
Improved archiving and search strategies for
Multi Agent Collaborative Search

Lorenzo A. Ricciardi, Massimiliano Vasile

Abstract This paper presents a new archiving strategy and some modified search
heuristics for the Multi Agent Collaborative Search algorithm (MACS). MACS is
a memetic scheme for multi-objective optimisation that combines the local explo-
ration of the neighbourhood of some virtual agents with social actions to advance
towards the Pareto front. The new archiving strategy is based on the physical con-
cept of minimising the potential energy of a cloud of points each of which repels
the others. Social actions have been modified to better exploit the information in
the archive and local actions dynamically adapt the maximum number of coordi-
nates explored in the pattern search heuristic. The impact of these modifications is
tested on a standard benchmark and the results are compared against MOEA/D and
a previous version of MACS. Finally, a real space related problem is tackled.

1 Introduction

Multi Agent Collaborative Search is a memetic algorithm to solve multi-objective
optimisation problems that was proposed some time ago to solve robust optimisation
problems in space mission design [1, 2]. In MACS, a population of virtual agents
is deployed at random locations in the search space. Each agent locally explores
its neighbourhood performing a set of local search actions, also named individual
actions. Then the population as a whole performs a set of social actions, to concur-
rently advance towards the front. An external archive is used to store the current
best representation of the Pareto set. In a recent version of MACS, called MACS2, a

Lorenzo A. Ricciardi
Advanced Space Concepts Laboratory, University of Strathclyde, Glasgow, UK
e-mail: lorenzo.ricciardi@strath.ac.uk

Massimiliano Vasile
Advanced Space Concepts Laboratory, University of Strathclyde, Glasgow, UK
e-mail: massimiliano.vasile@strath.ac.uk

1

2 Lorenzo A. Ricciardi, Massimiliano Vasile

combination of Pareto dominance and Tchebycheff scalarisation was introduced to
select potential improvements towards the Pareto front. Previous studies by Vasile
and Zuiani [3, 4, 5, 6] showed the effectiveness of this approach on different bench-
mark and challenging real problems, testing numerous strategies both for the in-
dividual and the social actions. Since then MACS2 was successfully used for the
design of space missions for the removal of space debris by means of low-thrust,
many revolutions orbits, and for the design of the initial, low-thrust rising phase for
the technology demonstrator mission DESTINY. Both are real engineering multi-
objective optimisation problems for which no previous solution was known, and
involved the concurrent minimisation of fuel consumption, mission time, and, for
the DESTINY mission, radiation exposition time.

A thorough analysis of the behaviour of the algorithm, however, has revealed that
the archiving procedure was suboptimal as it was not retaining some good isolated
non-dominated solutions while keeping solutions in densely populated regions of
the Pareto front. The final archive was therefore giving a rather uneven representa-
tion of the Pareto front, with poorly distributed solutions. This poor distribution had
also an indirect impact on the effectiveness of the search itself, since social actions
were exploiting the information in the archive.

In order to address this issue, a new archiving strategy is proposed in this paper.
The new strategy, which from now on will be called Energy Based Archiving (EBA),
is physically based on the simple idea of minimising the energy of a cloud of points
which exert repulsion on each other. Given an initial set with r + q elements, the
new archiving procedure selects the subset with r elements with the lowest possible
energy. The energy is simply defined as the inverse of the sum of the normalised
squared distances of the points in criteria space. Thus, the lowest energy state is as-
sociated to the most evenly spread distribution of the points. Note that, the archiving
strategy is not specific to MACS, but can be applied to any multi-objective optimi-
sation algorithm, and, as will be shown, can also improve the results obtained by
other algorithms.

The paper presents also a set of modified search heuristics that takes advantage of
the higher quality of the front stored by the new archiver. One modification improves
the exploitation of the information in the archive for the generation of social actions.
The other is a dynamic adjustment of the maximum number of coordinates that are
explored when local actions are implemented.

The paper is structured as follows: after a preliminary description of multi-
objective optimisation in general, the discussion will focus on implementation de-
tails and the algorithms will be presented in pseudo-code. Tests will be carried out
on the standard benchmark of UF functions from the CEC 2009 competition [7],
which are known to have complex Pareto sets. MACS with the new archiving and
search heuristics (which for clarity will be called MACS2.1) will be compared with
MOEA/D [8], the winner of the CEC 2009 competition, and with MACS2 [5]. It
will also be proved that the new archiving algorithm improves the IGD and av-
eraged Hausdorff distance of the solutions given by MOEA/D. The impact of the
modified search heuristics will also be investigated, and MACS2.1 and MACS2 will
finally be compared on a real challenging space related problem.

Improved archiving and search strategies for Multi Agent Collaborative Search 3

2 Problem formulation

This paper is focused on finding the feasible set of solutions that solves the following
problem:

min
x∈D

f(x) (1)

where D is a hyperrectangle defined as D = {x j|x j ∈ [bl
j bu

j] ⊆ ℜ, j = 1, ...,n}
and f is the vector function:

f : D→ℜ
m, f(x) = [f1(x), f2(x), ..., fm(x)]T (2)

The optimality of a particular solution is defined through the concept of domi-
nance: with reference to problem (1), a vector y ∈D is dominated by a vector x ∈D
if fl(x) ≤ fl(y) for all l = 1, ...,m and there exists k so that fk(x) 6= fk(y). The re-
lation x≺ y states that x dominates y. A decision vector in D that is not dominated
by any other vector in D is said to be Pareto optimal. All non-dominated decision
vectors in D form the Pareto set DP and the corresponding image in criteria space is
the Pareto front

Starting from the concept of dominance, it is possible to associate, to each solu-
tion in a finite set of solutions, the scalar dominance index:

Id(xi) = |{i∗ | i, i∗ ∈ Np∧xi∗ ≺ xi}| (3)

where the symbol |.| is used to denote the cardinality of a set and Np is the set
of the indices of all the solutions. All non-dominated and feasible solutions xi ∈ D
with i ∈ Np form the set:

X = {xi ∈ D | Id(xi) = 0} (4)

The set X is a subset of DP, therefore, the solution of problem (1) translates into
finding the elements of X . If DP is made of a collection of compact sets of finite
measure in ℜn, then once an element of X is identified it makes sense to explore its
neighbourhood to look for other elements of X . On the other hand, the set of non
dominated solutions can be disconnected and its elements can form islands in D.
Hence, multiple parallel exploration can increase the collection of elements of X .

