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Abstract

A hydrodynamic two-fluid model encompassing inertialess electrons of arbitrary degree of de-

generacy and cold ions using the quasineutrality assumption are reduced to an effective non-

linear Schrödinger equation (NLSE) which is used to investigate driven electrostatic ion quasi-

particle excitations. The quantized frequency spectrum of these quasi-particle excitations in a

one-dimensional quasineutral electron-ion plasma confined in rectangular potential well is calcu-

lated. The spectrum shows a quadratic energy level increase quite similar to that of a single electron

confined in a hard box, with much reduced level spacings proportional to the electron-to-ion mass

ratio. The parametrically driven NLSE is also used to study the quantum Faraday excitations

in both weakly and fully nonlinear regimes by employing the pseudo-potential technique. The

quantization criterion for fully nonlinear driven quantum Faraday excitations in an arbitrary de-

generate plasma confined in a hard box of length l is derived, and it is shown that these excitations

constitute a full frequency spectrum level starting with those of small amplitude, high frequency

sinusoidal quasi-particles up to the topmost zero-frequency level solitary quasi-particle excitations

(quasi-soliton level).

PACS numbers: 52.30.-q,71.10.Ca, 05.30.-d
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I. INTRODUCTION

Faraday waves [1] are well-known suitably driven parametric excitations which occur on

the surface of a variety of viscous fluids. These oscillations which take place in a quantized

quantity of the driver frequency above a critical external force amplitude appear as spectacu-

lar symmetric patterns on the surface of liquids [2–4]. Despite numerous efforts to investigate

these nonlinear patterns, many aspects of the excitations are still poorly understood, due

to the complexity of the physical phenomenon. The complexity is basically due to the large

number of parameters which can be varied in the system, such as the driving frequency and

amplitude, the fluid viscosity and other thermodynamic state parameters, different kinds of

fluid instabilities, etc. [5, 6]. The theory, however, may as well apply to microscopic envi-

ronments such as plasmas consisting multi-species atomic fluids. The problem may become

more appealing when quantum effects arise due to reduced inter-particle distances. How-

ever, no such extension has been considered in the past, mainly due to the lack of theory for

solid state plasmas such as metals, as a preferred platform. Surface Faraday (gravity) waves

has recently been investigated in liquid metals [7] driven by frequencies in the range 20–80

Hz, which show highly symmetric patterns. On the other hand, electrostatic ion Faraday

waves may be easily excited using a lower band RF frequency drive around the ion plasma

frequency ωi =
√

4πe2n0/mi in which n0 is the ion number density, e the unit charge, and

mi the ion mass. There are also recent suggestions for energy extraction by parametric

Faraday wave resonance in a magnetic fluid [8].

Quantum effects play an important role in a broad range of physical phenomena involving

particle-particle and particle-potential interactions. In solids and dense plasmas the nature of

mutual interaction of constituent particles radically change when the inter-particle distances

is lowered either by a pressure increase or temperature decrease beyond a scale-length char-

acteristic of quantum regime where overlapping of the single-particle wave functions start

to emerge [9]. However, recent studies of the quantum electron gas [10] provides a new

statistical interpretation of the quantum effects, other than the conventional Copenhagen

probabilistic interpretation, based on the interference between single-particle and collective

motion of constituent particles in a statistical ensemble. The study of statistical quantum

effects has a long scientific history of more than seven decades, and started by the pioneering

works of several prominent researchers [11–17]. In recent years, the investigation of collective
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quantum excitations has received a renewed interest [18–34] due to its broad technological

applications in the rapidly developing fields of nano-electronics, quantum optics, plasmonics,

and quantum device fabrication [35–39].

Due to the large degree of freedom and complexity of mutual interactions in quantum

plasmas, the dynamic simulation of decomposed wave functions of N > 10 number of single-

particle Schrödinger equations is a formidable task. There are, however, other effective

models such as quantum kinetic [40] and hydrodynamic [41] models which fundamentally

reduce the degree of complexity of the calculations. Particularly, the quantum hydrody-

namic approach has been found to provide unique and far-reaching analytic results which

brings into view interesting aspects of collective interactions in dense plasmas [42]. Using

hydrodynamic models to study basic plasma phenomena in quantum ionized environments

such as the electromagnetic wave propagations and interactions, multistream quantum phe-

nomena, wave instabilities and various nonlinear effects reveal even more collective aspects

which are significantly distinguished from the classical counterparts.

