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We study planar nematic equilibria on a two-dimensional annulus with
strong and weak tangent anchoring, in the Oseen–Frank theoretical frame-
work. We analyze a radially invariant defect-free state and compute analytic
stability criteria for this state in terms of the elastic anisotropy, annular
aspect ratio, and anchoring strength. In the strong anchoring case, we define
and characterize a new spiral-like equilibrium which emerges as the defect-
free state loses stability. In the weak anchoring case, we compute stability
diagrams that quantify the response of the defect-free state to radial and
azimuthal perturbations. We study sector equilibria on sectors of an annulus,
including the effects of weak anchoring and elastic anisotropy, giving novel
insights into the correlation between preferred numbers of boundary defects
and the geometry. We numerically demonstrate that these sector configu-
rations can approximate experimentally observed equilibria with boundary
defects.

1. Introduction

Nematic liquid crystals (LCs) are classic examples of partially ordered
materials that combine the fluidity of liquids with the orientational order
of crystalline solids [1, 2]. Nematics have generated substantial scientific
interest in recent years because of their unique optical, mechanical, and
rheological properties [3] and, notably, nematics form the backbone of the
multibillion dollar liquid crystal display (LCD) industry. Defects are a key
feature of nematic spatiotemporal patterns in confined geometries. Much
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Figure 1. Nematic director fields identified experimentally in [4, 5]: (a) defect-free state;
(b) one defect on each boundary; and (c) two defects on each boundary.

remains to be understood about the structure of defects and how they can be
created, controlled, and manipulated to yield desired properties.

In this paper, we revisit the classical problem of a nematic sample in
a two-dimensional (2D) annulus with strong or weak tangent boundary
conditions and no external fields. Our work is motivated in part by recent
experiments [4–6] on rod-like fd-virus particles within shallow, annular
microscopic chambers. The experiments exhibit at least six different stable
states, including a radially invariant defect-free state, and states with
regularly arranged defects on the boundary; for example, see Fig. 1. This
paper is devoted to an analytical and numerical study of the defect-free state
and states with pinned boundary defects using the Oseen–Frank (OF) theory
for LCs. Our aim is to understand why a state with boundary defects might
be observed and in which situations it could be energetically preferable to
have boundary defects.

The model problem of a defect-free state in an annular well has received
a great deal of attention in the past, especially within OF theory. Here,
we give a brief overview. The papers [7–14] are directly relevant to our
work. In Ref. [8], the author studies the stability and multiplicity of nematic
radial equilibria on a 2D annulus with strong uniform anchoring. In Refs.
[9–12], the authors approach the same problem with a more applications-
oriented perspective motivated by the classical Fréederickzs transition. They
study confined nematic samples between two concentric cylinders with weak
anchoring on one lateral surface and strong anchoring on another, subject
to an external magnetic field. The authors primarily consider the stability of
three characteristic configurations, referred to as “radial,” “azimuthal,” and
“uniform,” and obtain explicit estimates for the critical threshold field in
terms of the OF elastic anisotropy, cylindrical aspect ratio, and anchoring
strength. An analogous problem was studied in [14] for the case of strong
axial anchoring. Finally, in Ref. [7], the authors demonstrate that the
planar radial state loses stability when the ratio of the inner radius to the
outer radius is smaller than a critical value, and the planar radial state
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escapes into the third dimension. In Ref. [13], the authors study nematic
samples confined between two coaxial cylinders, with emphasis on higher
dimensional biaxial effects, which are outside the scope of the present paper.

We build on this extensive body of work in the OF theoretical framework.
We study the defect-free state with strong tangential anchoring prescribed in
terms of Dirichlet conditions and with weak tangential anchoring described
by a surface energy. The defect-free state in our paper is analogous to
the azimuthal state on an annulus, with tangent boundary conditions on
both circular boundaries [9–12]. The three key parameters are the elastic
anisotropy (δ), the annular aspect ratio (ρ), and the anchoring strength (α).
In the strong anchoring case, we characterize a new spiral-like equilibrium
that emerges from the defect-free state, as it loses stability with increasing
δ. In the weak anchoring case, we analyze the defect-free state in terms of
δ, ρ, α, and k, which is the azimuthal order of the perturbation. While our
results, both with strong and weak anchoring, are partially captured by the
results in [8–12], our method of proof is different. By computing the second
variation of the anisotropic OF energy and studying the resulting eigenvalue
problem directly, we obtain new stability diagrams for the defect-free state
in terms of δ, ρ, α, and k. Such stability diagrams can provide useful insight
into the response of the defect-free state to different types of azimuthal
perturbations. For k = 0, our results reduce to the previously reported results
in [8–12]. An interesting conclusion is that the radially invariant defect-
free state can largely be destabilized by radial perturbations and azimuthal
perturbations are only relevant for weak anchoring or very small annular
wells.

The second part of this paper focuses on an analytic description of exper-
imentally observed equilibria with boundary defects. Our modeling approach
is to partition the annulus into sectors, construct “sector configurations”
which naturally have defects at the sector vertices, and finally glue the
sector configurations along the common edges to generate an approximate
equilibrium configuration on the whole annulus. In particular, we focus on
generalized “rotated” and “diagonal” solutions in a sector, by analogy with
parallel work on rectangular wells in [15, 16]. We compare the energies
of these sector-based equilibria with that of the defect-free state, includ-
ing effects of weak anchoring and elastic anisotropy. Our idealized model
suggests that it may be energetically preferable to have boundary defects
either for large δ or for moderate values of α, but never with δ = 0 (elastic
isotropy) and strong anchoring. This conclusion agrees with experimental
observations.

Since it is not clear a priori whether real-life equilibria respect the
symmetries implicit in our sector-based equilibria, we also compare our
results with computations of a numerical gradient-flow scheme for a 2D
Landau-de Gennes (LdG)-type energy with weak anchoring. We use the
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sector configurations to construct initial conditions and find that the long-
time dynamics respects the symmetries of the initial condition, and the
overall structure is qualitatively similar to the sector-based equilibrium, at
least for the certain choices of parameter values. We conclude that our
sector configurations do mimic real equilibria in certain situations at least.