2.1 Tchebycheff Scalarisation

In Tchebycheff approach to the solution of problem (1), a number of scalar opti-
mization problems is solved in the form:

min
x∈D

g(f(x),λ ,z) = max
l=1,...,m

{λl | fl(x)− zl |} (5)

4 Lorenzo A. Ricciardi, Massimiliano Vasile

where z = [z1, ...,zm]
T is the reference objective vector whose components are

zl = minx∈D fl(x), for l = 1, ...,m, and λl is the l-th component of a weight vector
λ . By solving a number of problems (5), with different weight vectors, one can
obtain different Pareto optimal solutions. Although the final goal is always to find
the set Xg, using the solution of problem (5) or index (3) has substantially different
consequences in the way samples are generated and selected. In the following, the
solution to problem (5) will be used as selection criterion in combination with index
(3).

3 Implementation

This section briefly summarises the main features of MACS2, the new archiving
procedure and the modified heuristics.

With reference to Algorithm 1, MACS2 starts by initialising a population of npop
agents at random locations within the search domain D with a Latin Hypercube
Sampling. Non-dominated agents are copied in the archive A to form the first ap-
proximation of the Pareto set. The archive A has specified maximum size maxarch.
A set of nλ m-dimensional unit vectors λk (defining m directions in criteria space)
is then generated, sampled uniformly from a quarter of circle or eighth of a sphere
for bi and tri-objective problems or through Latin Hypercube Sampling for higher
dimensional problems. The first m λk vectors form a base in ℜm, so that the so-
lution vectors that best optimise each individual objective function are always in
the final approximation of the Pareto set. Line 8 of Algorithm 1 initialises a utility
function (see Zhang et al. [8]) that is used to monitor the progress of each agent.
A user-defined fraction psocial of agents is specified, and each social agent is then
randomly associated to a particular scalarised sub-problem and to the corresponding
weight vector λk (see Line 9). After initialising the velocity Vi of each agent (Line
10) the main loop starts (Line 12). Until a maximum number of function evaluations
is reached, the agents perform first local search actions, described in the next sec-
tion, to move towards the Pareto set. A local action is considered successful when it
generates a dominating solution or a solution that satisfies the Tchebycheff scalar-
isation criterion corresponding to a particular sub-problem. After all local actions
have been completed, the archive A is updated with all non-dominated solutions. A
total of nsocial agents then perform the social actions described in Section 3.2 and
Algorithm 3.

In the new implementation of MACS2 proposed in this paper, when a finite size
archive is assumed, the new archiving strategy, described in Section 3.3, is employed
to choose which candidates are added to A. Furthermore, as the archive fills up, the
number of coordinates scanned by the pattern search local action (see Algorithm 2)
is gradually reduced until only one direction at a time is considered. At this point
the archive is completely full. This heuristic is motivated by the fact that a well
populated and distributed archive contains a lot of information that can be used to
generate new samples at a lower cost than a full pattern search. Every nλ iterations,

Improved archiving and search strategies for Multi Agent Collaborative Search 5

the utility function will be updated and sub-problems with the lowest utility function
will be changed (see Line 18-20 of Algorithm 1).

3.1 Individualistic actions

In the following we describe the individualistic search actions. Each agent has a
repertoire of three different actions, namely: inertia, pattern search and differential
evolution. Each agent performs each action sequentially until an improvement is
registered (i.e. the algorithm generates either a dominant solution or a solution that
satisfies Tchebycheff criterion, if the agent is associated to a λk). The pseudo-code
is given in Algorithm 2.

Inertia

If the previous moves defined a search direction Vi in parameter space, inertia gen-
erates a new sample in the same direction (lines 3-8). The trial position for the i− th
agent, xtrial is, defined as:

xtrial = xi +αVi (6)

where α is a random number between 0 and 1. If xtrial is outside the admissible
domain D, α is contracted with a simple backtracking procedure so that xtrial falls
on the boundary of D. In the case a number of components of xi lower than n is
already equal to either their lower or upper limit and xi +αVi is outside D, then the
corresponding components of Vi are set to zero before the backtracking procedure
is applied. This heuristic is introduced to improve the exploration of the boundary
of the search space.

Pattern Search

If inertia gives no improvement or is not performed (Vi = 0), a simple pattern search
strategy is implemented. This heuristic changes only one randomly chosen compo-
nent j of xi at a time (lines 14-20). The trial position xtrial is thus equal to xi, except
for the j− th component, which is:

xtrial, j = xi j +α∆ jρi (7)

where this time α is a random number between -1 and 1, ∆ j is the difference be-
tween the upper and lower boundaries for variable j and ρi defines the size of a
hyperrectangle centred in xi. If direction α∆ jρi is not successful, the opposite di-
rection −sign(α)β∆ jρi is attempted with β a random number between 0 and 1. If
also this move fails, a new random direction (different from the previous ones) is
chosen.

6 Lorenzo A. Ricciardi, Massimiliano Vasile

This strategy is repeated until either an improvement is found (i.e. a dominant
solution is generated or Tchebycheff criterion is satisfied), or a specified maximum
number of directions has been explored. In this version of MACS, the maximum
number of directions is dynamically adjusted as

max dirs = round
(

n− (n−1)
curr arch size
max arch size

)
(8)

where max dirs is the maximum number of dimensions to scan, n is the number of
coordinates, curr arch size is the current size of the archive and max arch size is
the specified maximum size of the archive (lines 11-21). If a good sample is found,
it is used to compute vector Vi.

Differential Evolution

If pattern search did not lead to an improvement, a differential evolution step is
taken, by combining vector xi with 3 randomly chosen agents xi1 ,xi2 and xi3 (lines
24-28). The displacement vector is then given by:

dxi = αe
(
(xi−xi1)+F

(
xi2 −xi3

))
(9)

where α is a random number between 0 and 1, F is a user specified constant and e
is a mask vector whose elements are either 0 or 1 as follows:

e j =

{
1, if α2 <CR
0, otherwise

(10)

where α2 is a random number between 0 and 1, and CR is another user specified
constant. The trial position for the differential evolution move finally reads:

xtrial = xi +dxi (11)

The feasibility check for this new position is performed exactly as for the inertia
case: reducing α or suppressing some components of dxi.

Local neighbourhood size management

If all local actions have failed, the local neighbourhood size ρi is reduced by a
user defined factor ρcontr. After a user defined maximum number of contractions
ρmax,contr, ρi is reset to ρini. Conversely, if one action is successful, ρi is increased
by a factor ρcontr, up to the maximum value ρini (lines 30-37).