The quantum hydrodynamic model may also be cast into a collective nonlinear

Schrödinger equation (NLSE) for the investigation of electrostatic ion excitations or a col-

lective NLSE-Poisson system for studying electron plasma oscillations in quantum plasmas

[43]. The linearized Schrödinger-Poisson (SP) model has been recently used to investigate

quantum features of a degenerate electron gas by means of a coupled pseudo-force system

[44]. Analytical and numerical studies of the NLSE have found numerous applications in

quantum mechanics as well as in the description of quasi-monochromatic wave propagation

in weakly nonlinear media [45], including laser-plasma interaction, nonlinear optics, gravity

waves, etc. The NLSE is closely related to the Zakharaov system [46–48] which is used

to describe the propagation of high-frequency waves and their coupling to low-frequency

oscillations, such as Langmuir oscillations in an ionized plasma and their interaction with

ion acoustic waves, and interactions between the short- and long-wave gravitational distur-

bances in the atmosphere [49]. The NLSE and Zakharov systems in inhomogeneous plasmas

[50–53] exhibit interesting dynamics involving localized excitations, solitons and chaos.

The aim of this paper is to use a quantum hydrodynamic model of electrons and ions to

investigate quantum Faraday quasi-particle excitations in a plasma with Fermi-degenerate

electrons. The paper is organized as follows. We provide the mathematical model of quantum

electrostatic ion excitations in Sec. II. The quantized frequency spectrum of free electrostatic
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quasi-particle excitations of ions in the arbitrary degenerate quasineutral electron gas is

presented in Sec. III. The weakly nonlinear quantum Faraday quasi-particle excitations

in a parametrically driven ions in an arbitrary degenerate electron fluid is studied in Sec.

IV. The fully nonlinear quantum Faraday quasi-particle excitations and their wavefunction

along with the corresponding quantized frequency spectrum is investigated in Sec. V, and

the damped parametrically driven excitations are presented in Sec. VI. Finally, concluding

remarks are given in Sec. VII.

II. MATHEMATICAL MODEL

The dynamics of quantum ion acoustic waves in electron-ion plasmas is here studied using

the following hydrodynamic model [54] which includes the ion continuity equation,

∂ni
∂t

+∇ · (niui) = 0, (1a)

the momentum equation for the cold ions,

mi

[
∂ui
∂t

+ (ui · ∇)ui

]
= −e∇φ, (1b)

the momentum equation for the inertialess electrons,

0 = e∇φ− ∇Pe
ne

+
ξh̄2

6me

∇
(

∆
√
ne√
ne

)
, (1c)

and Poisson’s equation,

∆φ = 4πe (ne − ni) , (1d)

in which ne, ni, ui, Pe and φ are the electron number density, ion number density, ion fluid

velocity, electron fluid pressure, and electrostatic potential. Other parameters have their

usual meanings. The parameter ξ is a correction for low-frequency (ω � kVF with VF

being the electron Fermi speed) wave phenomena to the Bohm force in the hydrodynamic

formulation, defined as

ξ =
Li3/2 [− exp (βµ0)] Li−1/2 [− exp (βµ0)]

Li1/2[− exp (βµ0)]2
, (2)
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where β = 1/kBT with T being the electron temperature, µ0 denotes the equilibrium chem-

ical potential of the electron fluid, and Liν(z) is the polylogarithm function of order ν and

argument z. The polylogarithm function has the integral form

Liν(−ez) = − 1

Γ(ν)

∞
∫
0

xν−1

exp(x− z) + 1
dx, ν > 0, (3)

where Γ is the gamma function. For a given value of T , the value of ξ decreases from the

limiting classical value of ξ = 1 for βµ0 � −1 to the limiting fully degenerate value ξ = 1/3

for βµ0 � 1 in which limit µ0 ' EF where EF = kBTF is the Fermi energy of the system

and TF is the Fermi temperature, dependent only on the electron number density. Note that

in the fully degenerate limit, z � 1, we have limz→∞ Liν(−ez) = −zν/Γ(ν + 1) and in the

classical limit, z � −1, we have Liν(−ez) ≈ −ez.

