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Abstract: Since Mao in 2013 discretised the system observations for stabilisation problem of hybrid SDEs (stochastic differential
equations with Markovian switching) by feedback control, the study of this topic using a constant observation frequency has been
further developed. However, the time-varying observation frequencies have not been considered yet. Particularly, an observational
more efficient way is to consider the time-varying property of the system and observe a periodic SDE system at the periodic
time-varying frequencies. This paper investigates how to stabilise a periodic hybrid SDE by a periodic feedback control, based on
periodic discrete-time observations. This paper provides sufficient conditions under which the controlled system can achieve pth
moment exponential stability for p > 1 and almost sure exponential stability. The Lyapunov method and inequalities are main tools
of our derivation and analysis. The existence of observation interval sequence is verified and one way of its calculation is provided.
Finally, an example is given for illustration. Our new techniques not only reduce the observational cost by reducing observation
frequency dramatically, but also offer the flexibility on system observation settings. This paper allows readers to set observation
frequencies for some time intervals according to their needs to some extent.

Keywords: Stochastic differential equations, exponential stabilisation, Markovian switching, Periodic stochastic systems, Feedback
control, discrete-time observations.

1 Introduction

In the past decades, stochastic differential equations have been play-
ing a critical role in many areas including engineering, finance,
population ecology, etc., and catching increasing attentions from sci-
entists and engineers. For example, due to its ability to capture the
influence of noise, SDE has been used as an important tool in explo-
rations of autonomous vehicles in recent years (see e.g. [1]-[3]). In
particular, hybrid SDEs have been widely used for modelling sys-
tems that may undergo abrupt changes in structures and parameters,
which can be caused by environmental disturbances or accidents.
An intriguing topic for SDEs is automatic control. Different sta-
bilities for various systems including uncertain, jump and singular
systems etc. using different control schemes including feed forward,
feedback and sliding mode control, etc. have been studied (e.g.
[4]-[17]).

Consider a hybrid SDE system

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (1.1)

on t ≥ 0, where x(t) ∈ Rn is the system state, B(t) is a Brownian
motion, r(t) is a Markov chain (please see Section 2 for formal def-
initions) which represents the system mode. If system (1.1) is not
stable and need to be stabilized by a feedback control, a traditional
controller based on continuous-time observations are not realistic
and expensive, so Mao [13] discretised the system observations and
used a constant observation interval τ , which is a positive number.

The system needs to be observed at time points 0, τ, 2τ, 3τ, · · · , in
[13]. Later this study has been developed by many researchers (see
e.g. [18]-[24]).

However, a constant frequency of observations cannot make use
of the time-varying property. For a non-autonomous system, whose
coefficients depend on time explicitly, a time-varying observation
frequency is more sensible than the constant one. Intuitively, when
the system state or mode change rapidly, we should observe them
very frequently and vice versa.

A particular interest for a time-varying system is its periodicity.
Periodic phenomena are all around us, such as satellite orbit, sea-
sons, wave vibration, etc. Stochastic models involving periodicity
have been studied by researchers due to their wide applications in
many areas. To name a few, periodic stochastic volatility, almost
periodic solutions for SDEs, quantification of periodic, stochastic,
and catastrophic environmental variation, almost periodic stochastic
processes, etc. (see e.g. [25]-[32]). Control problem for periodic sys-
tems has also received increasing attentions. To name a few, output
regulation problem for uncertain linear periodic systems, stabiliza-
tion problem for periodic orbits of hybrid systems, control problem
for periodic ETC (event-triggered control) systems and periodic
piecewise linear systems, etc. (see e.g. [33]-[38]).

Since the existing techniques cannot be generalized to cope with
the time-varying system observations, this paper uses a new method
to investigate: how to stabilise a non-autonomous periodic (i.e., the
system coefficients change with time explicitly periodically) hybrid
SDE, by a periodic feedback control based on periodic discrete-time
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observations, and make the controlled system exponentially stable,
almost surely and in pth moment for p > 1.

Define a periodic observation interval sequence to be {τj}j≥1

such that

τkM+j = τj

for a positive integer M , ∀k = 0, 1, 2, · · · and j = 1, 2, · · · ,M . In
other words, the system will be observed at time points 0, τ1, τ1 +
τ2, τ1 + τ2 + τ3, · · · . Note that for any t ≥ 0, there is a positive
integer k such that

k∑
j=1

τj ≤ t <
k+1∑
j=1

τj ,

then we can define a step function

δt :=

k∑
j=1

τj . (1.2)

Consequently, the controlled system regarding to (1.1) has the form

dx(t) =[f(x(t), r(t), t) + u(x(δt), r(δt), t)]dt

+ g(x(t), r(t), t)dB(t). (1.3)

By making use of the time-varying property, our new results have
two main advantages over the existing theory:
1) reducing the obseration frequency and hence the cost of control.
2) offering the flexibility to set part of the observation frequencies.

The remainder of this paper is organised as follows. Notations
are explained in Section 2. In Section 3, we state the stabilisation
problem, establish the new theory and provide a useful corollary.
In Section 4, we explain how to calculate the observation interval
sequence. Section 5 presents a numerical example and Section 6
concludes this paper.

2 Notation

Let (Ω,F , {Ft}t≥0,P) be a complete probability space with fil-
tration {Ft}t≥0 which is increasing and right continuous with F0

contains all P-null sets. Let R+ denote the set of all non-negative
real numbers [0,∞). We write the transpose of a matrix or vector A
as AT . Denote the m-dimensional Brownian motion defined on the
probability space by B(t) = (B1(t), · · · , Bm(t))T . For a vector x,
|x| means its Euclidean norm. For a matrix Q, its trace norm |Q| =√

trace(QTQ) and its operator norm ‖Q‖ = max{|Qx| : |x| = 1}.
For a real symmetric matrix Q, λmin(Q) and λmax(Q) mean its
smallest and largest eigenvalues respectively. There are some pos-
itive constants whose specific forms are not used for analysis. For
simplicity, we denote those positive constants by C, regardless of
their values.