Improved archiving and search strategies for Multi Agent Collaborative Search 7

3.2 Social actions

Social actions are implemented following the same principle as in Zuiani and Vasile
[5]: a fraction psocial of the total population of the agents implements a DE type of
heuristic by picking agents either from the population or from the archive (lines 4
or 6). The probability of picking agents from the archive or from the population is
determined by:

parch vs pop = 1− e−
current size archive

num agents (12)

In MACS2 each social agent was immediately moved to the trial position if the trial
position was satisfying Tchebycheff criterion. The modified heuristic proposed in
this paper, instead, updates the archive with all trial vectors that are non-dominated
by any other element of the archive. After the archive is updated, each agent per-
forming social actions is then moved to the location of the element of the archive
that best improves the corresponding Tchebycheff sub-problem, unless that location
is already occupied by another agent (lines 15-22). This new heuristic better exploits
the information in the archive and at the same time does not exclude non-dominated
trial vectors that do not satisfy the Tchebycheff condition before checking the con-
tent of the archive. The pseudo-code for social actions is given in Algorithm 3.

3.3 The new archiving strategy

All non-dominated solutions found by the agents are stored in an external archive A.
The archiving process is a fundamental part of the optimisation process. Not only
does the archive store an approximation of the Pareto set, but it also represents a
source of information for the implementation of social actions. Thus, not only is a
well distributed archive desirable but it is also a necessity to improve exploration.
The algorithm described in this paper attempts to generate the most evenly dis-
tributed Pareto front possible with the available set of solution vectors. The heuristic
is based on the physical concept of minimisation of an energy. It draws inspiration
from the fact that a set of equally charged particles in a sphere will move towards
its surface and spread uniformly. In this case, however, the particles are not free to
move, but can only occupy specified positions.

Suppose that at iteration k the archive is full and is composed of r elements. Let
yi and yi be the position of element i and j in objective space, then one can define
the generalised energy of the archive as:

E =
r

∑
i=1

r

∑
j=i+1

1

(yi−y j)
T (yi−yi)

(13)

This energy is simply the inverse of the sum of the squared distances of the points
of the archive in the criteria space. Suppose now that there are q non-dominated
candidate solutions which also do not dominate any of the elements in the archive.

8 Lorenzo A. Ricciardi, Massimiliano Vasile

The problem of choosing which candidate substitutes which element of the archive
is reformulated as finding the subset of r elements from the set of r + q elements
that minimises the energy E.

Note that a direct update of the archive using E is not feasible if r and q are big,
because the total number of possible combinations is

(r+q
r

)
. As an alternative, the

following procedure is proposed.
Let the archive A be not full. If there is enough space in A to add all the candi-

dates, the archive is simply updated adding those elements (lines 1-2). A symmetric
matrix M, containing the reciprocals of the squared distances of all the elements
in the archive, is updated (line 4). From M, the total energy of the archive E and
a helper vector E2, are computed (lines 6-7). E2 is needed to simplify and speed
up some computations, as will be explained later. If the archive is full, instead, the
following procedure is applied.

Given the elements in the archive A and a set of candidate elements C, for each
element in A the energy E is recalculated assuming that that element was replaced
by an element in C (line 23). If the lowest variation of E is negative, the element of C
that gives that variation and the element in the archive are swapped. If there has been
at least one replacement, the whole process is repeated until no more improvements
can be detected or a maximum specified number of iterations is exceeded (lines 19-
29). In this study, we specified a maximum of 100 iterations. In case the archive is
not full but there is not enough space to add all the candidates, the above mentioned
algorithm adds, sequentially, the candidates which give the least increase of the total
energy of the archive (lines 8-12). No swapping between candidates and agents in
the archive is performed in this case, only addition of candidates until the archive is
full, and the corresponding update of M and E2 (lines 13-14). The pseudo-code for
the archiving procedure is given in Algorithm 4 .

The actual Matlab implementation stores in a symmetric matrix the inverse of all
pairwise squared distances between the elements currently in the archive. Deletion,
addition and substitution of elements are performed as block matrix operations to
save time. In the i-th entry of the E2 vector is stored the energy the archive would
have if element i were removed. This way, the computation of the energy with a
substitution of one element is linear in the number of candidates, because the base-
line value (i.e the energy of the archive without replacement) is already stored, and
only the contribution of the new candidate needs to be computed. Finally, in order
to avoid scaling problems when objectives have very different length scales, a nor-
malisation of the elements in both the candidate set and the archive in criteria space
is performed and repeated whenever one of the elements in the archive that opti-
mise each individual objective function is replaced. The overall algorithm is called
Energy Based Archiving (EBA).

As an example of the results provided by this archiving strategy, we considered
a hypothetical Pareto front with 100 elements and tried to extract the q elements
with the EBA algorithm, with the archiving algorithm employed in MACS2 and the
one implemented in NSGA-II [9]. Figure 1 shows the results provided by the three
archiving strategies for q= 10 and q= 25. The EBA strategy gives a good spreading
of the extracted elements, slightly better than the one obtained with the strategy in

Improved archiving and search strategies for Multi Agent Collaborative Search 9

MACS2 and much better than that obtained by the strategy implemented in NSGA-
II. The hypothetical Pareto front is composed of a set of random samples taken from
the ZDT4 Pareto front. All the algorithms extract the same number of elements from
this set. The IGD produced by each algorithm is shown in table 1.

Table 1: IGD of the different archiving
strategies

MACS 2.1 MACS2 NSGA-II
archiver archiver archiver

10 points 3.68e-2 3.90e-2 9.44e-2
25 points 1.52e-2 1.55e-2 2.44e-2

The EBA strategy requires two sets of operations corresponding to two steps: the
fill-in of the archive and computation of the energy E, and its minimisation. The two
steps never occur at the same time when the archive is updated. The computation
of each reciprocal of squared distance, in (13), for an m dimensional space, requires
3m operations: m differences of homologous coordinates, m squares of differences,
m−1 sums of squares and 1 reciprocal of sums. If the reciprocal of pairwise squared
distances of the r elements of the archive is stored in an r by r symmetric matrix
M with zero diagonal elements, the number of reciprocal of squared distances to be
computed is r(r−1)

2 , for a total of 3mr(r−1)
2 operations. With this matrix, the compu-

tation of the total energy E of the archive requires the sum of the elements of the
upper (or lower) triangular part of the matrix, for a total of r(r−1)

2 sums. Starting
from the energy E and matrix M the already mentioned r components vector E2 is
computed. E2 contains in its i-th entry the energy the archive would have if element
i were excluded from the archive. The computation of the elements of this vector
is conveniently performed by subtracting the sum of all elements of the i-th row of
M from the energy E. Thus, a total of r2 operations is required: 1 subtraction and
r−1 sums for each component of E2. This completes the fill-in step of the archive,
for a total of 3mr(r−1)

2 + r(r−1)
2 + r2 ∼ O(mr2) operations. Note that during a run of

MACS2.1 the archive grows gradually, so the construction of the matrix M, energy
E and vector E2 is performed incrementally, rather than all at once.