A new generalized quantum hydrodynamic formalism based on density functional theory

(DFT) has recently appeared, which takes into account both the Hartree mean-field and

electron exchange-correlation potentials in an integral form [55, 56] as a function of the

local electron number density. Moreover, a density functional exchange-correlation potential

[57] may be easily incorporated in the current hydrodynamic model (1) as has been done

in recent literature [58–60]. However, investigations based on kinetic theory [61] reveals

that such a time-independent density functional exchange contribution to hydrodynamic

formalism may give misleading results for low phase speed phenomena such as ion acoustic

oscillations and may only provide reasonable results for fast electron plasma excitations. It is

also noted that the exchange-correlation contribution to many-body system is independent

of the single-particle orbital but depends only on the local fluid density [55].

For an isothermal electron fluid, the equation of state may be written in the form [54]

ne = −NLi3/2 [−exp (βµ)] , Pe
(is) = −N

β
Li5/2 [−exp (βµ)] , (4)

where the effective density of states of the electrons is given by [36]

N =
2

Λ3
e

= 2

(
me

2πβh̄2

)3/2

, (5)

where Λe is the electron thermal de Broglie wavelength. The isothermal equation of state

(4) may be written in the following compact form

P (is)
e =

ne
β

Li5/2[− exp(βµ)]

Li3/2[− exp(βµ)]
. (6)
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Note that in the classical limit one arrives at P
(is)
e = nekBT and in the complete degeneracy

limit P
(is)
e = (2/5)nekBTF . The degeneracy parameter δ = TF/T is a measure of the degree

of degeneracy of the electron fluid with the limits δ � 1 and δ � 1 corresponding to the

classical and fully degenerate cases, respectively. Therefore, the model is valid for electron-

ion plasma with a wide range of non-relativistic degrees of degeneracy.

On the other hand, the one-dimensional adiabatic equation of state of electrons may be

written as [68]

P (ad)
e =

ne0Li5/2[− exp(βµ0)]

βLi3/2[− exp(βµ0)]

(
ne
ne0

)3

, (7)

In the classical limit for adiabatic equation of state one obtains P
(ad)
e = (ne/ne0)3nekBT

which corresponds to the classical electron gas with the adiabatic index γ = 3 in a gas

of degree of freedom D = 1 with γ = (D + 2)/D. In the fully degenerate limit one has

P
(ad)
e = (2/5)(ne/ne0)3nekBTF where ne0 is the equilibrium electron number density.

III. ENERGY SPECTRUM OF QUASIPARTICLE IN A BOX

Using the Madelung transformations N = Ψ(r, t) exp[iS(r, t)/h̄] with Ψ(r, t) =
√
n(r, t)

and ∇S(r, t) = meui the hydrodynamic set of equations (1) may in the quasineutrality limit

(ne ' ni = n) be cast into the effective Schrödinger equation [43]

ih̄
∂N
∂t

= − ηh̄
2

2me

∆N + αµN , (8)

where α = me/mi and η = αξ/3. Note that in obtaining Eq. (8) for low-frequency free

ion-acoustic oscillations, we applied the isothermal equation of state for electrons (6) via

the simplifying identity ∇P = n∇µ which can be readily confirmed using definitions (4). In

normalized units (Ψ→ Ψ/
√
n0) we can write a one-dimensional version of Eq. (8) as

i
∂N
∂t

= −η∂
2N
∂x2 + αµN , (9)

in which µ is normalized to the plasmon energy Ep = h̄ωp with ωp =
√

4πe2n0/me being the

electron plasma frequency, and the time and space coordinates are respectively normalized

by 1/ωp and λp, in which λp = 2π/kp is the plasmon length with kp =
√

2meEp/h̄ being

the plasmon wavenumber. We first consider linear ion quasi-particle excitations in which

the electron fluid constitutes a homogeneous isothermal gas with the equilibrium chemical
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potential µ ' µ0 in which the singly ionized ions oscillate with frequency ω � kVF with

