant surface concentration at
the point where the channel is constricted. At high GM the increase of surfactant surface
concentration on the spanning film results in a large decrease in surface tensions, preventing
the spanning film from pulling up the vertex, thereby keeping the vertex height small. On the
other hand, at low GM the surface tensions on the spanning film do not change much despite
there being a change in the surfactant surface concentrations. This helps to pull the vertex up.

Figure 9 shows that as the films approach the constriction, the height of the vertex h/W

rises, then dips, then rises again with relaxation towards a final steady state. Although we will
not give full details here, we assert that this upward-downward-upward motion is driven by
significant pressure changes in the bubbles as the constriction is approached. These pressure
changes drive film motion, which therefore induces vertex motion. What drives the underlying
pressure changes near the constriction is the need for the top of the spanning film to reorient
suddenly as the upper wall of the channel reorients from horizontal to downward sloping and
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Figure 10: (a) Bubble height for a lens structure passing through an abrupt constriction for
three values of the Gibbs-Marangoni parameter GM . (b) Zoom on (a) close to where the channel
width changes abruptly. Simulation parameters are ε= 0.3, xc = 10, lens bubble area Ab = 0.205,
driving velocity vd = 2.
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Figure 11: Vertex height in a channel with an abrupt change in width compared with the steady-
state vertical position hss of the vertex in a straight channel of width equal to the wide or
narrow part. Simulation parameters are lens bubble area Ab = 0.205 and driving velocity vd = 2,
constriction size ε= 0.3, xc = 10 and Gibbs-Marangoni parameterGM = 0 (no Marangoni effect).

back to horizontal as illustrated in Fig. 5b. This requires high curvatures near the top of the
spanning film, influencing the curvature term on the left hand side of Eq. (4.11). Moreover, at
the constriction, the length of the spanning film rapidly decreases, and this affects the sbb′ term
on the right hand side of Eq. (4.11), and hence affects the pressures.

The steady-state height of the vertex in the channel with an abrupt change of width can be
predicted using data obtained from the simulation in a straight channel as presented in Fig. 11.
To calculate the steady-state height, maintaining the bubble area while narrowing the channel
width is equivalent to having a larger bubble area within a fixed channel width. However, near the
constriction, the dynamics are more complicated due to the change of pressure as the spanning
film reorients, as discussed previously.

At faster driving velocity, the structure may become unstable either when passing into the
constriction, or when seeking a new steady state in the constricted channel. With a driving
velocity of vd = 4, Fig. 12 shows that with a moderate value of GM = 0.625 the lens is not stable
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Figure 12: Instabilities of the foam structure at high velocity in a channel with an abrupt change
in width. At GM = 0.625 the lens is unstable in the wide part of the channel upstream, while
for the other values of GM (GM = 0 and GM = 6.250) the instability occurs when the lens
moves into the constricted region. Simulation parameters are ε= 0.3, xc = 30, lens bubble area
Ab = 0.205, driving velocity vd = 4.

in the wide part the channel, while for GM = 0 and GM = 6.250 it is stable there but not in
the narrower part of the channel, where it moves more quickly but with a shorter spanning
film. As noted in § 5(a), the vertex is lower for intermediate values of GM , which makes the
lens less stable in that regime, particularly at high driving velocity. The instability occurs when
the vertex touches the channel wall (h= 0), then the spanning film detaches and leaves the
bubble behind. Previously, we found that the larger the bubble relative to the channel width,
the lower the driving velocity required to trigger instability [6,7]. The velocity vd = 4 in Fig. 12
is selected [6] such that for the chosen bubble area Ab = 0.205 and constriction size ε= 0.3, in
the case without surfactant redistribution (GM = 0), the lens structure will be stable in the wide
part of the channel but unstable in the narrow part.

(c) Flow in a sinusoidally-constricted channel
In the channel with a continuously-varying width, there is a continuous deformation of the films
while the structure is moving. As a consequence, the Gibbs-Marangoni parameter determines
the extent to which the corresponding film deformation can be accommodated: surfactant
redistribution is key to retaining stability of the foam structure.