The energy minimisation step requires the computation of the reciprocal of
square distances from each element of A to each candidate in C, for a total of rq
combinations or 3mrq operations. At this point, the energy the archive would have
if element i were substituted with the candidate j is computed: this is conveniently
performed by summing E2(i) to the reciprocal of the square distances from the j-th
candidate to each other element in the archive, for a total of r2 operations: r sums for
each of element of the archive. Now, the minimum energy over all possible combi-
nations of candidates Enew is compared against the energy of the archive E. Suppose
all the tentative energies are stored in an r by q matrix and its lower value entry Enew
is located in the position (i∗, j∗). If Enew is lower than E, then a new minimum is
found, and the candidate in position j∗ substitutes the element in position i∗. At this
point, it is required to update all elements of the i-th row (or column) of the matrix
M with the new reciprocal squared distances. This requires again 3m(r−1) opera-

10 Lorenzo A. Ricciardi, Massimiliano Vasile

tions, but can be avoided with proper bookkeeping (i.e if the matrix containing the
reciprocal of square distances from each candidate to each element of the archive
is stored). Finally, the update of the vector E2 is performed exactly as before. If
the energy minimisation step is performed nit times, the total number of opera-
tions is 3mrq+nit

(
r2 + r2

)
. Thus, the total cost of the EBA archiving algorithm is

O
(
3mr2/2

)
for the fill-in step, and O(nitr2) for the minimisation step (assuming

q≤ r). In order to verify the computational complexity of the EBA strategy, we per-
formed a statistical analysis on the dependence of nit on q by sampling the Pareto
front of the ZDT4 benchmark function with 100 points plus an increasing number
of additional candidates. 200 independent runs were made for each number of addi-
tional candidates, and an O(q

1
2) relation was discovered. Thus, the average cost of

the minimisation step was found to be O(r2q
1
2). It is also important to note that the

computational complexity is linear in the number of dimensions of the Pareto front,
making EBA a promising method for many-objective optimisation problems.

f
1

0 0.2 0.4 0.6 0.8 1 1.2

f 2

0

0.2

0.4

0.6

0.8

1

1.2
Archiving strategy comparison

Initial archive
EBA
Old strategy
NSGA-II

(a) 10 points selected

f
1

0 0.2 0.4 0.6 0.8 1 1.2

f 2

0

0.2

0.4

0.6

0.8

1

1.2
Archiving strategy comparison

Initial archive
EBA
Old strategy
NSGA-II

(b) 25 points selected

Fig. 1: Outcomes of different archiving strategies from the same initial archive. The
fronts have been shifted to enhance the comparison

Improved archiving and search strategies for Multi Agent Collaborative Search 11

Algorithm 1 MACS2

1: Set n f eval,max, maxarch, npop, psocial , F , CR,
ρini, ρcontr , ρmax,contr

2: Set nsocial = npop psocial
3: Set iteration counter h = 0
4: Initialise population Ph,n f eval = 0
5: Initialise neighbourhood size ρi = ρini ∀i ∈
{1, ..,npop}

6: Insert the non-dominated elements of P0 in
the archive A

7: Initialise nλ vectors λk for k ∈ {1, ..,nλ}
such that ||λk||= 1

8: Initialise utility function Uk = 1 ∀k ∈
{1, ..,nλ}

9: Select nsocial active sub-problems to follow
10: Initialise the vector of agents’ velocities

Vi = 0 ∀i ∈ {1, ..,npop}
11: while n f eval < n f eval,max do

12: h=h+1
13: update number of directions to scan in

pattern search
14: Perform local actions through Algo-

rithm 2
15: Update archive A with non dominated

elements through Algorithm 4
16: Perform social actions through Algo-

rithm 3
17: Update archive A with non dominated

elements through Algorithm 4
18: if mod(h,nsocial) == 0 then
19: Update utility function Uk and the

nsocial active sub-problems
20: end if
21: end while

Algorithm 2 Individualistic actions

1: for i = 1 : npop do
2: Set improved=FALSE
3: if ||Vi|| 6= 0 then
4: Perform Inertia move
5: Evaluate move
6: if successful then
7: set improved=TRUE
8: end if
9: end if

10: if not improved then
11: counter=0
12: while counter≤max pat search dirs

& not improved do
13: counter=counter+1
14: Pick random direction
15: Perform Pattern Search
16: Evaluate move
17: if successful then
18: set improved=TRUE
19: set Vi = xi,old − xi
20: end if

21: end while
22: end if
23: if not improved then
24: Perform Differential Evolution
25: Evaluate move
26: if successful then
27: set improved=TRUE
28: end if
29: end if
30: if not improved then
31: Contract ρi
32: if ρi has contracted more than

ρmax,contr times then
33: ρi = ρini
34: end if
35: else
36: De-contract ρi unless this would

cause ρi to be greater than ρini
37: end if
38: end for

12 Lorenzo A. Ricciardi, Massimiliano Vasile

Algorithm 3 Social actions

1: choose random number r between 0 and 1
2: compute p = 1− e−

curr arch size
num agents

3: if r ≤ p then
4: perform DE between social agents and

random points from archive
5: else
6: perform DE between social agents and

random points from current population
7: end if
8: add candidate solutions in archive through

Algorithm 4
9: if there are at least as many agents in the

archive as objective functions then
10: if there’s exactly as many agents in the

archive as objective functions then
11: nmove = num objective functions
12: else

13: nmove = min(num agents in archive,
num agents performing social ac-
tions)

14: end if
15: create pool of nmove agents to be moved.