Let r(t) for t ≥ 0 be a right-continuous Markov chain on
the probability space taking values in a finite state space S =
{1, 2, · · · , N} with generator matrix Γ = (γij)N×N , whose ele-
ments γij are the transition rates from state i to j for i 6= j and
γii = −

∑
j 6=i γij . We assume the Markov chain r(·) is indepen-

dent of the Brownian motion w(·). Define a positive number γ :=
−mini∈S γii.

Define a step function ξt for t ≥ 0 based on the observation inter-
val sequence. Let ξt := τk+1 for any t ∈ [

∑k
j=1 τj ,

∑k+1
j=1 τj).

This means

δt ≤ t < δt + ξt.

For example, when t ∈ [0, τ1), we have δt = 0 and ξt = τ1; when
t ∈ [τ1, τ1 + τ2), we have δt = τ1 and ξt = τ2; when t ∈ [τ1 +

τ2, τ1 + τ2 + τ3), we have δt = τ1 + τ2 and ξt = τ3; · · · . The
periodicity of function ξt follows from the periodicity of the
sequence {τj}j≥1.

Define two positive parameters depending on the moment order
p:

ζ =

{
( 32
p )

p
2 for p ∈ (1, 2),

[
p(p−1)

2 ]
p
2 for p ≥ 2.

and

θ =

( 32
p )

p
2 for p ∈ (1, 2),(
pp+1

2(p−1)p−1

) p
2

for p ≥ 2.

3 Stabilisation Problem

Consider an n-dimensional periodic hybrid SDE

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (3.1)

on t ≥ 0, with initial values x(0) = x0 ∈ Rn and r(0) = r0 ∈ S.
Here

f : Rn × S× R+ → Rn and g : Rn × S× R+ → Rn×m.

The given system may not be stable and our aim is to design a
feedback control u : Rn × S× R+ → Rn for stabilisation.

The controlled system corresponding to (3.1) has the form

dx(t) =[f(x(t), r(t), t) + u(x(δt), r(δt), t)]dt

+ g(x(t), r(t), t)dB(t). (3.2)

Assumption 3.1. Assume that f(x, i, t), g(x, i, t) and u(x, i, t) are
all periodic with respect to time t. Assume f , g, u and ξt have a
common period T .

The assumption that T is a period of ξt means ξt = ξt+kT for
k = 0, 1, 2, · · · and

∑M
j=1 τj = T .

Assumption 3.2. Assume that the coefficients f(x, i, t) and
g(x, i, t) are both locally Lipschitz continuous on x (see e.g. [7]).
and satisfy the following linear growth condition

|f(x, i, t)| ≤ K1(t)|x| and |g(x, i, t)| ≤ K2(t)|x| (3.3)

for all (x, i, t) ∈ Rn × S× R+, where K1(t) and K2(t) are peri-
odic non-negative continuous functions with period T .

Note (3.3) implies that

f(0, i, t) = 0 and g(0, i, t) = 0 (3.4)

for all (i, t) ∈ S× R+.

Assumption 3.3. Assume

|u(x, i, t)− u(y, i, t)| ≤ K3(t)|x− y| (3.5)

for all (x, y, i, t) ∈ Rn × Rn × S× R+, where K3(t) is a peri-
odic non-negative continuous function with period T . Moreover, we
assume

u(0, i, t) = 0 (3.6)

for all (i, t) ∈ S× R+.
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Assumption 3.3 implies that the controller function u(x, i, t) is
globally Lipschitz continuous on x and satisfies

|u(x, i, t)| ≤ K3(t)|x| (3.7)

for all (x, i, t) ∈ Rn × S× R+.

Remark 3.4. For linear controller of the form u(x, i, t) = Ui(t)x,
where Ui(t) are n× n real matrices with periodic time-varying
elements for t ≥ 0 and i ∈ S, we can set K3(t) = ‖Ui(t)‖, if the
operator norm ‖Ui(t)‖ is a continuous function of time.

Let

K1 ≥ max
0≤t≤T

K1(t), K2 ≥ max
0≤t≤T

K2(t)

and K3 ≥ max
0≤t≤T

K3(t).

Let U(x, i, t) be a Lyapunov function periodic with respect to t,
and we require U ∈ C2,1(Rn × S× R+;R+). Then based on the
controlled system, we define LU : Rn × S× R+ → R by

LU(x, i, t) =Ut(x, i, t) + Ux(x, i, t)[f(x, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, i, t)Uxx(x, i, t)g(x, i, t)]

+

N∑
k=1

γikU(x, k, t). (3.8)

Assumption 3.5. For a fixed moment order p > 1, we assume that
there is a pair of positive numbers c1 and c2 such that

c1|x|p ≤ U(x, i, t) ≤ c2|x|p (3.9)

for all (x, i, t) ∈ Rn × S× R+.

Remark 3.6. For Lyapunov functions of the form

U(x(t), r(t), t) = (xT (t)Qr(t)x(t))
p
2 ,

where Qr(t) are positive-definite symmetric n× n matrices,
Assumption 3.5 holds and we can set

c1 = min
i∈S

λ
p
2
min(Qi) and c2 = max

i∈S
λ

p
2
max(Qi).

Assumption 3.7. Assume that there is a Lyapunov function
U(x, i, t) and a positive continuous function λ(t) which have a
common period T , constants l > 0 and p > 1 such that

LU(x, i, t) + l|Ux(x, i, t)|
p

p−1 ≤ −λ(t)|x|p (3.10)

for all (x, i, t) ∈ Rn × S× [0, T ].

Let us divide [0, T ] into Z − 1 subintervals, where Z ≥ 2 is an
arbitrary integer, by choosing a partition {Tj}1≤j≤Z with T1 = 0
and TZ = T . Then we define the following three step functions on
t ≥ 0 with periodic T :

K̂1t = sup
Tj≤s≤Tj+1

K1(s) for Tj ≤ t < Tj+1,

K̂2t = sup
Tj≤s≤Tj+1

K2(s) for Tj ≤ t < Tj+1,

K̂3t = sup
Tj≤s≤Tj+1

K3(s) for Tj ≤ t < Tj+1, (3.11)

where j = 1, · · · , Z − 1.