Equilibria with boundary defects can be interesting in many physical
situations, particularly with Neumann boundary conditions or when we
simply specify topological degrees on the boundaries, as opposed to
Dirichlet conditions. For example, in [17], the authors study 2D vector
fields, u = (u1, u2), on a multiply connected 2D domain with prescribed
topological degrees on the outer boundary and on the inner boundaries
enclosing the “holes.” The authors study minimizers of the Ginzburg–
Landau functional on such domains and find that the infimum energy is
not attained. Minimizing sequences develop vortices or boundary defects
in certain asymptotic limits. Our construction for equilibria with boundary
defects could be instructive for such model LC problems, with topological
degree boundary conditions; in fact, they give information about minimizing
sequences. Equally importantly, our analysis is directly relevant to recent
experimental work on colloidal samples in shallow annular wells wherein the
authors observe states with defects pinned to the lateral surfaces [4, 5], such
as those shown in Figs. 1(b) and (c). The relative energies of the generalized
“diagonal” and “rotated” states give qualitative insight into the relative
observational frequencies of the experimental states that exhibit boundary
defects.

The paper is organized as follows. In Section 2, we review the OF
theory for nematic LCs, and use it to formulate the problem and boundary
conditions. In Section 3, we compute stability criteria for the defect-free
state as a function of δ, ρ, and α as introduced above. In Section 4, we
construct sector-based equilibria on an annulus with an arbitrary number
of boundary defects and compute the corresponding energies. Finally, we
discuss our results and draw conclusions in Section 5.

2. Theory and modeling

We study nematic equilibria on a 2D annulus, subject to tangent boundary
conditions. The rescaled 2D annulus is defined by

� = {(r, φ) ∈ R
2 : ρ ≤ r ≤ 1, 0 ≤ φ < 2π}, (1)

where ρ := Rinner/Router is the ratio of the inner and outer radii.
We work in the simplest OF framework, restricted to a uniaxial nematic

phase with a constant scalar order parameter [1, 2]. In this case, the
macroscopic order parameter is simply a unit-vector field, n, that defines the
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unique direction of preferred molecular alignment. For a 2D problem, the
OF energy functional is given by

E[n] :=
∫

�

K1

2
(∇ · n)2 + K3

2

(
n × (∇ × n)

)2
d�, (2)

where K1 and K3 are the elastic constants associated with splay and
bend deformations, respectively. The twist constant is neglected because
n · ∇ × n = 0 for a 2D vector field. Similarly, the saddle-splay term,
(K2 + K4)∇ · ((∇ × n) × n − (∇ · n)n) is also identically zero for 2D vector
fields. In three dimensions, for Dirichlet boundary conditions, this saddle-
splay term is a fixed energetic contribution and hence, can be neglected. For
weak anchoring, this term can matter since it is effectively a surface energy.

For 2D deformations, the director is parameterized by n =
(cos θ, sin θ, 0), where θ : � → R is a function of the planar polar co-
ordinates, (r, φ). The OF energy (2), normalized with K3, then reduces
to

E[θ ] :=
∫

�

1 − δ

2

(
cos(θ − φ)

θφ

r
− sin(θ − φ)θr

)2

+ 1

2

(
sin(θ − φ)

θφ

r
+ cos(θ − φ)θr

)2

d�, (3)

where δ := 1 − K1/K3 is the measure of elastic anisotropy, so that δ = 0
in the commonly used isotropic “one-constant” approximation. The Euler–
Lagrange equation corresponding to critical points of (3) may be written in
the form(

1 − δ

2

)
∇2θ + δ

2

[
sin(2θ − 2φ)

(
2θrφ

r
+ θ2

φ

r2
− θ2

r − 2θφ

r2

)

+ cos(2θ − 2φ)

(
θrr − θφφ

r2
− θr

r
+ 2θrθφ

r

)]
= 0 (4)

subject to appropriate boundary conditions for θ on ∂�.
We work with both strong and weak boundary conditions in the OF

framework. The strong boundary conditions are equivalent to Dirichlet
conditions for θ on r = ρ and r = 1, namely,

θ (1, φ) = φ +
(

n + 1

2

)
π, θ (ρ, φ) = φ +

(
m + 1

2

)
π, (5)

where n, m ∈ Z. Weak anchoring models the tangent boundary conditions by
means of a surface energy. We employ the popular Rapini–Papoular surface
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energy [18], which in normalized form reads as

ES = 1

2

∫
∂�

α cos2(θ − φ) dσ, (6)

where ∂� consists of two concentric circles, with radii r = ρ and r = 1,
and dσ is arc-length element along ∂�. The dimensionless anchoring
strength α := Router/ξ is the ratio of the outer radius to the extrapolation
length ξ , [16], and the three key modeling parameters are then δ, ρ, and α.
The extrapolation length, ξ = K3/W , is the ratio of the bending elastic
constant to the physical surface anchoring strength parameter W , such
that W → ∞ describes the strong anchoring regime [16]. The boundary
conditions corresponding to (6) are

(2 − δ) θr + δ

(
θφ

r
sin(2θ − 2φ) + θr cos(2θ − 2φ)

)
− α sin(2θ − 2φ) = 0 on r = 1, (7)

(2 − δ) θr + δ

(
θφ

r
sin(2θ − 2φ) + θr cos(2θ − 2φ)

)
+ α sin(2θ − 2φ) = 0 on r = ρ. (8)

3. The defect-free state in OF theory

3.1. The defect-free state

In the OF framework, the 2D director field is characterized by a single
scalar field, namely, the angle θ (r, φ), which satisfies the nonlinear elliptic
partial differential equation (4). This relatively simple mathematical frame-
work allows us to find explicit sharp stability bounds, and also to describe
the behavior of the director when the defect-free state loses stability, as
shown below. We define the radially invariant defect-free state to be

θ (r, φ) = θ∗(φ) := φ + π

2
, (9)

which satisfies both the Dirichlet boundary conditions (5) associated with
strong anchoring and the nonlinear boundary conditions (7)–(8) associated
with weak anchoring. In both cases, we analyze the stability of the defect-
free state (9) by studying the second variation of the OF energy, obtain
sharp conditions on the model parameters for the defect-free state to be
stable, and analyze the bifurcation behavior at the onset of instability.
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3.2. Strong anchoring

For strong anchoring defined by (5), we define perturbations θ (r, φ) =
θ∗(φ) + εη(r, φ), where η(ρ, φ) = η(1, φ) = 0. A straightforward computa-
tion shows that the second variation is given by

δ2 E := ∂2 E[θ∗ + εη]

∂ε2

∣∣∣∣
ε=0

=
∫

�

(∇η)2 − δ
(η

r
+ ηr

)2
d�

= E2
(
η(r ); δ, ρ

)
. (10)

It follows immediately that δ2 E > 0 for δ ≤ 0 and any nontrivial η. Local
stability is guaranteed by the positivity of the second variation for all
admissible perturbations and the defect-free state is unstable if we can find
a perturbation η for which E2 above is negative [19]. On the other hand,
let δ = 1 and consider a perturbation η(r ) whereby the second variation (10)
simplifies to

E2
(
η(r ); 1, ρ

) = −2π

∫ 1

ρ

η2

r
+ 2ηηr dr = −2π

∫ 1

ρ

η2

r
dr < 0 (11)

for nontrivial η(r ). We can therefore use the continuity of E2 with respect
to δ to deduce that the defect-free state loses stability when δ > δc for some
δc ∈ (0, 1).