Agents following exclusively one of the
objectives are always chosen

16: for all agents in pool do
17: find the agent in archive better solv-

ing current agent’s sub-problem
18: if archive position is better than cur-

rent position then
19: move current agent to that position
20: hide that position in archive for

current run of social actions, to
prevent multiple agents moving in
the same position

21: end if
22: end for
23: end if

Algorithm 4 Energy Based Archiving

1: if there’s room for all candidates in archive
then

2: Add them to the archive
3: for all candidates do
4: Update the symmetric matrix M con-

taining the reciprocal of the squared
distance of each pair of elements

5: end for
6: Update the total energy E of the archive
7: Update the vector E2
8: else
9: if only some candidates can be added

then
10: while archive is not full do
11: Choose the candidate which gives

the least possible addition of en-
ergy to the archive and add it

12: Update M, E and E2
13: end while
14: else if the archive is full then
15: Set improved=TRUE

16: iterations=0
17: while improved and iterations <

maxit do
18: improved=FALSE
19: iterations=iterations+1
20: Create a matrix containing the en-

ergy that the archive would have if
each element of the archive were
substituted with each candidate

21: Locate the minimum entry Enew of
this matrix

22: if Enew < E then
23: Enew is at position (i∗, j∗)
24: Swap candidate j∗ with ele-

ment i∗

25: Set improved=TRUE
26: Update E, M and E2
27: end if
28: end while
29: end if
30: end if

Improved archiving and search strategies for Multi Agent Collaborative Search 13

4 Test cases

The test set used in this paper is a mix of the first seven UF functions proposed
in the CEC2009 competition on multi-objective optimisation, the function ZDT4
proposed by Zitzler et al. [10] and a real case of space mission design.

4.1 CEC 2009 UF functions

The UF functions have a complex Pareto set and are a good benchmark to test the
archiving procedure. The version of MACS2 with the new archiving procedure and
the modified heuristics, called MACS2.1 from now on, was tested and compared
against the version of MOEA/D that won the CEC2009 competition [8] and against
MACS2.

On the UF test set, each algorithm was run 200 times for each of the functions
UF1-7 on a Linux workstation with 8 GB of RAM and an Intel i7-4790 cpu. The
settings for MACS2.1 are reported in Table 2 while for MOEA/D the parameters
suggested by its authors in [8] were used. The algorithms are compared against the
Inverse Generational Distance (IGD) metric, which was used to rank the solutions in
the CEC2009 competition, and against the Averaged Hausdorff distance. Both met-
rics are described and extensively analysed in [11]. As pointed out by Schutze et al
[11], the IGD metric is sensistive to the number of elements in the reference Pareto
front and in the computed one. Hence the inclusion of the Averaged Hausdorff dis-
tance in this comparison. Mean and variance of the IGD and Averaged Hausdorff
distance for each problem and algorithm are reported in Table 3, together with re-
sult of the Wilcoxon hypothesis test. In 6 of the 7 cases analysed in this paper, the
results obtained by MACS2.1 have lower mean IGD and mean Averaged Hausdorff
distance, and the variances of those metrics are 1 to 3 orders of magnitude lower for
MACS2.1, meaning that the results or MACS2.1 are much more repeatable. The low
values of the Wilcoxon test confirm that the underlying distributions of the metrics
are indeed different.

To better appreciate the effect of the archiver, MACS2.1 was then run with the
same settings but with the archiving strategy employed by MACS2 (as described
in [5]), while the final results of MOEA/D where filtered with the EBA algorithm
instead of using the filter employed by MOEA/D. Tables 4 and 5 summarise the
results of this test. The EBA strategy improved the quality of the Pareto front found
by MOEA/D in 4 cases without worsening the others, and improved the results of
MACS2.1 in 3 cases with no significant variation in the other cases. The amount
of the improvement depends on the quality and size of the the archive: a closer
examination of the UF5 and UF6 cases showed that none of the 200 archives had
100 non-dominated elements, hence EBA simply gave the same result as the strategy
implemented in MACS2.

For UF4 the high IGDs are caused by a relatively high distance between the
computed front and the true one, more than by a poor distribution of the points, while

14 Lorenzo A. Ricciardi, Massimiliano Vasile

Table 2: Settings for MACS,
CEC problems

n f eval,max npop ρini F CR psocial ρcontr ρmax,contr
300000 150 1 0.9 0.9 0.2 0.5 5

Problem MACS2.1 MOEA/D Wilcoxon MACS2.1 MOEA/D Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.41e-3 3.70e-59 1.65e-2 1.12e-1 3.14e-11
(9.58e-9) (1.69e-8) (5.53e-5) (6.16e-2)

UF2 4.43e-3 6.24e-3 3.70e-59 2.09e-2 7.48e-2 4.52e-53
(1.23e-7) (1.57e-6) (4.41e-5) (9.46e-3)

UF3 1.84e-2 7.16e-3 3.70e-59 1.46e-1 6.38e-2 5.08e-34
(1.09e-5) (2.47e-5) (2.61e-2) (1.83e-2)

UF4 2.93e-2 6.14e-2 3.70e-59 4.99e-2 1.11e-1 4.83e-67
(7.50e-7) (2.50e-5) (2.74e-5) (3.17e-4)

UF5 5.80e-2 2.98e-1 3.70e-59 1.32e-1 7.96e-1 4.83e-67
(5.58e-5) (7.45e-3) (9.56e-4) (2.20e-1)

UF6 2.74e-2 2.68e-1 3.70e-59 8.86e-2 6.27e-1 7.03e-67
(6.10e-5) (4.34e-2) (2.06e-3) (1.14e-1)

UF7 4.15e-3 4.77e-3 1.46e-34 2.96e-2 1.67e-1 1.26e-08
(5.61e-8) (3.17e-6) (9.40e-4) (6.83e-2)

Table 3: Mean (variance in brackets) for the IGD and averaged Hausdorff dis-
tances for MACS2.1 and MOEA/D, CEC2009 problems. Also reported the unsigned
Wilcoxon test results

for UF3 there is a relative lack of points in the upper left region of the Pareto front.
For this comparison, the Averaged Hausdorff distance does not show any relevant
improvement. This is due to the fact the Averaged Hausdorff distance penalizes
the outliers (as clearly stated in [11]), and as such is a worst case measure. The
EBA algorithm was conceived to maximise the spreading of the overall solution,
but cannot guarantee the worst case distance from each point of the reference front
to each point on the computed one, so the observed metrics are not surprising.

We then compared MACS2.1 versus MACS2 [5]. As it can be seen from Table
6, MACS2.1 improves over MACS2 in 5 out of 7 cases for the IGD, although it
produces worse results on UF4 and UF5. The Averaged Hausdorff distance for this
case favour MACS 2.1 only in 3 over 7 cases.