Before proposing our theorem, let us define two periodic step
functions:

ϕ1t :=8p−1ξpt K̂
p
3t + 16p−1ξ

p
2
t (1 + ξpt K̂

p
3t)(2

p−1ξ
p
2
t K̂

p
1t + ζK̂p

2t)

× exp(4p−1ξpt K̂
p
1t + 4p−1ξ

p
2
t θK̂

p
2t);

and

ϕ2t := 8p−1ξpt K̂
p
3t +

16p−1ξ
p
2
t (1 + ξpt K̂

p
3t)(2

p−1ξ
p
2
t K̂

p
1 + ζK̂p

2 )

1− 4p−1ξ
p
2
t (ξ

p
2
t K̂

p
1t + θK̂p

2t)
,

for sufficiently small ξt such that 4p−1ξ
p
2
t (ξ

p
2
t K̂

p
1t + θK̂p

2t) < 1.

3.1 Main Result

Theorem 3.8. Let the system satisfies Assumptions 3.1 and 3.2.
Design the feedback control such that Assumptions 3.3, 3.5 and 3.7
hold. Divide [0, T ] into Z − 1 subintervals with T1 = 0 and TZ =
T . Choose the observation interval sequence {τj}1≤j≤M suffi-
ciently small such that ξt ≤ Tj+1 − Tj for t ∈ [Tj , Tj+1) where
j = 1, 2, · · · , Z − 1 and the following two conditions hold:
1) for ∀t ∈ [0, T ),
either

ϕt = ϕ1t < 1, (3.12)

or

ϕt = ϕ2t < 1 and 4p−1ξ
p
2
t (ξ

p
2
t K̂

p
1t + θK̂p

2t) < 1; (3.13)

2) ∫T
0
β(t)dt > 0, (3.14)

where

β(t) := β(ξt, t) =
λ(t)

c2
− 1

c2p(1− ϕt)
(
p− 1

pl
)p−1Kp

3 (t)

×
[
23p−2(1− e−γξt) + 2p−1ϕt

]
. (3.15)

Then the solution of the controlled system (3.2) satisfies

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ − v

T
(3.16)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ − v

pT
a.s. (3.17)

for all initial data x0 ∈ Rn and r0 ∈ S, where

v =

∫T
0
β(t)dt.

Remark 3.9. Notice that T is a period of ϕt, then T is also a period
of β(t). For ϕt defined in either (3.12) or (3.13), we have the follow-
ing discussion: when ξt = 0, ϕt = 0, then β(t) = λ(t)/c2 > 0; if
ξt increases, both ϕt and ϕt

1−ϕt
increases, then β(t) will decrease.

So there exists ξt > 0 for 0 ≤ t < T such that
∫T

0 β(t)dt > 0.

We will use the same observation frequency in one subinterval of
[0, T ].
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Remark 3.10. Notice that ξt is a right-continuous step function.
Since we use the same observation frequency within the same subin-
terval [Tj , Tj+1) where j = 1, · · · , Z − 1, ξt is constant for t ∈
[Tj , Tj+1). Notice that K̂1t, K̂2t and K̂3t are also right-continuous
step functions which are constant for t ∈ [Tj , Tj+1). So is ϕt.
Therefore, β(t) is a right-continuous step function which only jumps
at T1, T2, · · · .

We can calculate the observation interval sequence using both
conditions (3.12) and (3.13) respectively, then choose the one that
yields less frequent observations.

3.2 Proof of the Main Result

Proof.
Step 1. Fix any x0 ∈ Rn and r0 ∈ S. By the generalized Itô formula,
we have

EU(x(t), r(t), t) = U0 +

∫ t
0
ELU(x(s), r(s), s)ds, (3.18)

where U0 = U(x(0), r(0), 0) and

LU(x(s), r(s), s)

=Us(x(s), r(s), s) +

N∑
k=1

γikU(x, k, s)

+ Ux(x(s), r(s), s)[f(x(s), r(s), s) + u(x(δs), r(δs), s)]

+
1

2
trace[gT (x(s), r(s), s)Uxx(x(s), r(s), s)g(x(s), r(s), s)].

(3.19)

Notice that LU(x(s), r(s), s) can be rewritten as

LU(x(s), r(s), s) =LU(x(s), r(s), s)− Ux(x(s), r(s), s)

× [u(x(s), r(s), s)− u(x(δs), r(δs), s)].
(3.20)

By the Young inequality, we can derive that

− Ux(x(s), r(s), s)[u(x(s), r(s), s)− u(x(δs), r(δs), s)]

≤
[
ε|Ux(x(s), r(s), s)|

p
p−1

] p−1
p

×
[
ε1−p|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

] 1
p

≤l|Ux(x(s), r(s), s)|
p

p−1

+
1

p
(
p− 1

pl
)p−1|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p,

(3.21)

where l = p−1
p ε for ∀ε > 0.

According to Lemma 1 in [21], for any t ≥ t0, v > 0 and i ∈ S,

P(r(s) 6= i for some s ∈ [t, t+ v]
∣∣∣r(t) = i) ≤ 1− e−γv. (3.22)

By Assumption 3.3, we have

E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

=E
[
E
(
|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

∣∣∣Fδs)]
≤22p−1Kp

3 (s)(1− e−γξs)[E|x(s)|p + E|x(δs)− x(s)|p].
(3.23)

Then by the elementary inequality |a+ b|p ≤ 2p−1(|a|p + |b|p) for
a, b ∈ R and p > 1, we have

E|u(x(s), r(s), s)− u(x(δs), r(δs), s)|p

≤2p−1E|u(x(δs), r(δs), s)− u(x(δs), r(s), s)|p

+ 2p−1E|u(x(δs), r(s), s)− u(x(s), r(s), s)|p

≤23p−2Kp
3 (s)(1− e−γξs)E|x(s)|p

+ [23p−2Kp
3 (s)(1− e−γξs) + 2p−1Kp

3 (s)]E|x(δs)− x(s)|p.
(3.24)

Substitute (3.24) into (3.21). Then by (3.20) and Assumption 3.7,
we obtain that

ELU(x(s), r(s), s)

≤− [λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γξs)]E|x(s)|p

+
1

p
(
p− 1

pl
)p−1Kp

3 (s)[23p−2(1−e−γξs)+ 2p−1]E|x(δs)−x(s)|p.