VF being the Fermi speed. On the other hand, for standing waves with S = S(t) (ux = 0),

Eq. (9) may be decomposed into the following linear system using the separation of variables

N (x, t) = Ψ(x) exp(−iωt),

d2Ψ

dx2 + k2Ψ = 0, k =

√
ω − αµ0

η
, (10)

where ω is the normalized quasi-particle (a quasi-particle of ion excitations in a periodic

crystal lattice is called a phonon) eigenfrequency. It gives the plane wave solution for the

wave function of a free quasi-particle

N (x, t) = A exp(ikx− iωt). (11)

Note that, unlike plasmon excitations which are two-tone oscillations, there is only one scale-

length associated with the ion quasi-particle. Equation (9) may be generalized to include

an external potential Φ(x) as compared to the internal potential µ

i
∂N
∂t

= −η∂
2N
∂x2 + [αµ+ Φ(x)]N . (12)

Let us now consider the energy levels of linear excitations in a hard wall confining potential

well of width l (where l is the plasma dimension), i.e. Φ(0 < x < l) = 0 and Φ(x ≥ l, x ≤

0) =∞. Analogous to standard quantum mechanics problem of particle in a box one obtains

the normalized wavefunction and quantized wavenumbers

N (x) = sin(kx) exp(−iωt), k =
πq

l
, (13)

where q is an integer. Note that the spatial variation in the electron (and ion) number

density is obtained from n = NN ∗ = sin2(πqx/l). The quantized eigenfrequencies of the

quasi-particles are

ω = αµ0 +
ηπ2q2

l2
. (14)

It is noted that the eigenfrequency ω is limited from below to αµ0 +ηπ2/l2 which clearly de-

pends on the equilibrium chemical potential of the ambient electron gas. Note also that (13)

reduces to the plasmon energy eigenfrequencies [10] by taking α = 1 and ξ = 3 appropriate

for plasmon oscillations [54]. In the high frequency linear limit, by using the quasi-particle

frequency spectrum, one can calculate some useful macroscopic physical properties such
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as the heat capacity, optical response, and thermal expansion for plasmas with arbitrary

degrees of electron degeneracy.

Collective plasma-ion excitations (quasi-particles) are quantum mechanical analogue of

phonons which are due to lattice vibrations in solids. Phonons are known to play important

role in heat capacity and heat transport in solids. For instance, there can be two sources of

heat capacity in plasmas. The important one is due to electron plasma oscillations which

has recently been treated in Ref. [63]. The other contribution comes from the quasi-particle

excitations. Hence, from the quantized energy spectrum (14) of quasi-particles in quantum

plasmas one can calculate the quasi-particle density of states (DoS) quite similar to those for

fermions in metals. The quasi-particle energy spectrum and DoS is however closely related to

the energy level of electrons in metals due to the fact that collective ion dynamics in a plasma

is coupled with the electron fluid motion via the electrostatic perturbations (e.g. see Eq.

(1)). Now taking the normalized parabolic energy dispersion E = ε − αµ0 = ηk2/2 for the

Bosonic quasi-particles, the enumeration of available modes and taking into account the Pauli

exclusion principle for electrons leads to the quasi-particle DoS D(E) = 3N/(2ηE) where

N is the number of electrons (ions). A rough estimate of the quasi-particle contribution to

the specific heat in the low-temperature, quasineutral limit based on current model is

Cqp =

∞∫
0

df(E, T )

dT
ED(E)dE, (15)

with the bosonic occupation function f(E, T ) = 1/ [exp (E/kBT )− 1].