To better understand which heuristic is contributing to give the different re-
sults of MACS2.1 with respect to MACS2, we compared the results obtained by
MACS2.1 with dynamic adjustment of the maximum number of directions in the
pattern search, against MACS2.1 with a fixed maximum number of direction equal
to 2n. This because in MACS2 the number of directions scanned by pattern search
is fixed and equal to 2n. Results in Table 7 show that in all cases except for UF4
and UF5, the dynamic adjustment of the maximum number of directions scanned
by pattern search has a positive effect on the IGD. The comparison of the Averaged
Hausdorff distance shows a substantial parity between the two approaches, mean-
ing that the dynamic strategy does not improve the position of the outliers. It can
be also be appreciated that in the static case, both the IGD and the Averaged Haus-
dorff distance associated to the UF1 to UF5 cases are close to the values obtained

Improved archiving and search strategies for Multi Agent Collaborative Search 15

Problem MOEA/D+EBA MOEA/D Wilcoxon MOEA/D+EBA MOEA/D Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.11e-3 4.41e-3 8.16e-54 1.11e-1 1.12e-1 3.67e-1
(1.71e-8) (1.69e-8) (6.16e-2) (6.16e-2)

UF2 6.00e-3 6.24e-3 2.53e-04 7.48e-2 7.48e-2 9.94e-1
(1.58e-6) (1.57e-6) (9.46e-3) (9.46e-3)

UF3 6.88e-3 7.16e-3 2.54e-07 6.30e-2 6.38e-2 1.19e-1
(2.54e-5) (2.47e-5) (1.83e-2) (1.83e-2)

UF4 6.13e-2 6.14e-2 7.92e-01 1.11e-1 1.11-e1 8.45e-1
(2.49e-5) (2.50e-5) (3.12e-4) (3.17e-4)

UF5 2.98e-1 2.98e-1 9.97e-01 7.96e-1 7.96e-1 9.98e-1
(7.45e-3) (7.45e-3) (2.20e-1) (2.20e-1)

UF6 2.68e-1 2.68e-1 9.95e-01 6.27e-1 6.27e-1 9.96e-1
(4.34e-2) (4.34e-2) (1.14e-1) (1.14e-1)

UF7 4.48e-3 4.77e-3 1.24e-32 1.67e-1 1.67e-1 9.08e-1
(3.19e-6) (3.17e-6) (6.83e-2) (6.83e-2)

Table 4: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MOEA/D with EBA archiving and standard MOEA/D, CEC2009 problems.
Also reported the Wilcoxon test result

by MACS2. This is not surprising since in MACS2.1 DE is performed after pattern
search, so if pattern search scans all possible coordinates it will most probably find
an improvement and thus DE will not be performed. This also means that in the UF6
and UF7 cases some other heuristic of MACS2.1 is instead contributing.

With the same rationale as the previous analysis, we compared MACS2.1 with
the new implementation of social moves against MACS2.1 with the old implemen-
tation of the social moves. Table 8 shows that the IGD of the new version is better
than the old version in 4 over 7 cases, statistically the same in 1 case and worse in 2
cases, while the Averaged Hausdorff distance of the new social moves is better in 3
cases, statistically the same in 1 case and worse in 3 cases. Thus, this modification
does not seem to give a clear contribution. However, further studies are required to
assess the interaction of all the combinations of the proposed modifications, espe-
cially between the update of the sub-problems through the utility function and the
social actions.

As a final rigorous performance test for the CEC cases, we compared the suc-
cess rate of each algorithm on each of the UF functions. The success rate is defined
as the number of runs in which the IGD falls below a given threshold over the to-
tal number of runs. Thresholds were chosen to differentiate the results as much as
possible but using rather simple values. Table 9 summarises the results. As it is evi-
dent, MACS2.1 has overall good performance, outperforming MOEA/D in all cases
except for UF3. The introduction of EBA in MOEA/D can improve its results by 10-
30% on some problems. MACS2.1 is also generally better than MACS2: although
for UF2, UF4 and UF5 the latter has a success rate 20% higher than the former,
MACS2.1 is more than 20% better in the other problems, up to 90% better for UF7.
In MACS2.1, an overall 5 to 30% improvement is given by the EBA archiving strat-
egy, while the dynamic setting of the maximum number of coordinates can improve

16 Lorenzo A. Ricciardi, Massimiliano Vasile

results up to 90% or worsen them up to 15%. Similarly, the new implementation of
the social moves can improve results up to 50% or worsen them up to 20%. Overall,
the proposed version of MACS2.1 seems to have more consistent results on the en-
tire set of problems, never falling behind by more than 25% over any other algorithm
on any problem.

Problem MACS2.1 MACS2.1 NO EBA Wilcoxon MACS2.1 MACS2.1 NO EBA Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.32e-3 1.88e-54 1.65e-2 1.61e-2 9.88e-1
(9.58e-9) (1.04e-8) (5.53e-5) (1.49e-5)

UF2 4.43e-3 4.70e-3 3.84e-25 2.09e-2 2.09e-2 8.49e-1
(1.23e-7) (6.56e-8) (4.41e-5) (4.13e-5)

UF3 1.84e-2 1.85e-2 6.56e-01 1.46e-1 1.41e-1 6.45e-1
(1.09e-5) (9.72e-6) (2.61e-2) (2.25e-2)

UF4 2.93e-2 2.92e-2 5.29e-01 4.99e-2 5.04e-2 2.46e-1
(7.50e-7) (1.03e-6) (2.74e-5) (3.13e-5)

UF5 5.80e-2 5.84e-2 7.84e-01 1.32e-1 1.35e-1 2.19e-1
(5.58e-5) (5.63e-5) (9.56e-4) (9.28e-4)

UF6 2.74e-2 2.66e-2 2.58e-01 8.86e-2 9.61e-2 8.12e-2
(6.10e-5) (3.71e-5) (2.06e-3) (2.64e-3)

UF7 4.15e-3 4.49e-3 1.40e-35 2.96e-2 2.79e-2 1.52e-1
(5.61e-8) (6.01e-8) (9.40e-4) (5.80e-5)

Table 5: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 with EBA archiving vs MACS2.1 without EBA archiving on the
CEC2009 problems. Also reported the Wilcoxon test result

Problem MACS2.1 MACS2 Wilcoxon MACS2.1 MACS2 Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.39e-3 1.50e-59 1.65e-2 2.80e-2 9.26e-35
(9.58e-9) (2.48e-8) (5.53e-5) (3.14e-4)

UF2 4.43e-3 4.49e-3 6.33e-09 2.09e-2 1.57e-2 5.08e-24
(1.23e-7) (1.32e-8) (4.41e-5) (7.61e-6)

UF3 1.84e-2 2.41e-2 8.25e-50 1.46e-1 6.75e-2 1.07e-29
(1.09e-5) (4.98e-6) (2.61e-2) (3.60e-4)

UF4 2.93e-2 2.63e-2 2.15e-66 4.99e-2 4.43e-2 1.21e-26
(7.50e-7) (2.96e-7) (2.74e-5) (2.01e-5)