(3.25)

Note that t− δt ≤ ξt for all t ≥ 0. By the Itô formula, Hölder’s
inequality, the Burkholder-Davis-Gundy inequality (see e.g. [5,
p.40]) and [5, Theorem 7.1 on page 39], we obtain that (see e.g.
[23])

E|x(t)− x(δt)|p

≤2p−1ξ
p−2
2

t E
∫ t
δt

[
ξ

p
2
t |f(x(s), r(s), s) + u(x(δs), r(δs), s)|p

+ ζ|g(x(s), r(s), s)|p
]
ds. (3.26)

Let

Û(x(t), r(t), t) = e
∫t
0
β(s)dsU(x(t), r(t), t).

We can obtain from the generalized Itô formula that

EÛ(x(t), r(t), t)

=EU0 + E
∫ t
0
LÛ(x(s), r(s), s)ds

≤EU0 +

∫ t
0
e
∫s
0
β(z)dz[ELU(x(s), r(s), s)

+ β(s)EU(x(s), r(s), s)
]
ds, (3.27)

where LU(x(s), r(s), s) has been defined in (3.19).

By (3.26), Assumptions 3.2 and 3.3, we have that for any s ∈
[δs, δs + ξs),

E|x(s)− x(δs)|p

≤4p−1ξp−1
s

∫s
δs

Kp
3 (z)dzE|x(δs)|p

+ 2p−1ξ
p−2
2

s E
∫s
δs

[2p−1ξ
p
2
s K

p
1 (z) + ζKp

2 (z)]|x(z)|pdz

≤4p−1ξps K̂
p
3sE|x(δs)|p

+ 2p−1ξ
p
2
s [2p−1ξ

p
2
s K̂

p
1s + ζK̂p

2s]E
(

sup
δs≤t≤s

|x(t)|p
)
. (3.28)
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Step 2. We will prove that under either condition (3.12) or (3.13),
we have

E|x(s)− x(δs)|p ≤
ϕs

1− ϕs
E|x(s)|p, (3.29)

for the corresponding ϕs.
Firstly, we prove it using condition (3.12).

By the elementary inequality |
∑k
i=1 xi|

p ≤ kp−1∑k
i=1 |xi|

p

for p ≥ 1 and xi ∈ R (see e.g. [7]), Hölder’s inequality and the
Burkholder-Davis-Gundy inequality (see e.g. [5, page 40]), we have
that

E
(

sup
δs≤t≤s

|x(t)|p
)

≤4p−1E|x(δs)|p + 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t
δs

f(x(z), r(z), z)dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t
δs

u(x(δz), r(δz), z)]dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t
δs

g(x(z), r(z), z)dB(z)
∣∣∣p)

≤4p−1E|x(δs)|p + (4ξs)
p−1

× E
(

sup
δs≤t≤s

∫ t
δs

[Kp
1 (z)|x(z)|p +Kp

3 (z)|x(δs)|p]dz
)

+ 4p−1ξ
p−2
2

s θE
(

sup
δs≤t≤s

∫ t
δs

Kp
2 (z)|x(z)|pdz

)
≤
[
4p−1+(4ξs)

p−1
∫s
δs

Kp
3 (z)dz

]
E|x(δs)|p

+
[
(4ξs)

p−1K̂p
1s + 4p−1ξ

p−2
2

s θK̂p
2s

] ∫s
δs

E
(

sup
δs≤z≤t

|x(z)|p
)
dt

Then the Gronwall inequality implies

E
(

sup
δs≤t≤s

|x(t)|p
)
≤
[
4p−1+(4ξs)

p−1
∫s
δs

Kp
3 (z)dz

]
E|x(δs)|p

× exp(4p−1ξps K̂
p
1s+4p−1ξ

p
2
s θK̂

p
2s).

(3.30)

Substituting this into (3.28) gives

E|x(s)− x(δs)|p

≤4p−1ξ
p
2
s

[
ξ

p
2
s K̂

p
3s + 2p−1(1 + ξps K̂

p
3s)(2

p−1ξ
p
2
s K̂

p
1s + ζK̂p

2s)

× exp(4p−1ξps K̂
p
1s + 4p−1ξ

p
2
s θK̂

p
2s)
]
E|x(δs)|p.

Noticing that

E|x(δs)|p ≤ 2p−1E|x(s)|p + 2p−1E|x(s)− x(δs)|p

for all p > 1, we have

E|x(s)− x(δs)|p ≤ ϕs[E|x(s)|p + E|x(s)− x(δs)|p],

where ϕs was been defined in (3.12). Rearranging it gives (3.29).

Alternatively, we prove it under condition (3.13).

By the elementary inequality, Hölder’s inequality and the
Burkholder-Davis-Gundy inequality, we have that

E
(

sup
δs≤t≤s

|x(t)|p
)

≤4p−1E|x(δs)|p + 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t
δs

f(x(z), r(z), z)dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t
δs

u(x(δz), r(δz), z)]dz
∣∣∣p)

+ 4p−1E
(

sup
δs≤t≤s

∣∣∣ ∫ t
δs

g(x(z), r(z), z)dB(z)
∣∣∣p)

≤4p−1E|x(δs)|p + (4ξs)
p−1

× E
(

sup
δs≤t≤s

∫ t
δs

[Kp
1 (z)|x(z)|p +Kp

3 (z)|x(δs)|p]dz
)

+ 4p−1ξ
p−2
2

s θE
(

sup
δs≤t≤s

∫ t
δs

Kp
2 (z)|x(z)|pdz

)
≤4p−1(1 + ξps K̂

p
3s)E|x(δs)|p

+ 4p−1ξ
p
2
s (ξ

p
2
s K̂

p
1s + θK̂p

2s)E
(

sup
δs≤t≤s

|x(t)|p
)
. (3.31)

The condition in (3.13) requires that 4p−1ξ
p
2
t (ξ

p
2
t K̂

p
1t + θK̂p

2t) <
1. So we can rearrange (3.31) and get

E
(

sup
δs≤z≤s

|x(z)|p
)
≤

4p−1(1 + ξps K̂
p
3s)

1− 4p−1ξ
p
2
s (ξ

p
2
s K̂

p
1s + θK̂p

2s)
E|x(δs)|p.