On the other hand, an analytic solution for the generalized equation (12) can be found

using the WKB approximation [64], in the linear limit µ ' µ0. In the classically allowed

region, away from the turning points, the WKB solution reads

Ψ(x) =
C+ exp

[
i√
η

∫
dx
√
ω − αµ0 − Φ(x)

]
+ C− exp

[
−i√
η

∫
dx
√
ω − αµ0 − Φ(x)

]
4
√

[Φ(x) + αµ0 − ω] /η
. (16)

For instance, for plasma confined in a parabolic external potential Φ(x) = ω2
0x

2, the approx-

imate solution within the potential is

Ψ(x) =
C+ exp [iδ(x)] + C− exp [−iδ(x)]

4
√

[ω2
0x

2 + αµ0 − ω] /η
, (17)

where

δ(x) =
1

2
√
η

{
x
√
ω − αµ0 − ω2

0x
2 +

(ω − αµ0)

ω0

tan−1

[
ω0x/

√
ω − αµ0 − ω2

0x
2

]}
. (18)
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IV. WEAKLY NONLINEAR DRIVEN EXCITATIONS

Let us now consider the quasi-particle excitations in the weakly nonlinear limit. Para-

metrically driven NLSE corresponding to (9) has the form [65–67]

i
∂N
∂t

+ η
∂2N
∂x2

− αµ(Ψ)N = Ω exp(−iωdt)N ∗, (19)

where Ω and ωd is the driving amplitude and frequency, respectively. Assuming a solution

on the form N (x, t) = Ψ(x) exp(−iωdt/2), the autonomous equation governing the motion

of a quasi-particle can be written as

d2Ψ

dx2
+

[
ωd/2− αµ(Ψ)− Ω

η

]
Ψ = 0. (20)

The eigenfrequency and wave function of the quasi-particle in an infinite potential well of

width l (corresponding to the quasi-particle oscillating in the pseudo-potential), employing

the driven NLSE (20) in the linear limit (µ ' µ0), is found to be ωd/2 and N (x, t) =

A exp(iKx − iωdt/2) with K =
√

(ωd/2− αµ0 − Ω)/η. It is interesting to note that stable

driven quasi-particle excitations require that Ω < ωd/2−αµ0, so that there is a distinct limit

on maximum amplitude of stable driven quasi-particles. That is, for a given driver frequency

its amplitude must exceed a critical value in order to parametrically excite a quasi-particle.

Two notable differences appear in the characteristics of driven quasi-particle excitations

compared to the free ones, considered in Sec. V. The first is that the eigenfrequency of

driven oscillations are shifted to higher values compared to those of free excitations. The

second one is that the driven excited quasi-particle eigenfrequencies are exactly half of that

corresponding to the driver frequency. In other words, the eigenfrequency spacings for

parametrically driven quasi-particles in a potential width of length l are twice of those for

free quasi-particle in a hard box of the same length, i.e.,

ωd = 2Ω + 2αµ0 +
2ηπ2q2

l2
. (21)

Moreover, it is possible to obtain approximate analytic solution to the linearized driven NLSE

(19) in the presence of an arbitrary external potential, Φ(x) using the WKB approximation.

Such a solution is given by (16) with the replacement ω → ωd/2− Ω.

Here a discussion on the validity of the above considered linearized NLSE and driven

NLSE models is in order. While the bold assumption µ ' µ0 may seem very liming,
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it is quite reasonable in fully degenerate plasmas such as liquid metals and nanometallic

fluids to assume that the chemical potential stays essentially unchanged during collective

ion excitations. In such systems in which the electron temperature is much less that the

characteristic Fermi temperature. The electron temperature is not a characteristic parameter

of the degenerate system anymore and the chemical potential µ is replaced with a constant

Fermi energy which is solely a function of the electron number density. Therefore, the

dynamics of ion oscillations in fully degenerate plasmas which are ubiquitous in nature are

ruled by the nearly fixed Fermi energy. Moreover, as the number density of the electrons

decreases and the plasma becomes partially degenerate, such as in semiconductors, the

temperature becomes a fundamental parameter of ion and electron dynamic processes and

the changes in chemical potential cannot be ignored.