UF5 5.80e-2 5.29e-2 2.81e-11 1.32e-1 1.22e-1 2.09e-05
(5.58e-5) (4.81e-5) (9.56e-4) (1.09e-3)

UF6 2.74e-2 3.41e-2 7.30e-17 8.86e-2 1.02e-1 2.03e-04
(6.10e-5) (1.06e-4) (2.06e-3) (2.60e-3)

UF7 4.15e-3 6.54e-3 3.84e-66 2.96e-2 4.93e-2 5.68e-39
(5.61e-8) (4.96e-6) (9.40e-4) (4.37e-4)

Table 6: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 vs. MACS2 on the CEC2009 problems. Also reported the Wilcoxon
test result

Improved archiving and search strategies for Multi Agent Collaborative Search 17

Problem MACS2.1 MACS2.1 static Wilcoxon MACS2.1 MACS2.1 static Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.40e-3 5.46e-61 1.65e-2 2.54e-2 4.74e-39
(9.58e-9) (1.98e-8) (5.53e-5) (1.29e-4)

UF2 4.43e-3 4.47e-3 2.48e-06 2.09e-2 1.60e-2 2.64e-21
(1.23e-7) (2.14e-8) (4.41e-5) (1.24e-5)

UF3 1.84e-2 2.51e-2 4.05e-09 1.46e-1 1.36e-1 4.67e-01
(1.09e-5) (1.09e-5) (2.61e-2) (1.43e-2)

UF4 2.93e-2 2.66e-2 2.20e-65 4.99e-2 4.54e-2 2.70e-20
(7.50e-7) (3.42e-7) (2.74e-5) (2.26e-5)

UF5 5.80e-2 5.47e-2 9.51e-06 1.32e-1 1.24e-1 1.21e-03
(5.58e-5) (4.98e-5) (9.56e-4) (7.51e-4)

UF6 2.74e-2 3.04e-2 1.27e-05 8.86e-2 9.78e-2 3.48e-03
(6.10e-5) (7.43e-5) (2.06e-3) (2.13e-3)

UF7 4.15e-3 5.08e-3 9.58e-66 2.96e-2 4.76e-2 9.84e-48
(5.61e-8) (1.59e-6) (9.40e-4) (2.33e-4)

Table 7: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 with EBA archiving and dynamic setting of maximum number of
coordinates for pattern search vs MACS2.1 with EBA archiving and static setting
of maximum number of coordinates for pattern search on the CEC 2009 problems.
Also reported the Wilcoxon test result

Problem MACS2.1 MACS2.1 old social Wilcoxon MACS2.1 MACS2.1 old social Wilcoxon
IGD IGD test IGD Hausdorff Hausdorff test Hausdorff

UF1 4.09e-3 4.14e-3 1.96e-04 1.65e-2 2.53e-2 2.71e-06
(9.58e-9) (2.63-e8) (5.53e-5) (1.54e-3)

UF2 4.43e-3 4.11e-3 8.44e-36 2.09e-2 1.54e-2 2.36e-27
(1.23e-7) (1.83e-8) (4.41e-5) (9.18e-6)

UF3 1.84e-2 1.95e-2 2.95e-04 1.46e-1 8.41e-2 5.16e-31
(1.09e-5) (4.03e-6) (2.61e-2) (1.24e-2)

UF4 2.93e-2 2.76e-2 5.87e-48 4.99e-2 4.64e-2 2.22e-15
(7.50e-7) (7.04e-7) (2.74e-5) (2.39e-5)

UF5 5.80e-2 5.75e-2 5.33e-01 1.32e-1 1.30e-1 4.49e-01
(5.58e-5) (5.01e-5) (9.56e-4) (8.26e-4)

UF6 2.74e-2 3.05e-2 2.47e-05 8.86e-2 1.01e-1 5.35e-05
(6.10e-5) (6.63e-5) (2.06e-3) (2.67e-3)

UF7 4.15e-3 4.60e-3 4.13e-39 2.96e-2 3.31e-2 3.39e-13
(5.61e-7) (1.14e-7) (9.40e-4) (7.54e-5)

Table 8: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 vs MACS2.1 with old social moves on the CEC2009 problems. Also
reported the Wilcoxon test result

18 Lorenzo A. Ricciardi, Massimiliano Vasile

%IGD < MACS2.1 MACS2.1 MOEA/D MOEA/D MACS2.1 MACS2.1 MACS2
τ NO EBA + EBA static pat old social

UF1 100 94.5 85.0 98.0 76.0 99.0 79.5
(τ=4.5e-3)

UF2 93.5 88.5 0.5 13.0 99.5 100 100
(τ=5.0e-3)

UF3 68.5 67.5 95.0 95.0 9.0 61.0 3.5
(τ=2.0e-2)

UF4 78.5 78.5 0 0 100 100 100
(τ=3.0e-2)

UF5 16.0 12.0 0 0 25.0 15.0 36.5
(τ=5.0e-2)

UF6 70.0 74.5 0 0 56.0 53.5 36.5
(τ=3.0e-2)

UF7 92.0 60.0 64.5 92.0 1.5 40.5 1.5
(τ=4.5e-3)

Table 9: Success rates for the IGD of the CEC2009 functions for all the tested algo-
rithms and their variants

4.2 ZDT4 and 3 impulse problem

To further test the capabilities of MACS2.1 we run it 200 times on the ZDT4 test
function and on a real space trajectory optimisation problem. In the space trajectory
design problem the goal is to optimise three impulsive manoeuvres to transfer a
spacecraft from a circular Low Earth Orbit, with a radius of 7000km, to a circular
Geostationary orbit, with a radius of 42000km (for further details on the problem the
interested reader can refer to [3]). The motivation behind the choice of the ZDT4
and the 3 impusle test case is that both of them are characterised by many local
Pareto fronts. The settings for MACS2.1 are reported in table 10, 200 solutions per
run were maintained in the archive. The performance of MACS2.1 was compared
against the perfomance of MACS2, whose settings were specified as in [5].

Note that, for the 3 impulse case the true Pareto front is unknown, thus for self
consistence a global Pareto front was extracted from all the 400 runs and used as a
reference Pareto front for the calculation of all the metrics.

Tables 11 and 12 report the metrics computed for both the ZDT4 and 3 impulse
problem and the corresponding success rates. On the ZDT4 case MACS2.1 outper-
forms MACS2.