(3.32)

Substituting this into (3.28) gives

E|x(s)− x(δs)|p

≤
[
4p−1ξps K̂

p
3s +

8p−1ξ
p
2
s (2p−1ξ

p
2
s K̂

p
1 + ζK̂p

2 )(1 + ξps K̂
p
3s)

1− 4p−1ξ
p
2
s (ξ

p
2
s K̂

p
1s + θK̂p

2s)

]
× E|x(δs)|p

≤ϕs(E|x(s)|p + E|x(s)− x(δs)|p), (3.33)

where ϕs has been defined in (3.13).
Since condition (3.13) requires ϕt < 1 for all t > 0, we can rear-
range (3.33) and obtain (3.29).

Step 3. Substitute (3.29) into (3.25). Then by (3.15), we have

ELU(x(s), r(s), s)

≤− [λ(s)− 1

p
(
p− 1

pl
)p−1Kp

3 (s)23p−2(1− e−γξs)]E|x(s)|p

+
1

p
(
p− 1

pl
)p−1 ϕs

1− ϕs
Kp

3 (s)[23p−2(1−e−γξs)+2p−1]E|x(s)|p

≤− c2β(s)E|x(s)|p. (3.34)

Substitute (3.34) into (3.27). Then by Assumption 3.5, we have

EÛ(x(t), r(t), t)

≤EU0 +

∫ t
0
e
∫s
0
β(z)dz [ELU(x(s), r(s), s) + c2β(s)E|x(s)|p]ds

≤EU0. (3.35)

Assumption 3.5 indicates that

c1e
∫t
0
β(s)dsE|x(t)|p ≤ EÛ(x(t), r(t), t) ≤ EU0.

IET Research Journals, pp. 1–11
c© The Institution of Engineering and Technology 2015 5



Then

E|x(t)|p ≤ Ce−
∫t
0
β(s)ds.

Recall that C’s denote positive constants.
So we have

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ lim sup

t→∞

−1

t

∫ t
0
β(s)ds = − v

T
.

Hence we have obtained assertion (3.16).
Let ε ∈ (0, v2T ) be arbitrary. Then (3.16) implies that there exists

a constant C > 0 such that

E|x(t)|p ≤ Ce−(v/T−ε)t for ∀t ≥ 0. (3.36)

Notice that

4p−1(1 + ξpt K̂
p
3t)[1− 4p−1ξ

p
2
t (ξ

p
2
t K̂

p
1t + θK̂p

2t)]
−1

in (3.32) is bounded. It follows from (3.30) and (3.32) that

E
(

sup
δt≤s≤δt+ξt

|x(s)|p
)
≤ CE|x(δt)|p ≤ Ce−(v/T−ε)δt (3.37)

for ∀t ≥ 0.
Then by the Chebyshev inequality, we have

P
(

sup
δt≤s≤δt+ξt

|x(s)| ≥ exp[
δt
p

(2ε− v

T
)]
)
≤ Ce−εδt .

The Borel-Cantelli lemma indicates that, there is a t∗ = t∗(ω) > 0
for almost all ω ∈ Ω such that

sup
δt≤s≤δt+ξt

|x(s)| < exp[
δt
p

(2ε− v

T
)] for ∀t ≥ t∗.

So

log
1

t
(|x(t)|) < −(

v

T
− 2ε)

δt
pt
.

As t→∞,

lim sup
t→∞

1

t
log(|x(t, ω)|) ≤ −1

p
(
v

T
− 2ε) a.s.

Letting ε→ 0 gives assertion (3.17). The proof is complete. 2

3.3 Corollary

For Lyapunov functions of the form

U(x(t), r(t), t) = (xT (t)Qr(t)x(t))
p
2

where Qr(t) are positive-definite symmetric n× n matrices for p ≥
2, we propose the following corollary.

Assumption 3.11. Assume that there exist positive-definite symmet-
ric matrices Qi ∈ Rn×n (i ∈ S) and a periodic positive continuous
function b(t) such that

p(xTQix)
p
2−1

(
xTQi[f(x, i, t) + u(x, i, t)]

+
1

2
trace[gT (x, i, t)Qig(x, i, t)]

)
+ p(

p

2
− 1)[xTQix]

p
2−2|gTQix|2 +

N∑
j=1

γij [x
TQjx]

p
2

≤− b(t)|x|p, (3.38)

for all (x, i, t) ∈ Rn × S× [0, T ].

We can see that T is a period of b(t).

Corollary 3.12. If Assumptions 3.7 and 3.5 are replaced by
Assumption 3.11, then Theorem 3.8 still holds for p ≥ 2 with
c2 = maxi∈S λ

p
2
max(Qi), λ(t) = b(t)− ld where d = (pc2)

p
p−1

and 0 < l < min0≤t≤T b(t)/d.

Proof: Calculate condition (3.10) in Assumption 3.7 for U(x, i, t) =

(xTQix)
p
2 . Firstly, calculate the partial derivative

Ux(x, i, t) = p(xTQix)
p
2−1xTQi.

Then we have

|Ux(x, i, t)| ≤ pλ
p
2−1
max (Qi)‖Qi‖|x|p−1 = pc2|x|p−1.

Secondly, calculate the partial derivative Ut(x, i, t) = 0 and

Uxx(x, i, t)=p(p− 2)[xTQix]
p
2−2Qixx

TQi+p[x
TQix]

p
2−1Qi.

So LU(x, i, t) is equivalent to the left-hand-side of (3.38). This
means

LU(x, i, t) ≤ −b(t)|x|p.

Substitute these into (3.10), we get

LU(x, i, t) + l|Ux(x, i, t)|
p

p−1 ≤ (−b(t) + ld)|x|p = −λ(t)|x|p.

The condition l < min0≤t≤T b(t)/d guarantees λ(t) is positive.
Consequently, Assumption 3.7 can be guaranteed by Assumption
3.11. The proof is complete. 2

4 Computation and Discussion

4.1 Computation Procedure

Now we discuss how to divide [0, T ] and how to calculate the obser-
vation interval sequence. We can either use even division or divide
according to the shape of an auxiliary function. We use the same
observation frequency in one subinterval of [0, T ]. Notice that β can
be negative at some time points, we only need to guarantee that its
integral over [0, T ] is positive. This gives flexibility on the setting of
ξt. For example, we can choose to increase the shortest observation
interval to avoid high frequency observations by reducing the large
observation intervals in some time intervals, or choose to make the
large observation intervals even larger. This will be illustrated in the
example.