We analyze the loss of stability in more detail by studying the Sturm–
Liouville problem associated with the minimization of δ2 E as shown below.
The Euler–Lagrange equation corresponding to (10) is

(1 − δ)
(
ηrr + ηr

r

)
+ ηφφ

r2
+ δη

r2
= 0, (12)

where η = 0 on r = ρ, 1 and η is 2π -periodic in φ. Without loss of gener-
ality, we consider separable solutions of the form η(r, φ) = ∑∞

k=0 eikφ fk(r ),
where the function fk(r ) is a solution of

r2 f ′′
k (r ) + r f ′

k(r ) + δ − k2

1 − δ
fk(r ) = 0, fk(ρ) = fk(1) = 0. (13)

Nontrivial solutions fk(r ) exist only for specific values of δ = δ1, δ2, · · · ,
and alternative solution branches bifurcate from the base state θ∗ as δ

crosses each of these values.
For k ≥ 1 and δ ∈ (0, 1), the problem (13) admits no nontrivial solutions.

We therefore focus on the case k = 0, for which nontrivial solutions of (13)
are given by

f0,n(r ) = A sin

(
πn

log(r )

log(ρ)

)
, δn = π2n2

π2n2 + log(ρ)2
, (14)
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where n = 1, 2, · · · . Since 0 < δ1 < δ2 < · · · < 1, the smallest value of δ

yielding nontrivial solutions to (13) is δ1. Substituting (14) into (10) with
n = 1, we find that δ2 E < 0 for δ > δ1. Therefore, as shown in [8, 11], the
defect-free state loses stability along the curve

δ = δ1(ρ) = π2

π2 + log(ρ)2
. (15)

We next establish that the defect-free state undergoes a supercritical
pitchfork bifurcation at δ = δ1. Let δ = δ1 + ε2δ̃, where 0 < ε � 1, and
consider perturbations of the form

θ (r, φ) = θ∗(φ) + εη1(r, φ) + ε3η3(r, φ) + · · · , (16)

where the functions η j (r, φ) vanish on r = ρ, 1 and are 2π -periodic in φ.
Substituting (16) into (4) and comparing terms of order ε, we find that

Lη1 := (1 − δ1)
(
η1rr + η1r

r

)
+ η1φφ

r2
+ δ1η1

r2
= 0. (17)

From (14), we have that nontrivial solutions of (17) subject to homogeneous
Dirichlet boundary conditions are given by

η1 = A1 sin

(
π

log(r )

log(ρ)

)
, (18)

where the amplitude A1 is arbitrary.
Similarly, at order ε3, we obtain the equation for η3:

Lη3 =
(
log(ρ)2 + π2

)
A1
(
δ1 A2

1 − 2δ̃
)

2r2 log(ρ)2
sin

(
π

log(r )

log(ρ)

)

− δ1 A3
1

(
3π2 + log(ρ)2

)
6r2 log(ρ)2

sin

(
3π

log(r )

log(ρ)

)
. (19)

The solvability condition for the inhomogeneous equation (19) subject to
homogeneous Dirichlet boundary conditions is

A1
(

A2
1δ1 − 2δ̃

) = 0, (20)

and thus the amplitude A = ε A1 is only defined for δ̃ > 0. Therefore,
a supercritical pitchfork bifurcation occurs, with two nontrivial solution
branches coming into existence as δ increases through δ1(ρ).

The above weakly nonlinear analysis describes the bifurcation behavior
when δ is close to δ1 and the amplitude A is small. For larger values of A,
we instead consider exact solutions of the Euler–Lagrange equations (4) for
δ > δ1. We seek an exact solution of the form

θ (r, φ; δ) = θ∗(φ) + U (t ; δ), t = − log r, (21)
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and find that U satisfies

2
(
1 − δ cos2 U

)
Ü + δ sin(2U )

(
U̇ 2 + 1

) = 0 (22)

subject to U (0; δ) = U (− log ρ; δ) = 0, where the dot is used as shorthand
for d/dt . We consider functions U (t ; δ) with one stationary point, which
must be at t = (− log ρ)/2 by symmetry; solutions with more stationary
points exist but have higher energy.

No generality is lost by assuming that U > 0 for t ∈ (0, − log ρ) and thus
that U achieves its maximum value, A say, at t = (− log ρ)/2. Then (22)
may be integrated twice to yield the implicit solution∫ U (t ;δ)

0

√
1 − δ cos2 u

δ cos2 u − δ cos2 A
du = t (23)

for 0 < t < (− log ρ)/2, where the amplitude A is related to ρ and δ by∫ A

0

√
1 − δ cos2 u

δ cos2 u − δ cos2 A
du = − log ρ

2
. (24)

An analogous solution was obtained in [20] to describe the Fréedricksz
transition in an annulus with strong perpendicular anchoring. For the special
limiting case δ = 1, we can solve (22) exactly to find

U (1; t) = cos−1

(
ρet

ρ + 1
+ e−t

ρ + 1

)
, (25)

with associated amplitude

A = cos−1

(
2
√

ρ

1 + ρ

)
. (26)

In Fig. 2(a), we plot the solution (21) for ρ = 0.2 and δ = 0.95. We
see that the director field appears spiral-like as it becomes energetically
preferable for the director to splay instead of bend when δ is sufficiently
large. The dependence of the solution amplitude A on the anisotropy δ

and the radius ratio ρ is plotted in Fig. 2(b). For each fixed value of ρ,
the base state A = 0 is stable until δ = δ1(ρ), when the nontrivial solution
branch appears via a supercritical pitchfork bifurcation. The amplitude then
increases monotonically with δ, approaching the limiting value given by (26)
as δ → 1.