The 3 impulse case gives less clear results instead. Although many interesting
areas of the global Pareto front are due to MACS2.1, the mean IGD associated to its
solutions is higher than the mean IGD of the solutions computed by MACS2. This is
due to the fact (see Figure 2) that MACS2 is contributing to the global Pareto front
with twice as many points than MACS2.1, and all those points are concentrated in a
central area, while the contribution from MACS2.1 is as expected more widespread
and surprisingly a bit scarce in the central area. Thus, the typical run of MACS2 will
generate many points close to the over represented region, while the typical run of

Improved archiving and search strategies for Multi Agent Collaborative Search 19

MACS2.1 will generate less points in that area but more widely spread points, and
this results in the averaged IGD of MACS2.1 to be higher than that of MACS2. The
Averaged Hausdorff distance instead does not suffer from this kind of bias, thus the
lower value of this metric is associated to the fronts computed by MACS2.1.

Table 10: Settings of
MACS2.1 on the 3 impulse
and ZDT4 problems (in
brackets)

n f eval,max npop ρini F CR psocial ρcontr ρmax,contr
30000 10 1 0.9 0.9 1 0.5 5

(15000) (10) (1) (0.9) (0.9) (1) (0.5) 5

Problem MACS2.1 MACS2 Wilcoxon MACS2.1 MACS2 Wilcoxon
IGD IGD test Hausdorff Hausdorff test

zdt4 7.6e4-3 8.01e-1 3.00e-64 2.52e-2 2.62e+0 1.20e-62
(1.05e-4) (2.48e-1) (7.59e-4) (3.60e+0)

3 imp 2.78e-1 1.17e-2 1.32e-43 2.89e+2 3.45e+2 7.41e-31
(2.81e-2) (1.07e-3) (7.11e+3) (6.05e+3)

Table 11: Mean (variance in brackets) for the IGD and averaged Hausdorff distances
for MACS2.1 vs MACS2 on zdt4 and triple impulse problems. Also reported the
Wilcoxon test result

% IGD < MACS2 MACS2.1 % Hausdorff < MACS2 MACS2.1
τ τ

zdt4(τ=1e-2) 1.5 83.5 zdt4(τ=5e-2) 3.0 97.5
3imp(τ=1e-1) 29.5 3.0 3imp(τ=3e+2) 5.0 82.5

Table 12: ZDT4 and triple impulse success rates for MACS2 and MACS2.1 and the
various metrics

20 Lorenzo A. Ricciardi, Massimiliano Vasile

Delta v [km/s]
2 4 6 8 10 12 14 16

T
 [h

]

0

5

10

15

20

25

30
Contribution of MACS2 to the global Pareto front (1473 points)

(a) Contribution of MACS2

Delta v [km/s]
2 4 6 8 10 12 14 16

T
 [h

]

0

5

10

15

20

25

30
Contribution of MACS2.1 to the global Pareto front (738 points)

(b) Contribution of MACS2.1

Fig. 2: Contribution of the different algorithms to the global Pareto front

5 Conclusions

In this paper we presented a new archiving strategy and some modified search
heuristics for MACS2. The results computed by the new algorithm, called MACS2.1,
are overall better than those computed by MOEA/D on the UF test set. MACS2.1
outperformed also MACS2 in 5 over 7 of the UF functions and on the ZDT4 test
case. In the 3 impulse case, MACS2.1 contributes with a wide spread of points to the
Pareto front not concentrated in the central area densely covered by MACS2. The
better IGD scored by MACS2 in this case can be explained by an uneven distribu-
tion of points on the global Pareto front. This is confirmed by the fact that MACS2.1
shows a better Averaged Hausdorff distance, a metric which does not resent from
this kind of bias.

The effectiveness of the archiving strategy at extracting well spread Pareto fronts
was shown both by comparing the results obtained by MACS2.1 with and without
EBA, and by comparing the results obtained by MOEA/D with and without EBA.

The effect of the modified strategies employed in the current version of MACS
was also investigated. From the results of our tests, we can conclude that the strat-
egy to dynamically change the number of directions scanned by the pattern search
algorithm can have a deep positive impact on some problems and a slightly negative
impact on others. The new implementation of the social actions gives less clear re-
sults instead: further studies are required to assess how it is influenced by the choice
of the sub problems, and how do these new strategies interact in general. Interesting
future research options involve the use of more sophisticated local search heuris-
tics in combination with a Monotonic Basin Hopping strategy already successfully
tested in [6].

Improved archiving and search strategies for Multi Agent Collaborative Search 21

References

[1] Federico Zuiani and Massimiliano Vasile. Preliminary design of debris re-
moval missions by means of simplified models for low-thrust, many-revolution
transfers. International Journal of Aerospace Engineering, 2012, 2012.

[2] Federico Zuiani, Yasuhiro Kawakatsu, and Massimiliano Vasile. Multi-
objective optimisation of many-revolution, low-thrust orbit raising for destiny
mission. In 23rd AAS/AIAA Space Flight Mechanics Conference, 2013.

[3] M. Vasile and F. Zuiani. Multi-agent collaborative search: an agent-based
memetic multi-objective optimization algorithm applied to space trajectory de-
sign. Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, 225(11):1211–1227, 2011.

[4] Federico Zuiani and Massimiliano Vasile. Improved individualistic actions for
multi-agent collaborative search. In EVOLVE, 2013.

[5] Federico Zuiani and Massimiliano Vasile. Multi agent collaborative search
based on tchebycheff decomposition. Computational Optimization and Appli-
cations, 56(1):189–208, 2013.

[6] Federico Zuiani and Massimiliano Vasile. Multi agent collaborative search
with thecycheff decomposition and monotonic basin hopping. In BIOMA, May
2012.

[7] Qingfu Zhang, Aimin Zhou, Shizheng Zhao, Ponnuthurai Nagaratnam Sugan-
than, Wudong Liu, and Santosh Tiwari. Multiobjective optimization test in-
stances for the cec 2009 special session and competition. University of Essex,
Colchester, UK and Nanyang technological University, Singapore, special ses-
sion on performance assessment of multi-objective optimization algorithms,
technical report, pages 1–30, 2008.

[8] Qingfu Zhang, Wudong Liu, and Hui Li. The performance of a new version
of moea/d on cec09 unconstrained mop test instances. In IEEE Congress on
Evolutionary Computation, volume 1, pages 203–208, 2009.

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Com-
putation, IEEE Transactions on, 6(2):182–197, 2002.

[10] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiob-
jective evolutionary algorithms: Empirical results. Evolutionary computation,
8(2):173–195, 2000.

[11] Oliver Schütze, Xavier Esquivel, Adriana Lara, and Carlos A Coello Coello.
Using the averaged hausdorff distance as a performance measure in evolution-
ary multiobjective optimization. Evolutionary Computation, IEEE Transac-
tions on, 16(4):504–522, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/326158739