Here we show one method to find an observation interval
sequence that satisfies the conditions in Theorem 3.8, although there
are other ways. We can find an observation interval sequence that
satisfies the conditions in Theorem 3.8 by the following four steps:

Step 1. Choose to satisfy condition (3.12) or (3.13).
Suppose we choose condition (3.12).
Firstly, find a positive number ξ such that

8p−1ξ
p
K3

p
+ 16p−1ξ

p
2 (1 + ξ

p
K3

p
)(2p−1ξ

p
2K1

p
+ ζK2

p
)

× exp(4p−1ξ
p
K1

p
+ 4p−1ξ

p
2 θK2

p
)

≤ 1. (4.1)

Noticing that the left-hand-side is an increasing function of ξ, in
practice, we can find ξ by solving the equality in (4.1) numerically by
computer and then choosing ξ smaller than the approximate solution.
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Secondly, let ξ be a positive number to be determined. Define

ϕ̃(t) =8p−1ξpKp
3 (t) + 16p−1ξ

p
2 [1 + ξpKp

3 (t)]

× [2p−1ξ
p
2Kp

1 (t) + ζKp
2 (t)]

× exp[4p−1ξpKp
1 (t) + 4p−1ξ

p
2 θKp

2 (t)]

and

βa(t) =
λ(t)

c2
− 23p−2(1− e−γξ) + 2p−1ϕ̃(t)

c2p(1− ϕ̃(t))
(
p− 1

pl
)p−1Kp

3 (t).

Alternatively, suppose we choose (3.13).
Firstly, find a positive number ξ such that

4p−1ξ
p
2 (ξ

p
2K1

p
+ θK2

p
) < 1

and

8p−1ξ
p
K3

p
+

16p−1ξ
p
2 (1 + ξ

p
K3

p
)(2p−1ξ

p
2K1

p
+ ζK2

p
)

1− 4p−1ξ
p
2 (ξ

p
2K1

p
+ θK2

p
)

< 1.

Secondly, let ξ be a positive number to be determined. Define

ϕ̃(t) =8p−1ξpKp
3 (t)

+
16p−1ξ

p
2 [1 + ξpKp

3 (t)][2p−1ξ
p
2Kp

1 (t) + ζKp
2 (t)]

1− 4p−1ξ
p
2 [ξ

p
2Kp

1 (t) + θKp
2 (t)]

and βa(t) has the same form as above.
For choice of either (3.12) or (3.13), using corresponding definitions
above, choose a positive number ξ < ξ such that

∫T
0 βa(t)dt > 0.

Step 2. The second step is to divide [0, T ] intoZ − 1 subintervals.
There is no restriction on the partition. We can simply set even divi-
sion or divide according to the shape of βa(t), in which case we want
the maximum and minimum of βa(t) in each subinterval are rela-
tively close. Then set a sequence of Z − 1 numbers {β

j
}1≤j≤Z−1

such that

β
j
≤ min
Tj≤t≤Tj+1

βa(t) and
Z−1∑
j=1

β
j
(Tj+1 − Tj) ≥ 0.

If
Z−1∑
j=1

min
Tj≤t≤Tj+1

βa(t)(Tj+1 − Tj) ≥ 0,

then we can simply set β
j

= minTj≤t≤Tj+1
βa(t) for j =

1, · · · , Z − 1.

Step 3. Find the solution τ̃(t) for t ∈ [0, T ) to the following
equation

β(τ̃(t), t) = β
j

for j = 1, 2, · · · , Z − 1. (4.2)

An approximate solution by computer is enough. Then let τ̃j ≤
inft∈[Tj ,Tj+1) τ̃(t), i.e. the infimum of τ̃ over the jth subinterval,
for j = 1, · · · , Z − 1.

Find a function τ̃(t) with inft∈[0,T ) τ̃(t) > 0 such that

β(τ̃(t), t) ≥ β
j

for j = 1, 2, · · · , Z − 1. (4.3)

This can be done by solving Then let τ̃j = inft∈[Tj ,Tj+1) τ̃(t), i.e.
the infimum of τ̃ over the jth subinterval, for j = 1, · · · , Z − 1.

Step 4. For the jth subinterval, choose a positive integer Nj such
that Tj+1−Tj

Nj
< min(τ̃j , ξ), then let ξ

j
=

Tj+1−Tj

Nj
.

FindNj and ξ
j

for all 1 ≤ j ≤ Z − 1. Then over the jth subinterval
(t ∈ [Tj , Tj+1)), the observation interval is ξ

j
and we observe the

system Nj times.
This means, for the first subinterval, τ1 = · · · = τN1

= ξ
1
;

for the second subinterval, τN1+1 = · · · = τN1+N2
= ξ

2
;

for the third subinterval, τN1+N2+1 = · · · = τN1+N2+N3
= ξ

3
;

· · · .
In other words, in one period [0, T ), the system is observed at:

0(= T1), ξ
1
, 2ξ

1
, · · · , (N1−1)ξ

1
;

N1ξ1
(= T2), N1ξ1

+ξ
2
, N1ξ1

+2ξ
2
, · · · , N1ξ1

+(N2−1)ξ
2
;

N1ξ1
+N2ξ2

(= T3), N1ξ1
+N2ξ2

+ξ
3
, N1ξ1

+N2ξ2
+2ξ

3
, · · ·

N1ξ1
+N2ξ2

+(N3−1)ξ
3
; · · ·

4.2 Discussion

Now let us explain why the observation interval sequence founded
above can satisfy the conditions in Theorem 3.8. Notice ξ

j
< τ̃j ≤

τ̃(t) for t ∈ [Tj , Tj+1), j = 1, · · · , Z − 1 and β(ξt, t) defined in
(3.15) is negatively related to ξt. Then we have

∫T
0
β(ξt, t)dt =

Z−1∑
j=1

∫Tj+1

Tj

β(ξ
j
, t)dt >

Z−1∑
j=1

∫Tj+1

Tj

β(τ̃j , t)dt

≥
Z−1∑
j=1

∫Tj+1

Tj

β(τ̃(t), t)dt =

Z−1∑
j=1

β
j
(Tj+1 − Tj) ≥ 0.