The OF energy of the solution (21) is given by

E = 2π

∫ A

0
(1 + δ sin2 A − 2δ sin2 u)

√
1 − δ cos2 u

δ cos2 u − δ cos2 A
du, (27)

while the energy of the defect-free state (9) is easily computed to be
E∗ = π log(1/ρ). Therefore, the transition from the defect-free state to the
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Figure 2. (a) The “spiral-like” director field for θ = θ∗ + U , with ρ = 0.2 and δ = 0.95.
(b) The amplitude A versus δ and log(1/ρ). The red curve shows the bifurcation value
δ = δ1(ρ); the green curve shows the amplitude (26) when δ = 1.

spiral-like state results in an energy reduction

E∗ − E = 2π
√

δ

∫ A

0
(2 sin2 u − sin2 A)

√
1 − δ cos2 u

sin2 A − sin2 u
du. (28)

It is an elementary exercise to prove that the integral on the right-hand side
of (28) is positive for δ ∈ (0, 1) and A ∈ (0, π/2). Therefore, the spiral-like
state, when it exists, is energetically favorable compared to the defect-free
state.

Moreover, we can verify that the spiral-like state is always a local
minimizer of the OF energy (3) by analyzing the second variation

δ2 E= ∂2

∂ε2
E [θ∗ + U (t) + εη(t, φ)]

∣∣∣∣
ε=0

=
∫ 2π

0

∫ log(1/ρ)

0

{
(1 − δ)

(
η2

t + η2
φ

) + δ(ηt sin U + ηφ cos U )2

−
[

(1 + U̇ 2)δ
(
(2 − δ) cos 2U − δ

)
2(1 − δ cos2 U )

]
η2

}
dt dφ. (29)

A classical minimizer η0(t) of (29) which is independent of φ satisfies the
Euler–Lagrange equation

d

dt
((1 − δ cos2 U )η̇0) +

[
(1 + U̇ 2)δ

(
(2 − δ) cos 2U − δ

)
2(1 − δ cos2 U )

]
η0 = 0. (30)
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A solution of (30) which takes its maximum value at t = (1/2) log(1/ρ) is
given by

η0(t) = 1 − U̇ (t)
∫ (1/2) log(1/ρ)

t

(1 − δ) cos A cos U (t ′) − sin A sin U (t ′)
sin(A + U (t ′))(1 − δ cos2 U (t ′))

dt ′,

(31)
and it is easily shown that η0(t) so defined is positive for t ∈ (0, log(1/ρ)).
Therefore, we can make the substitution η(t, φ) = η0(t)ζ (t, φ) in (29) to
find

δ2 E =
∫ 2π

0

∫ log(1/ρ)

0

{
(1 − δ)

(
ζ 2

t + ζ 2
φ

)+ δ(ζt sin U + ζφ cos U )2
}
η2

0 dt dφ,

(32)
and we deduce that δ2 E > 0 for nontrivial perturbations.

To summarize, the defect-free state loses stability to the energetically
preferable spiral-like state when δ > δ1(ρ). However, with strong anchoring,
there is no possibility of secondary bifurcation to an equilibrium state that
depends on the polar angle φ, as in the experimentally observed director
fields illustrated in Fig. 1. Therefore, in the next section we investigate the
effects of relaxing the strong anchoring boundary conditions.

3.3. Weak anchoring

In this section, we consider the effects of weak anchoring and study the
stability of the defect-free state in (9) in terms of anchoring strength,
elastic anisotropy, and annular aspect ratio. The purely radially symmetric
linear stability analysis may be found in [12]. We extend the analysis
to nonradially symmetric perturbations and also compute new stability
diagrams that quantify the sensitivity of the defect-free state to different
types of perturbations.

One can easily check that the OF defect-free state θ∗, in Eq. (9), is a
solution of (4) with the weak boundary conditions (7)–(8). By analogy with
Section 3.2, we compute the second variation of the OF energy in (3) and
the surface energy in (6) to be

δ2 E[θ∗] :=
∫

�

(∇η)2 − δ
(η

r
+ ηr

)2
d� + α

∫
∂�

η2 dσ, (33)

where η is a perturbation about θ∗. It is clear from (33) that δ > 0 is a
necessary condition for δ2 E to be negative and thus for the defect-free state
to lose stability. Without loss of generality, we can expand the perturbation
in the form η(r, φ) = ∑

k fk(t)eikφ , where t = − log r and k = 0, 1, · · · is
referred to as the azimuthal order of the perturbation. For each k, the
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optimal fk is a solution of

f̈k(t) + δ − k2

1 − δ
fk(t) = 0, (34)

with boundary conditions

ḟk(t) = α − δ

1 − δ
fk(t) on t = 0, ḟk(t) = −αρ + δ

1 − δ
fk(t) on t = log(1/ρ).

(35)
The general solution of (34) is

f0(t) = A sin

(√
δ

1 − δ
t

)
+ B cos

(√
δ

1 − δ
t

)
for k = 0, (36)

fk(t) = A sinh

⎛
⎝
√

k2 − δ

1 − δ
t

⎞
⎠+ B cosh

⎛
⎝
√

k2 − δ

1 − δ
t

⎞
⎠ for k ≥ 1, (37)

and the boundary conditions (35) lead to the following compatibility
condition between α, δ, ρ, and the order k of the perturbation:

tan

(√
δ

1 − δ
log

(
1

ρ

))
+ α(1 + ρ)

√
δ(1 − δ)

αδ − αρδ + α2ρ − δ
= 0 for k = 0, (38)

tanh

⎛
⎝
√

k2 − δ

1 − δ
log

(
1

ρ

)⎞⎠+ α(1 + ρ)
√

(k2 − δ)(1 − δ)

δα + α2ρ − αρδ − δ + k2(1 − δ)
= 0

for k ≥ 1. (39)

For a given k ∈ N, there are typically multiple solutions
{
δ1,k, δ2,k, . . .

}
of

the compatibility relations (38) and (39). We are interested in the smallest
solution, δ1,k , such that the defect-free state loses stability for δ > δ1,k(ρ) for
a fixed k.

The case k = 0 has been dealt with in [12]. The compatibility condition
(38) has an infinite number of solutions

{
δ1,0, δ2,0, · · · ,

}
for any fixed triplet

{α > 0, δ ∈ (0, 1), ρ ∈ (0, 1)}, and the corresponding eigenfunctions are

fn,0(t) = sin

(√
δn,0

1 − δn,0
t

)
+
√

δn,0(1 − δn,0)

α − δn,0
cos

(√
δn,0

1 − δn,0
t

)
. (40)

In Fig. 3, we plot the smallest eigenvalue δ1,0 as a function of ρ,
for different values of α. As α → ∞, the strong anchoring limit (14)
is recovered, and δ1,0 → δ1(ρ) given by (15). By following the weakly
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Figure 3. The first eigenvalue δ1,0 plotted versus ρ for various fixed values of α. The
strong anchoring result (15) is recovered in the limit α → ∞.

nonlinear analysis from Section 3.2, we can show that the loss of stability
again occurs through a supercritical pitchfork bifurcation at δ = δ1,0.