As a benchmark, a simulation in a sinusoidally-constricted channel (Fig. 3) was carried out for
GM = 0 (no Marangoni effect). The evolution of the height of the vertex in this case is compared
to the steady-state height of the vertex for a lens in a straight channel of width equal to the
maximum or minimum width of the sinusoidally-constricted channel in Fig. 13. Despite channel
width changing in a more gradual manner compared to the case of an abrupt constriction, a
large variation in vertex height occurs, exceeding the bounds expected from the straight channel
case, presumably due to the small wavelength of the sinusoidal constriction in this example.

We now include surfactant redistribution (Fig. 5c) and, with specified channel and bubble
geometry, vary the driving velocity and record the height of the vertex in Fig. 14. Three values
of GM are considered, identically zero, small (GM = 0.625) and large (GM = 6.25). Allowing
significant surfactant redistribution is expected to result in a more stable structure.

In the case of low driving velocity (vd = 2) in Fig. 14a, it appears that at larger GM the
leading film is less deformed, as demonstrated by the taller bubble. At high velocity (Fig. 14c),
the spanning film leaves the bubble behind for all values of GM considered, although this occurs
further along the channel as GM increases. At intermediate driving velocity (Fig. 14b), the
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Figure 14: Change in the vertex height as the lens moves along a channel with varying width
for three values of GM . Each graph shows a different driving velocity: (a) vd = 2, (b) vd = 4, (c)
vd = 6. Simulation parameters: ε= 0.5, lens bubble area Ab = 0.205.
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Figure 15: (a) Surface tension on the segment adjacent to the vertex on the trailing film over
time for different GM in a sinusoidally-varying channel. (b) Rotation angle of the spanning film
over time. Simulation parameters: ε= 0.5, lens bubble area Ab = 0.205, driving velocity vd = 4.

spanning film leaves the bubble behind only for small GM or GM identically zero, but with the
bubble being left behind sooner for small non-zero GM . With low Gibbs-Marangoni parameter,
the redistribution of surfactant on the film is very slow. Although there is only a small range of
surface tension values along most of the film lengths, there is nonetheless a significant difference
of surface tensions among the segments adjacent to the vertex. As a consequence the vertex
will move, according to the Fermat-Torricelli rule, in such a way as to increase the rotation
angle φ relative to the vertical (see Fig. 1) of the spanning film, which reduces the length of
the leading film [24]. However the Marangoni surfactant redistribution, in particular for large
Gibbs elasticity, counteracts the shrinking of the leading film, as in film relaxation following a
T1 process [33,34], resulting in a more stable structure.

Fig. 15a shows the evolution of the surface tension on the segment of the trailing film adjacent
to the vertex with a driving velocity of vd = 4. As the structure moves, the film stretches and
contracts. However, the stretch is mainly accommodated by the segments close to the vertex. In
consequence, at low GM the surface tension in that region keeps increasing, deviating further
from the surface tension of the segments adjacent to the vertex on the other two films. Since
GM is low, the rate of surfactant transport is not sufficient to compensate this increase of the
surface tension. The spanning film then rotates further, as shown in Fig. 15b, and eventually
detaches from the bubble [7]. This rotation is associated with a reduction in the length of the
leading film, increasing the likelihood that the vertex will touch the channel wall and hence that
the spanning film will leave the bubble behind. When the Gibbs-Marangoni parameter increases,
the rate of surfactant redistribution is sufficient to equilibrate the surface tension around the
vertex with other surface tensions elsewhere on that film, hence affecting the angle at which the
films meet at the vertex and conferring stability on the foam. The critical (or maximum) driving
velocity at which the system loses stability is shown in Fig. 16, confirming that the least stable
systems are those with small (but not zero) values of GM around one. Above this threshold, the
larger the Gibbs-Marangoni parameter, the greater the maximum driving velocity.