So condition (3.14) can be guaranteed if we follow the above four
steps. Step 4 gives maxZ−1

j=1 ξ
j
< ξ, which guarantees condition

(3.12) or (3.13) as chosen in Step 1.

Inequality (3.14) is a condition on the integral over one period
instead of on every time point. This gives flexibility to the setting of
observation frequencies. The flexibility comes from the settings of
partition of [0, T ] and {β

j
}1≤j≤Z−1. By adjusting the partition of

[0, T ] and β
j
’s for some j ∈ [1, Z − 1], we can change or set the

observation frequency for a specific time interval, to some extent.
Parameter β(t) is negative related to ϕt,K3, γ and ξt. ϕt defined

in either (3.12) or (3.13) is positive related to K1,K2,K3 and ξt.
So when K1,K2,K3 or ξt increases, β(t) will decrease. There-
fore, large K1(t),K2(t), K3(t) and γ tend to yield small ξt. Notice
that: small observation intervals indicate high observation frequen-
cies; large values of K1(t),K2(t) and K3(t) imply rapid change
of the system state x(t); and a large γ is corresponding to frequent
switching of the system mode. So our conditions tend to require fre-
quent observations when the system changes quickly, which is in
accordance with our intuition and experience. However, the integral
condition allows for some exceptions, as long as the negative values
of β(t) in some time intervals can be compensated by its positive
values in some time intervals and its integral over [0, T ] is positive.
In other words, although some corrections to the system are delayed,
as long as it can be compensated by prompt corrections in other time
intervals, the controlled system (3.2) can still achieve exponential
stability.

For exponential stabilisation, our observations can be less fre-
quently than the constant observation frequency obtained in the
existing studies. To give an extreme example, let the periodic sys-
tem coefficients f(x, i, t) = g(x, i, t) = 0 for a time interval, say
[t1, t2]. Then we can stop controlling and let u(x, i, t) = 0 in this
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interval. Thus, we can stop monitoring the system in (t1, t2) and
we only need observations at t = t1 and t = t2. This benefit comes
from our consideration of the time-varying property.

5 Example

Let us design a feedback control to make the following 2-
dimensional periodic nonlinear hybrid SDE mean square exponen-
tially stable.

dx(t) = f(x(t), r(t), t)dt+ g(x(t), r(t), t)dB(t) (5.1)

on t ≥ 0, where B(t) is a scalar Brownian motion; r(t) is a Markov
chain on the state space S = {1, 2} with the generator matrix

Γ =

[
−1 1
1 −1

]
.

The system coefficients are

f(x, 1, t) = k1(t)

[
0 sin(x1)

cos(x2) 0

]
x,

g(x, 1, t) = k2(t)

[
0.5 −0.5
−0.5 0.5

]
x,

f(x, 2, t) = k3(t)

[
sin(x2)x1

cos(x1)x2

]
,

and

g(x, 2, t)=
1

2
√

2
k4(t)

 √3x2
1 + x2

2√
x2

1 + 3x2
2

,
where

k1(t) = 1.5 + cos(
π

6
t), k2(t) = 1 + sin(

π

6
t− 2.8),

k3(t) = 1.5 + sin(
π

6
t), k4(t) = 1 + cos(

π

6
t+ 2.8).

The upper plot in Fig. 1 shows that the original system (5.1) is not
mean square exponentially stable. The system coefficients f(x, i, t)
and g(x, i, t) have common period T = 12.

Let us calculate K1(t) and K2(t). Since |f(x, 1, t)| ≤ k1(t)|x|
and |f(x, 2, t)| ≤ [1.5 + sin(π6 t)]|x|, we get

K1(t) = 1.5 + max{cos(
π

6
t), sin(

π

6
t)}.

Similarly, K2(t) = max{k2(t), 1√
2

[1 + cos(π6 t+ 2.8)]}. Then

K1(t) ≤ K1 = 2.5 and K2(t) ≤ K2 = 2. So Assumption 3.2
holds.

Then we can design a feedback control according to Corollary
3.12, and find an observation interval sequence, to make the con-
trolled system

dx(t) =
[
f(x(t), r(t), t) + u(x(δt), r(δt), t)

]
dt

+ g(x(t), r(t), t)dB(t) (5.2)

achieve mean square exponential stability.
Suppose the controller has form u(x, i, t) = A(x, i, t)x and

our need to design the function A : R2 × S× R+ → R2×2 with
bounded norm. Let us choose the Lyapunov function of the simplest
form U(x, i, t) = xT x for two modes. In other words, we choose

Fig. 1: Sample averages of |x(t)|2 from 500 simulated paths by the
Euler-Maruyama method with step size 1e− 5 and random initial
values. Upper plot shows original system (5.1); lower plot shows
controlled system (5.2) with calculated observation intervals.

Qi to be the 2× 2 identity matrix, for i = 1, 2. Then c2 = 1 and
d = 4. The left-hand-side of (3.38) in Assumption 3.11 becomes

2xT (f(x, i, t) + u(x, i, t)) + gT (x, i, t)g(x, i, t). (5.3)

For mode 1, to keep the notation simple, define two matrices
F and G by letting f(x, 1, t) = F (x, t)x and g(x, 1, t) = G(t)x.
Then (5.3) for mode 1 becomes

2xT [F (x, t) +A(x, 1, t)]x+ xTGT (t)G(t)x = xT Q̃x, (5.4)

where

Q̃ = F (x, t) + FT (x, t) +A(x, 1, t) +AT (x, 1, t) +GT (t)G(t).