For k = 1, the compatibility condition (39) has a unique solution

δ1,1(α, ρ) = αρ2 + α2ρ + α + 1 − ρ2α2 − ρ

2(αρ − ρ + 1)
. (41)

It is straightforward to show that δ1,1 ∈ (0, 1) if and only if 0 < α < 1,
and that δ1,1 > 1/2 for all ρ. For k > 1, the compatibility condition (39)
has solutions for δ ∈ (0, 1) only if α < 1. Therefore, the defect-free state
can be unstable to φ-dependent azimuthal perturbations with k ≥ 1 only
if the anchoring strength is small enough that α < 1. The critical value
α = 1 corresponds to a very small chamber with Router = ξ , so the chamber
radius is equal to the surface extrapolation length. For macroscopic domains
with Router > ξ , the defect-free state can only be destabilized by radial
perturbations and azimuthal variations may be neglected.

In Fig. 4, we plot the stability curves described by the eigenvalues,
δ = δ1,k , in the (δ, α)-plane, for fixed values of k and ρ. It is evident from
the plots that, as δ increases, the defect-free state first loses stability with
respect to the k = 0 mode. If the anchoring strength is small enough that
α < 1, then subsequent bifurcations lead to the possibility of φ-dependent
perturbations. However, to get higher values of k, we need α to be smaller
than 1 and δ to be sufficiently close to unity, namely, δ1,k > k2/(k2 + 1),
which is the limit of δ1,k as α → 0. In contrast, the experiments reported
in [4] exhibit stable nonaxisymmetric equilibria with boundary defects for δ

close to zero (almost isotropic materials), with moderate values of α and ρ.
Furthermore, these states may be bistable with the defect-free state. Hence,
we deduce that the experimentally observed equilibria with boundary defects
are not a natural consequence of the loss of stability of the defect-free state,
and we study them independently in Section 4.
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Figure 4. The smallest solution δ1,0 to the k = 0 compatibility condition (38), and the
only solution to (39) for k = 1, 2, 3 in the (δ, α)-plane for fixed ρ. The strong anchoring
(SA) limit δ = δ1(ρ) is shown using dashed lines.

4. Nematic equilibria with boundary defects

4.1. Problem setup

In this section, we model states with tangential boundary conditions and
regularly spaced defects located on the boundary, such as those shown in
Figs. 1(b) and (c). To model such states, we partition � into N ∈ N sectors,
and define the sector �N to be

�N :=
{

(r, φ) ∈ R
2 : ρ ≤ r ≤ 1, 0 ≤ φ ≤ 2π

N

}
. (42)

We work with tangential anchoring on the boundary of �, which in the
strong anchoring limit corresponds to Dirichlet conditions of the form
(5) on the curved edges of �N (r = ρ and r = 1). On the two straight
edges of �N (φ = 0 and φ = 2π/N ), we assume that the director field is
constant and tangent to these edges. These conditions correspond to θ = 0
on φ = 0 and θ = 2π/N + nπ on the edge φ = 2π/N , where n ∈ Z. These
boundary conditions necessarily induce discontinuities at the four corners
of �N . In the strong anchoring case, we only consider states with minimal
corner defects, i.e., the director rotates by the minimal amount between
the two edges and the corner defects are either of the “splay” type or
the “bend” type. The director profile splays outward near a splay vertex
and the director profile bends around a vertex for a bend vertex. We note
that the assumed symmetry of the overall configuration in � could also be
enforced by imposing normal boundary conditions on the straight edges of
�N , but the resulting state would not exhibit the boundary defects observed
in experimental results and shown schematically in Fig. 1.
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The D state. The U1 state. The U2 state. The U3 state.

Figure 5. The director field of the four states within �4 with ρ = 0.25 in the
one-constant approximation.

There are four distinct arrangements of defects at the corners, ∂�N , as
shown in Fig. 5. Three of these arrangements are generalizations of the
rotated state in square and rectangular wells [15, 16, 21], denoted by U1, U2,
and U3, respectively, where the director field connects two adjacent splay
defects along an edge, and the fourth arrangement is a generalized diagonal
state, D, for which the director field connects two diagonally opposite splay
defects. The two splay defects lie at the vertices of the r = ρ edge for the
U1 state, at the vertices of the r = 1 edge for U2, and at the vertices of the
φ = 0 edge, for U3. Other rotated and diagonal states are equivalent under
rotations or reflections to one of the four cases enumerated in Fig. 5.

We only consider these four possibilities, assume that each sector has
the same configuration and define an overall configuration in � as the
superposition of the different sector configurations on �N , glued along their
common edges. For a given N , we can typically generate multiple states
using this principle of gluing together sector configurations, but for odd N ,
a superposition of D or U3 states does not work as it requires the presence
of a splay and bend-type defect simultaneously at one of the vertices.

4.2. The one-constant approximation with strong anchoring

We start with the one-constant approximation, for which δ = 0, and the OF
energy (3) reduces to

E[θ ] := 1

2

∫
�

|∇θ |2 d�. (43)

We define the sector configurations to be solutions of the Laplace equation,
∇2θ = 0 on �N . Any admissible θ , subject to the Dirichlet boundary
conditions discussed in Section 4.1, can be written as

θ = a0φ + a1 f1 + a2 f2 + a3 f3 + a4 f4, (44)

where the canonical functions fi are solutions of the Laplace equation with
boundary conditions:

• f1(r, 0) = f1(r, 2π/N ) = f1(ρ, φ) = 0 and f1(1, φ) = 1;
• f2(r, 0) = f2(r, 2π/N ) = f2(ρ, φ) = 0 and f2(1, φ) = φ;
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Table 1
Values of the Coefficients ai for the Four Sector Solutions within �N

State a0 a1 a2 a3 a4

D 1
π

2
0

π

2
0

U1 1 + N

2

π

2
− N

2

π

2
− N

2

U2 1 − N

2
−π

2

N

2
−π

2

N

2

U3 1 −π

2
0

π

2
0

• f3(r, 0) = f3(r, 2π/N ) = f3(1, φ) = 0 and f3(ρ, φ) = 1;
• f4(r, 0) = f4(r, 2π/N ) = f4(1, φ) = 0 and f4(ρ, φ) = φ.

The corresponding values of a0, a1, · · · , a4 for the four sector configura-
tions are listed in Table 1.