Fig. 16 shows the effect of the lens bubble area on stability of the foam structure. The critical
velocity for different bubble areas are plotted as a function of the Gibbs-Marangoni parameter.
Larger bubbles are less stable, in the sense that they break down at a lower driving velocity, as
observed previously when GM = 0 [6,7]. This is a consequence of the total film length increasing
with increasing bubble size, so that the resulting drag force on the bubble is greater overall. To
alleviate the drag, the trailing film reorients to be closer to parallel with the channel walls over
much of its length [7], therefore increasing the rotation angle of the spanning film and decreasing
the length of the leading film, driving the onset of the instability of the structure [7].
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Figure 16: The effect of GM on the maximum driving velocity vd(max) for different bubble areas.
The size of the constriction is ε= 0.3 in all cases.
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Figure 17: The effect of Gibbs-Marangoni parameter GM on the maximum driving velocity
vd(max) for various constriction widths and two bubble areas: (a) Ab = 0.074 and (b) Ab = 0.205.

The effect of constriction size on the stability is shown in Fig. 17, indicating that the maximum
driving velocity (for two different bubble sizes) follows a similar trend to that seen in Fig. 16
with increasing influence of the Marangoni surfactant redistribution. For all values of ε, the
critical velocity first decreases slightly with GM and then increases strongly.

In general, the critical velocity decreases with increasing ε, towards the situation in which the
channel is most constricted. This is consistent with what would happen for an abrupt change
in channel width (see § 5(b)). An exception occurs in the case of a large bubble (with area
Ab = 0.205) which, in the narrowest constriction (ε= 0.5) shows much greater stability at large
values of GM . At these large values of the Gibbs-Marangoni parameter and an arbitrarily chosen
value of ε, the surface tension of the leading film decreases significantly as the film shrinks. In
consequence there is a large discrepancy of surface tension between the leading film and the
other two films. To compensate, the movement of the vertex stretches the leading film, delaying
the instability (in a similar way to the delay of topological changes around a sheared vertex [24]).
With very narrow constrictions however, the spanning film shrinks even further to respond to the
channel geometry. As a result, it too has lower surface tension, leaving the trailing film with much
higher surface tension to pull back on the vertex and prevent the topological transformation.
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6. Conclusion
The viscous froth model for the calculation of film deformation in foam flow has been coupled
with the Marangoni equation to simulate surfactant redistribution on a moving soap film. The
Marangoni effect counters any gradients of surface tension that develop during flow, resulting
in a narrower distribution of surfactant concentration along a film.

In the simple three-film foam structure examined here, surfactant redistribution opposes the
shrinking of the leading film as the lens structure moves along a straight channel, and reduces
the stretching of the spanning and trailing films, resulting in a taller bubble and enhancing foam
stability. However, we identify an intermediate regime where the Gibbs elasticity is large enough
to cause gradients of surface tension, but is not strong enough to redistribute the surfactant,
resulting in an imbalance of tensions at the vertex, reducing the vertex height.

When the channel width varies, the range of driving velocities for which a stable structure
can exist for a specified bubble size is reduced. The spanning film detaches from the lens and
leaves the bubble behind, breaking up the foam.

The distribution of the surfactant occurs through tangential movement along the films,
the velocity of which is determined by the Gibbs-Marangoni parameter and the gradient of
surfactant surface concentration. This tangential movement can help to prevent a film from
shrinking excessively, preventing topological changes in the foam structure. The films experience
greater deformation when flowing through a constricted channel. The Marangoni surfactant
redistribution reduces the deformation, again resulting in taller bubbles at a particular driving
velocity. As a result, the lens structure is more stable with a larger Gibbs-Marangoni parameter.
There is an intermediate regime where the Gibbs-Marangoni parameter is not sufficient to
smooth out gradients of surface tension, reducing the range of possible driving velocities at
which stable lens structures exist. Such a situation should be avoided in the use of foam as a
displacement fluid, since it would lead to much of the pore space being filled with stationary
lamellae stuck to walls and the only flowing foam would consist of single “bamboo” lamellae.
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