We design A(x, t) to make Q̃ negative definite, then Assumption
3.11 can hold. Calculate the matrix

Q̃ =

[
0.5k2

2(t) k1(t)G1(x)− 0.5k2
2(t)

k1(t)G1(x)− 0.5k2
2(t) 0.5k2

2(t)

]
+A(x, 1, t) +AT (x, 1, t),

where G1(x) = sin(x1) + cos(x2). Let

A(x, 1, t) =

[
a1(t) a2(x, t)
a2(x, t) a1(t) + 0.1 sin(π6 t)

]
,

where a1(t) = −0.25k2
2(t)− 0.5 and a2(x, t) = −0.5k1(t)G1(x)−

0.25k2
2(t). Then

Q̃ =

[
−1 0
0 −1 + 0.2 sin(π6 t)

]

is negative definite.
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For mode 2, (5.3) is

2xT [f(x, 2, t) + u(x, 2, t)] + gT (x, 2, t)g(x, 2, t)

=[2k3(t) sin(x2) + 0.5k2
4(t)]x2

1

+ [2k3(t) cos(x1) + 0.5k2
4(t)]x2

2 + 2xTA(x, 2, t)x.

For simplicity, let A(x, 2, t) be a diagonal matrix. We set

A(x, 2, t) =

[
−k3(t) sin(x2)− 1.4 0

0 −k3(t) cos(x1)− 1.4

]
,

Then (5.3) for mode 2 is

(
− 2.8 + 0.5k2

4(t)
)
|x|2 ≤ −0.8|x|2.

Therefore

b(t) = min{−λmax(Q̃), 2.8− 0.5k2
4(t)}

= min{1− 0.2 sin(
π

6
t), 1, 2.8− 0.5k2

4(t)}

≥0.8.

Then set l = 0.1 and we have λ(t) = b(t)− 0.4. Assumption 3.3
holds with K3(t) = maxx∈R2,i∈{1,2} ‖A(x, i, t)‖. T = 12 is a
period of u. So we have designed a feedback control for stabilisation.

Then let us calculate the observation interval sequence. We
choose condition (3.12) and get the integral of the auxiliary function∫1

0 2βa(t)dt = 0.1218 > 0. Based on its shape, we divide [0, 12]
into 20 subintervals, which is shown in Fig. 2. When βa(t) change
fast, we divide that time period into narrow subintervals; when βa(t)
change slowly, our partition is wide. Specifically, the partition T1 =
0, T2 = 1, T3 = 1.85, · · · , T20 = 11, T21 = 12. Then we use the

Fig. 2: Partition of one period and lower bound setting for calcula-
tion of observation intervals. The blue dash-dot line is the auxiliary
function βa(t). The black solid line is {β

j
}1≤j≤20.

lower bound {β
j
}1≤j≤20 to calculate τ̃(t), which is shown in Fig.

3. Based on τ̃(t), we calculate the observation interval {ξ
j
}1≤j≤20

that leads to an integer time of observations in each subinterval. For
example, in the first subinterval, 0 ≤ t < 1, the observation interval
is 0.00035 and the system would be observed for 2822 times. The

Fig. 3: Calculation of observation interval sequence for each subin-
terval. The blue dash-dot line is the function τ̃(t). The red solid line
is the calculated observation interval {ξ

j
}1≤j≤20.

largest observation interval is 0.00041, which is for the third subin-
terval [1.85, 2.9). The shortest observation interval is 0.00028 for
the fourth subinterval [2.9, 4.7).

We substitute the results into Theorem 3.8 and calculate. We find
ϕ ∈ (0.0001, 0.0065) ∈ (0, 1) and

∫12
0 βa(t)dt = 0.0877 > 0. So

all the conditions are satisfied, the system is stabilised. The lower
plot in Fig. 1 shows that the controlled system (5.2) is indeed mean
square exponentially stable.

In addition, we calculate observation intervals using condition
(3.13). This gives better result, as shown in Fig. 4. The black and
red lines almost coincide, the blue and red lines also almost coin-
cide when t > 8. The largest and smallest observation intervals we
get are 0.0012 and 0.00037 respectively. When t ∈ [8.3, 9.95), the
system is set to be observed 1375 times with interval 0.0012. The
highest observation frequency is required for t ∈ [11, 12).

Fig. 4: Calculation of observation interval sequence for each subin-
terval. The blue dash-dot line is the function τ̃(t). The black line is
inft∈[Tj ,Tj+1) τ̃(t). The red solid line is the calculated observation
interval {ξ

j
}1≤j≤20.
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Moreover, existing theory yields the constant observation interval
τ ≤ 0.00026, calculated with the same controller and same Lya-
punov function, according to [23] with observation of system mode
discretised. Previously frequent observations were required for all
times. Clearly, both conditions (3.12) and (3.13) give better results
than this. Our shortest observation interval is still wider than the
constant one given by existing theory. This benefit comes from our
consideration of system’s time-varying property.

Another advantage of our new results is the flexibility of obser-
vation frequency setting. On one hand, we can reduce the lowest
observation frequency. There are two ways to make it. One is by
dividing some certain subintervals into several shorter intervals,
without changing the setting of lower bound β

j
. This will not affect

the observation frequencies in other subintervals. The result is shown
as a red dashed line in Fig. 5. Over time [0, 0.1), the system can
be observed once every 0.00075 time units. The other way is to
reduce β

j
for the corresponding subinterval. However, this would

increase the observation frequencies in some other subintervals.
On the other hand, the flexibility brought by the integral condition
enables us to reduce the high observation frequencies. By dividing
the period into 24 subintervals with narrower partition and changing
the lower bound β

j
, we increased the shortest observation interval

from 0.00028 to 0.00032. The result is shown in Fig. 5 as a blue
dash-dot line.

Fig. 5: Three settings of observation intervals. The green solid line
shows original setting. The red dashed line and the blue dash-dot line
respectively show settings to increase the large and small observation
intervals.

6 Conclusion

This paper provides sufficient conditions for exponential stabilisa-
tion of periodic hybrid SDEs, by feedback control based on periodic
discrete-time observations. The stabilities analyzed include expo-
nential stability in almost sure and pth moment for p > 1. We point
out that, since inequality plays an important role in derivation of
the new results, using less conservative inequalities would reduce
observation frequencies.

The main contributions of this paper are: (1) using time-varying
observation frequencies for stabilization of periodic SDEs; (2)
improving the observational efficiency by reducing the observation
frequencies dramatically; (3) allowing to set observation frequencies
over some time intervals flexibly without a lower bound, as long as
it can be compensated by relatively high frequencies over other time
intervals.

These three contributions update existing theories by improving
the observational efficiency and providing flexibility. This paper
provides theoretical foundation for stabilization of SDEs using
time-varying system observations.
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