The canonical functions, f1, . . . , f4, can be computed using separation of
variables as shown below:

f1(r, φ) =
∞∑

n=1

4 sin
(
(n − 1/2)Nφ

)
(2n − 1)π

×

×
[

r−(n−1/2)N − ρ−(2n−1)Nr (n−1/2)N

1 − ρ−(2n−1)N

]
, (45)

f2(r, φ) =
∞∑

n=1

4(−1)n+1 sin
(
Nnφ/2

)
Nn

[
r−nN/2 − ρ−nNrnN/2

1 − ρ−nN

]
, (46)

f3(r, φ) =
∞∑

n=1

4 sin
(
(n − 1/2)Nφ

)
(2n − 1)π

[
r−(n−1/2)N − r (n−1/2)N

ρ−(2n−1)N/2 − ρ(2n−1)N/2

]
, (47)

f4(r, φ) =
∞∑

n=1

4(−1)n+1 sin
(
Nnφ/2

)
Nn

[
r−nN/2 − rnN/2

ρ−nN/2 − ρnN/2

]
. (48)

Some sample director plots calculated using these canonical functions are
shown in Fig. 5 for N = 4 and ρ = 0.25.

Due to the discontinuities in θ at the corners of �N , we regularize the
domain by removing quarter-disks of radius ε about each of the vertices
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Figure 6. Schematic of the regularized domain �Nε . The edges of the original sector
region �N are denoted C1, · · · , C4. The vertices of �N are replaced by four small circular
arcs γ1, · · · , γ4 of radius ε � ρ.

(to prevent the energy (43) from diverging) and denote the new regularized
domain by �Nε , as illustrated in Fig. 6. The length ε is proportional to the
defect core size [22], and we assume that ε � ρ. An analogous approach
was used in [16] to evaluate the regularized OF energy in a rectangular
domain. The boundary, ∂�Nε , consists of four edges, C1, . . . , C4, and four
curved arcs of radius ε (enclosing the corners) denoted by γ1, . . . , γ4,
respectively. We use Green’s First Identity to obtain

E = 1

2

∮
∂�Nε

θ∇θ · v dσ =
4∑

i=1

[
1

2

∫
Ci

θ∇θ · v dσ + 1

2

∫
γi

θ∇θ · v dσ

]
, (49)

where v is the outward pointing normal to each boundary segment.
Although ∇θ diverges at each vertex, ∇θ · v is zero to lowest order on

each arc γi , and it can be shown that the energetic contributions from γi in
(49) are of order ε as ε → 0. We define four functions related to the energy
contributions from the edges Ci , namely,

s1(N , ρ) :=
∞∑

n=1

coth
(
N (n − 1/2) log ρ

)+ 1

n − 1
2

, (50)

s2(N , ρ) :=
∞∑

n=1

coth
(
(Nn/2) log ρ

)+ 1

n/2
, (51)

s3(N , ρ) :=
∞∑

n=1

cosech
(
N (n − 1/2) log ρ

)
n − 1

2

, (52)

s4(N , ρ) :=
∞∑

n=1

cosech
(
(Nn/2) log ρ

)
n/2

. (53)
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As ε → 0, the regularized energy within �Nε is then given by

E ∼ π log

(
1

ε

)
+ π Ẽ + O(ε), (54)

where the normalized energy, Ẽ , is the interior distortion energy and the
logarithmic term is the “defect energy” and is identical for all four states.
The normalized energies of the four states are given by

ẼU1 = s1(N , ρ) + s4(N , ρ) − s2(N , ρ) − s3(N , ρ)

+ (N + 2)2

4N
log

(
1

ρ

)
+ 1

2
log

( ρ

N 2

)
, (55)

ẼU2 = s1(N , ρ) + s4(N , ρ) − s2(N , ρ) − s3(N , ρ)

+ (N − 2)2

4N
log

(
1

ρ

)
+ 1

2
log

( ρ

N 2

)
, (56)

ẼU3 = −s1(N , ρ) − s3(N , ρ) + 1

N
log

(
1

ρ

)
+ 1

2
log

(
16ρ

N 2

)
, (57)

ẼD = s3(N , ρ) − s1(N , ρ) + 1

N
log

(
1

ρ

)
+ 1

2
log

(
16ρ

N 2

)
. (58)

In Fig. 7, we plot the normalized energy of each of the four sector
configurations, as a function of N , for some fixed values of ρ. For
small values of N , the U2 state is the minimum energy state in this set
{U1, U2, U3, D}. In contrast, for a square or rectangle, the diagonal state
always has the minimum normalized energy [16]. As N increases, there is
an energy cross-over and the D state has the minimum normalized energy
for large N , since �N approaches a rectangle as N → ∞.

Using the expressions (55)–(58) for the normalized energies, we can
numerically evaluate the cross-over critical value N = Nc(ρ), at which
ẼU2 = ẼD. As shown in Fig. 8, Nc is a monotonic increasing function of
ρ, tending to infinity as ρ → 1. For moderate values of ρ ≥ 0.4, the rotated
state U2 minimizes the energy in the sector �N for N ≤ 10. As ρ → 0, the
series s1, · · · , s4 become negligible, and thus Nc may be estimated as

Nc(ρ) ∼ 4 + 8 log 2

log(1/ρ)
as ρ → 0, (59)

which is plotted in Fig. 8 as a dashed curve. Thus, U2 is the energetically
preferred state for N ≤ 4 regardless of the size of ρ.

We define a sector-based OF equilibrium to be a superposition of the
sector configurations on �N , glued along the common edges of �N . We
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Figure 7. The normalized energies of the four states {U1, U2, U3, D} in �N , plotted
against N , for fixed values of ρ.

ρ
0 0.5 1

N
c

5

10

15

20
25

Figure 8. The critical cross-over value of N = Nc(ρ) versus aspect ratio ρ. The dashed
curve shows the asymptotic estimate (59).

compare the energies of the sector-based equilibria on the annulus �, which
is simply the OF energy of a sector configuration multiplied by N -the
number of sectors, since we have assumed that all sectors are identical.
Figure 9 displays the energies of the two lowest energy sector-based
equilibria with defects, namely, the U2 states with N = 1 and N = 2, plotted



Nematic Equilibria on a Two-Dimensional Annulus 457

ρ
0 0.2 0.4 0.6 0.8 1

E
0

10

20

30

40

Defect-free
U2 with N = 1
U2 with N = 2

Figure 9. The one constant Oseen–Frank energy of the defect-free state and the U2 states
with N = 1, 2 versus aspect ratio ρ, for defect core size ε = 0.01.

versus ρ with ε = 0.01. Also shown as a dashed curve is the energy of
the defect-free state. We observe that the defect-free state always has lesser
energy than the competing sector-based equilibria, except in the regime
where ρ = O(ε).