It is easily confirmed that Eq. (20) admits the following first integral

1

2

(
dΨ

dx

)2

+ V (Ψ) = E ′, (22)

in which E ′ is the energy eigenvalue of the quasi-particle [62] and the pseudo-potential

corresponding to this Hamiltonian reads

U(Ψ) = E ′ − V (Ψ) = E ′ − α

η

Ψ∫
1

µ(Ψ)ΨdΨ−
(
ωd/2− Ω

2η

)
(Ψ2 − 1). (23)

Using the expansion of the chemical potential around the equilibrium value, we find

V (Ψ) = −α
η

Ψ∫
1

[
µ0 + (Ψ− 1)

∂µ

∂Ψ

∣∣∣∣
Ψ=1

]
ΨdΨ−

(
ωd/2− Ω

2η

)
(Ψ2 − 1), (24)

which is put in a simplified form of a Helmholtz potential as

V (Ψ) = − c
2

Ψ2 +
d

3
Ψ3 + V0, (25)

where V0 is an arbitrary reference potential denoting the equilibrium point and the param-

eters c and d are respectively the dispersion and nonlinear coefficients given by

c = d+

(
ωd/2− Ω + 2αµ0

2η

)
, d = −2α

η

∂µ

∂n

∣∣∣∣
n=1

= −
(

2αθ

η

)
Li3/2[− exp(µ0/θ)]

Li1/2[− exp(µ0/θ)]
. (26)

where θ = T/Tp with Tp = Ep/kB being the characteristic plasmon temperature. Taking

V0 = c/2−d/3 brings the equilibrium point Ψ = 1 to the origin which is more appropriate for
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analytic purpose. The pseudo-potential (25) has another extremum value at Ψm = c/d given

by Vm = −c3/(6d2). The energy E ′ of quasi-particle oscillating extreme between points Ψ2

and Ψ3 which are roots of U(Ψ) = 0 can vary in the range 0 < E ′ < Vm. The quasi-particles

range from very high frequency, low amplitude linear excitations with energy E ′ → 0 up

to the low frequency, high amplitude cnoidal and soliton quasi-particles which appear as

Faraday ripples for E ′ → Vm.

The solution to the energy equation is given by the integral form

x− x0 =

Ψ3∫
Ψ2

dΨ√
2U(Ψ)

, (27)

where x0 is the reference point of the oscillations and Ψ2 and Ψ3 > Ψ2 are the extreme

points between which the quasi-particle oscillates in the corresponding pseudo-potential.

The integral (28) can be exactly solved in the current weakly nonlinear limit (24). Taking

x0 = V0 = 0, leads to the exact analytic solution [62]

Ψ(x) = Ψ2 + (Ψ3 −Ψ2)cn2 [k′(x− x0),m] , k′ =

√
d(Ψ3 −Ψ1)

6
, m =

Ψ3 −Ψ2

Ψ3 −Ψ1

, (28)

where cn is the Jacobi-elliptic function with Ψ3 ≥ Ψ2 ≥ Ψ1 being the crossing points of the

pseudo-potential V (Ψ) at pseudo-energy level E ′ and 0 ≤ m ≤ 1 is the modulus of Jacobi-

cn function having the limiting values m = 0 and m = 1 which correspond respectively

to sinusoidal and solitary excitations. The roots Ψi are given in terms of the potential

parameters (26) as

Ψ1 =
1

8

(
c2

d
− c4

dZ
+
Z

d

)
, (29a)

Ψ2,3 =
c2

8d
+

(1∓ i
√

3)c4

16dZ
+

(1∓ i
√

3)Z

16d
, (29b)

Z =
(

16
√

6
√
c6d2E ′ + 384d4E ′2 − 768d2E ′ − c6

)1/3

. (29c)

The Jacobi-cn elliptic function has the limiting forms cn(x, 0)= cos(x) and cn(x, 1)= sech(x).