In the limit where ρ = O(ε) and ε → 0, the defect-free state has a vortex
at the origin, the U2 state with N = 1 approaches a state with a +1/2 defect
at the origin and a +1/2 defect on the outer boundary and the U2 state with
N = 2 tends to a state with two +1/2 defects pinned to the outer boundary.
In this limit, the asymptotic approximations (55)–(58) cease to be valid,
but one can check that the defect-free state with an approximate vortex at
the origin has higher energy than the U2 state (with N = 2 and N = 1,
respectively) if ρ/ε is sufficiently small. We argue that such microscopic
values of ρ are not experimentally relevant, and these observations do not
suffice to explain the experimental stability of states with boundary defects.
In the following subsections, we introduce further physical effects, namely,
elastic anisotropy and weak anchoring, which allow configurations with
defects to be energetically preferable to the defect-free state for realistic
values of ρ.

4.3. Elastic anisotropy with strong anchoring

We use the commercially available software COMSOL Multiphysics to
numerically solve the Euler–Lagrange equation (4) with δ �= 0, and strong
tangential anchoring conditions on ∂�N . We find analogs of all four states
{U1, U2, U3, D}, with qualitatively similar structures to the δ = 0 case. As in
Section 4.2, we define the anisotropic versions of the sector configurations
and sector-based equilibria and numerically compute the corresponding OF
energies, using an effective core radius ε � 1. We evaluate the regularized
energy in �N , compute the total energy in � as before and compare with
the energy of the defect-free state. In Fig. 10, we compare the energies
of the defect-free state, the spiral-like state discussed in Section 3.2 and
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Figure 10. The (ρ, δ) parameter space with ε = 0.01. We compare the energies of the U2

states with N = 1, 2; the defect-free state; and the spiral-like state and the shaded regions
label the state with the minimal energy, restricted to these four competing configurations,
on �.

the U2 sector-based equilibrium with N = 2 and N = 1 (with δ �= 0) and
show for ε = 0.01, the regions of the (ρ, δ) parameter space where each of
the four candidate states is energetically preferred (compared to the other
competing states). This is not an exhaustive study since we only focus on
four representative states. The region of the parameter space for which the
U2 states are energetically preferable is dependent on ε, decreasing ε will
make this section of the parameter space smaller.

For δ sufficiently close to 1, the defect-free state need not be the global
minimizer of the OF energy. As the value of ρ decreases, the defect-free
state first loses stability to the spiral-like state, as shown in Section 3.2.
For yet smaller values of ρ, the states with defects become energetically
preferable, first with N = 2 and then with N = 1. This energy cross-over
demonstrates that elastic anisotropy may stabilize states with boundary
defects for experimentally realistic values of ρ.

4.4. The one-constant approximation with weak anchoring

The experiments reported in [4, 5] do not use highly anisotropic materials. A
second mechanism for stabilization of boundary defects is weak anchoring.
We consider the annular sector �N , with weak anchoring on the edges at
r = ρ, 1 and strong tangential anchoring on the edges at φ = 0, 2π/N . The
corresponding “weak” analog of the U2-sector configuration are solutions of
∇2θ = 0 subject to the boundary conditions

∂θ

∂r
= α

2
sin(2θ − 2φ) at r = 1, θ = 0 at φ = 0, (60)
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Figure 11. The (ρ, α) parameter space. We compare the energies of the U2 states with
N = 1, 2 and the defect-free state and the shaded regions label the minimal energy state,
restricted to these three competing configurations, on �.

∂θ

∂r
= −α

2
sin(2θ − 2φ) at r = ρ, θ = 2π

N
− π at φ = 2π

N
. (61)

We use COMSOL to solve the Laplace equation in �N with boundary
conditions (60)–(61) and evaluate the corresponding energy for given values
of α and ρ. Weak anchoring serves to regularize the boundary defects so
that the OF energy is finite, and there is no longer any need to introduce the
defect core size ε.

In Fig. 11, we compare the energies of the defect-free state, and the weak
analog of the U2 sector-based equilibrium with either N = 1 or N = 2. We
plot a phase diagram which demarcates the parameter regimes (ρ, α), (with
δ = 0) for which states with boundary defects are energetically preferred
to the defect-free state. When the dimensionless anchoring strength α is
large, the defect-free state is preferred unless ρ is extremely small, as
expected from the strong anchoring results in Section 3.2. However, as the
surface anchoring becomes weaker, states with boundary defects become
energetically preferable, even at relatively large values of the ratio ρ. This
suggests that, particularly in systems with low elastic anisotropy, i.e., small
δ, the role of weak anchoring at the cell boundaries should be considered
when interpreting experimental observations of equilibria with boundary
defects.

4.5. States with boundary defects in LdG theory

In the preceding subsections, we construct sector-based equilibria on an
annulus, �, by gluing together sector configurations on �N along their
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common edges. It is natural to ask if we can have real nematic equilibria, or
even transient states, in a dynamic evolution that retain the symmetries of
our sector-based equilibria. If such states persist over a length of time, they
are of experimental relevance and may explain the experimental observations
of states with boundary defects in annular chambers.

The question of interest then is—can we have OF equilibria on � that
retain the symmetries of the sector configurations? To address this question,
we work in a 2D LdG framework that incorporates a director field, n and a
scalar order parameter s, analogous to the framework used in [23, 24]. The
scalar order parameter regularizes the defects, so that the LdG acts as a
weighted OF model. We describe the nematic state by a symmetric, traceless
2 × 2 matrix: the reduced LdG Q-tensor is given by

Q =
(

q1 q2

q2 −q1

)
. (62)

We note that there is no biaxiality in this simple model since we do not aim
to resolve defect structures but rather focus on structural symmetries away
from defects.

To simulate weak anchoring, we incorporate a Durand–Nobili surface
energy into the normalized LdG energy [23, 25] to obtain the rescaled
energy functional

E[q1, q2] =
∫

�

|∇q1|2 + |∇q2|2 + 1

4ε2

(
2q2

1 + 2q2
2 − 1

)2
d�

+ α

∫
∂�

(
q1 + cos(2φ)√

2

)2

+
(

q2 + sin(2φ)√
2

)2

dσ, (63)

where α is again the dimensionless anchoring strength and ε2 = L/|A| (L
is the elastic constant and A is proportional to the temperature.) We adopt
the gradient-flow model for E[q1, q2] to investigate the evolution of states
subject to initial conditions with the sector symmetries discussed in Section
4.2. We therefore solve the system

−∂qi

∂t
+ ∇2qi = qi

ε2

(
2q2

1 + 2q2
2 − 1

)
(64)

in � subject to boundary conditions

∂q1

∂v
+ α

(
q1 + cos(2φ)√

2

)
= 0,

∂q2

∂v
+ α

(
q2 + sin(2φ)√

2

)
= 0 (65)

on ∂�.
We now use the sector configurations to construct initial conditions for

the Q-tensor, namely,

q1 = s cos(2θ ), q2 = s sin(2θ ) (66)
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Figure 12. Initial condition (t = 0) and snapshots of the director at variable t , with
ε = 0.01, ρ = 0.4, and α = 50.

at t = 0, where θ is a sector-based equilibrium as discussed in Section 4.2
obtained by gluing together OF sector solutions of the form (44). The
initial order parameter s is defined to be 1/

√
2 everywhere except in

a disk of radius 3ε about each initial defect location rk , where we set
s = |r − rk |/(3ε

√
2).

We use COMSOL to solve (64) subject to (65) and the above initial
conditions, and investigate the long-time dynamics of the system as t → ∞.
For suitably large values of α, the initial defects detach from the edges,
approach and annihilate each other, so the system ultimately approaches the
defect-free state, for example, see Fig. 12. Here, the order parameter (not
shown) is approximately equal to 1/

√
2 everywhere except in a small radius

about the defects.
However, for small values of α, the defects do not always detach

from the boundary. Some example solutions are shown in Fig. 13 with
ρ = 0.4, ε = 0.01, and N = 2. Panel (a) shows a converged solution with
α = 10. At this relatively low value of the anchoring strength, the initial
boundary defects move outside the domain, resulting in much weaker
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(d) Close-up of (−1, 0) for α = 10, 30.

Figure 13. Converged solutions of Eqn. (64) with ρ = 0.4, ε = 0.01, and variable α,
subject to boundary conditions (65) with initial conditions given by the U2 state with
N = 2. The local behaviors of the director (dashed lines) and order parameter (colored
contours) about the defects at (−1, 0) from (a) and (b) are shown in (d).

energy concentrations at the initial defect points and an order parameter
approximately equal to 1/

√
2 even at the boundary (see (d)). In panel (b),

the anchoring strength α is increased to 30, resulting in somewhat stronger
approximate defects on the boundaries. The fine structure of the director and
order parameter about one of the defects is shown in (d). In both cases
(a) and (b), the overall structure of the initial state, with symmetry lines
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at φ = 0, π , is preserved by the dynamics. In panel (c), with anchoring
strength α = 40, we find that a single pair of defects detach and annihilate
in a similar process to that shown in Fig. 12, leaving a state that resembles
the U2 state with N = 1. The remaining pair of defects remain anchored to
the wall, with a similar order parameter profile to that of α = 30.

These numerical results illustrate how, for moderate values of ρ and
moderate values of α, initial conditions constructed from the sector configu-
rations in Section 4.2 generate dynamic solutions which retain approximate
singularities, reminiscent of ±1/2 defects, at the sector vertices for long
times. For these combinations of coefficients, these solutions with boundary
defects (or virtual defects near boundaries) and rotational symmetries are
not the global minimizer as the defect-free state always has a lower en-
ergy; therefore the solutions are at most metastable. We do not make any
conclusions about the exact defect profiles and if they are pinned to the
boundaries. These numerical investigations simply suggest that there do exist
(approximate) OF equilibria that have the sector symmetries discussed in
Section 4.2 and, hence, our sector-based equilibria are a useful construction
for studying experimental states with boundary defects which share the
sectorial symmetries of the analytic constructions in Section 4.2.

5. Conclusions

In this paper, we study nematic equilibria on a 2D annulus, with strong
or weak tangential anchoring, modeled in the continuum OF theoretical
framework. We use formal perturbation methods to obtain sharp bounds for
the local stability of the defect-free state and to analyze the behavior of
the new “spiral-like” state which emerges when the defect-free state loses
stability. The spiral-like solution is always preferred to the defect-free state
when it exists. In the weak anchoring scenario, we numerically compute
stability diagrams (see Fig. 4) that quantify the sensitivity of the defect-free
state to different kinds of perturbations in terms of the annular aspect ratio
ρ, the elastic anisotropy δ and the anchoring strength α.

We model OF nematic equilibria with boundary defects by computing
local solutions of the Laplace equation on an annular sector with Dirichlet
tangent boundary conditions. We find three rotated and one diagonal
solution, by analogy with similar work done for squares and rectangles in
[15, 16, 21]. We compute analytic expressions for the corresponding director
fields and their one-constant OF energy, and these expressions allow us
to give qualitative information about the optimal number and arrangement
of boundary defects, as a function of the annular aspect ratio. We note
that the lowest energy states, made up of combinations of the U2 sector
configuration, are qualitatively similar to the experimentally observed states.
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We study the conditions under which boundary defects may be ener-
getically preferable to the defect-free state. Generically, we find that states
with defects are preferred when the inner radius ρ is sufficiently small, the
elastic anisotropy δ is sufficiently large, and the anchoring strength α is
sufficiently small. These theoretical results are in qualitative agreement with
experimental observations [4]. Although we consider elastic anisotropy and
weak anchoring separately, we would expect the qualitative trends identified
in Figs. 10 and 11 to hold for systems with both anisotropy and weak
anchoring.

We illustrate the usefulness of the sector construction by using glued-
together sector solutions to define initial conditions for an idealized LdG
solver. The LdG simulations suggest that for moderate values of ρ and α

with δ = 0 (isotropic materials), an initial condition with boundary defects
converges to a metastable solution with the same number of approximate
singularities pinned to the inner and outer boundaries. Indeed, the sector-
based equilibria may be a useful tool for constructing LdG equilibria that
support boundary defects, and future work will include the study of LdG
equilibria with boundary defects, their local and global stability in 2D and
3D settings.
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transitions in an annulus, Liq. Cryst. 26: 743–751 (1999).

12. P. PALFFY-MUHORAY, A. SPARAVIGNA, and A. STRIGAZZI, Saddle-splay and mechanical
instability in nematics confined to a cylindrical annular geometry, Liq. Cryst. 14:
1143–1151 (1993).

13. P. BISCARI and E. G. VIRGA, Local stability of biaxial nematic phases between two
cylinders, Int. J. Nonlinear Mech. 32: 337–351 (1997).

14. G. BEVILACQUA and G. NAPOLI, Periodic splay-twist Fréedericksz transition for
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