Also, In the sinusoidal excitation limit we have Ψ2 ' Ψ3, while in the soliton limit Ψ1 ' Ψ2

[62]. The weakly nonlinear driven excitations studied in this section may also be extended

to the case with the hard wall rectangular potential well of length l similar to the case

of linear excitations. In that case the quantization of weakly nonlinear excitation in the

pseudo-potential consequently leads to quantization of the eigenfrequencies and amplitude
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of driver via descretization of the pseudo-energy E ′. Since, the cn-function cn2 has a period

τ = 2K(m) with K(m) being the complete elliptic integral of first kind, the quantization

condition for the weakly nonlinear quasi-particle excitations readily become k′ = 2q′K(m)/l

with q′ being an integer characterizing the quantum number. It is clear that the quantization

condition is only satisfied for specific values of the driver frequency ωd and its amplitude Ω

which are parametrically related to the energy E ′ of the quasi-particle.

V. FULLY NONLINEAR DRIVEN EXCITATIONS

In order to study fully nonlinear driven Faraday quasi-particle excitations let us again use

the isothermal equation of state for the electron fluid, since it is assumed that the driving

frequency is much lower than the Fermi frequency of the electrons, ωF = kFVF , in which

kF and VF are Fermi wave vector and speed, respectively. The fully nonlinear driven NLSE

governing these excitations is given by Eq. (19). This equation admits the first integral

1

2

(
dΨ

dx

)2

+ V (Ψ) = 0, U(Ψ) = E ′′ − V (Ψ), (30)

in which E ′′ is the energy eigenvalue of the corresponding quasi-particle. Appropriate inte-

gration of the pseudo-force (30) leads to the pseudo-potential

U(Ψ) = E ′′ − V (Ψ) = E ′′ − α

η

Ψ∫
1

µ(Ψ)ΨdΨ−
(
ωd/2− Ω

2η

)
(Ψ2 − 1)− V0, (31)

Therefore the analytical full form of pseudo-potential is given by

V (Ψ) =
α

2η

{
(µ− µ0) Ψ2 −

[
P (is)
e (µ)− P (is)

e (µ0)
]}

+

(
ωd/2− Ω

2η

)
(Ψ2 − 1) + V0, (32)

where we have

P (is)
e (µ) =

θLi5/2[− exp(µ/θ)]

Li3/2[− exp(µ/θ)]
Ψ2, P (is)

e (µ0) =
θLi5/2[− exp(µ0/θ)]

Li3/2[− exp(µ0/θ)]
, (33)

The pseudo-potential (32) is complicated to handle analytically, since, the chemical potential

µ is a function of Ψ. However, in the fully degenerate limit where µ/θ � 1 we have

P
(is)
e (Ψ) = 2δ0Ψ2/5 and µ = EF = δ0Ψ4/3 where δ0 = TF0/Tp is the normalized equilibrium

value of the Fermi temperature. The pseudo-potential for Faraday waves of ion excitations

in a fully degenerate electron gas is

V (Ψ) =
αδ0

2η

[(
Ψ4/3 − 1

)
Ψ2 − 2

5

(
Ψ2 − 1

)]
+

(
ωd/2− Ω

2η

)
(Ψ2 − 1) + V0. (34)
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The nonlinear solution, which can only be evaluated numerically, is given by the integral

[62]

x− x0 =

∫
dΨ√
2U(Ψ)

. (35)

The pseudo-potential (32) (taking V0 = 0) has an equilibrium value Veq = 0 corresponding

to the rest point of the quasi-particle at Ψ = 1 and a maximum value Vm corresponding

to Ψm which is the point at which the pseudo-potential maximizes. The pseudo-frequency

eigenvalues of quasi-particle for given plasma parameters varies in the range 0 < E ′′ <

Vm with the lower/upper limit corresponding to the sinusoidal/soliton excitation pseudo-

energy. Note that the roots Ψi in this case follow the same ordering as before except that

Ψ1 < 0 in this case. The quantization condition in this case becomes l = q′′Λ in which

Λ is the wavelength of an arbitrary-amplitude quasi-particle and q′′ is an arbitrary integer

characterizing the quantum number. The wavelength Λ is defined as

Λ = 2

Ψ3∫
Ψ2

dΨ√
2U(Ψ)

, (36)

in which Ψ2 and Ψ3 are the roots of U(Ψ) = 0. Only for quantized values of E ′′ for given

driving frequency ω and amplitude Ω for electron gas of chemical potential µ0 at temperature

T , the condition l = q′′Λ is satisfied. It is, however, concluded that the linear excitation

quantization of the Schrödinger equation when E ′′ → 0 is a very special case of the broader

nonlinear Faraday quantization phenomena described by the driven NLSE in the full range

0 ≤ E ′′ ≤ Vm.

It is to be noted that the violation of quasineutrality in the very high temperature limit

may break down the validity of the current microscopic Faraday wave model. For metals and

semiconductors which are strongly coupled plasmas with the quantum coupling parameter

exceeding unity, the effective ionic correlations lead to crystalline structure formation with

very high binding energies. In such as case the application of an RF source for high amplitude

ion fluid Faraday excitations may lead to excessive heat production causing phase transitions

and instabilities in the specimen. There are, however, a variety of liquid metals such as

mercury, caesium, rubidium, francium, gallium, and gallium-based alloys with low pressure

and temperature melting point or variety of metal-based electrolytes for which Faraday

wave experiment may be applicable. For these cases, a simple experimental setup may be

realized for atomic scale microscopic large-amplitude Faraday wave excitations. A flat RF

13



transparent cylindrical container with variable height directed at z axis is filled with a liquid

metal such as caesium with melting point of 28.5 degree Celsius or rubidium with melting

point 39 degree Celsius. The external low radio-frequency (LRF) excitation with energy

band E '
√
me/miEp in which Ep = h̄ωp is the electron plasma frequency is axially applied

to the specimen. Note that the plasmon energy for caesium and rubidium are respectively

2.9eV and 3.4eV. Then a horizontal direct current (DC) probe may be used to study the

Faraday quantization effect. Moreover, the existence of fluid viscosity is essential and a

key parameter in production of Faraday patters on a liquid surface. In quantum plasmas

however the viscosity comes from weak ion correlations in liquid metals which may change

in an ionic metal-based electrolyte by metal concentrations. Then the viscous damping of

the fluid, which is considered in Sec. VI, can be experimentally tuned to the desired value.

VI. PARAMETRICALLY DRIVEN DAMPED EXCITATIONS

Finally, let us consider parametrically driven damped excitations of ions in arbitrary

degenerate plasmas. The normalized NLSE including the parametric driving force as well

as the damping term may be written as [65]

i
∂N
∂t

+ η
∂2N
∂x2

− αµN + iγN = Ω exp(−iωdt)N ∗, (37)

in which the last term in the left-hand side accounts for the dissipative losses. Physically,

the dissipative damping effect arises due to electron-ion collisions in the plasma. Assuming a

wave function of form N (x, t) = Ψ(x) exp[(−iωd/2− γ)t], (γ > 0) we arrive at the following

autonomous equation
d2Ψ

dx2
+

(
ωd/2− αµ− Ω

η

)
Ψ = 0. (38)

Note that Eq. (38) is identical to Eq. (20). In the linear limit µ ' µ0 we find a temporally

decaying plane-wave solution with the damping rate γ

N (x, t) = A exp(ikx− iωdt/2) exp(−γt), k =

√
ωd/2− αµ0 − Ω

η
. (39)

It is seen that (39) is a transient solution since at t → ∞ the wave function and hence the

number density n = NN ∗ vanishes. Therefore, the stable solution in the presence of driving

force will be the sinusoidal one with half the frequency of the periodic driving force.
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VII. CONCLUSION

In this paper we have studied the quantized frequency spectrum of linear and fully non-

linear quasi-particle excitations in a quasineutral electron-ion plasma within the framework

of quantum hydrodynamic model. The set of hydrodynamic equations is reduced to an

effective nonlinear Schrödinger equation (NLSE) from which the quantized frequency spec-

trum of quasi-particle excitations is obtained. It was shown that the quantized frequency

levels of linear quasi-particle excitations confined in a rectangular potential well of length

l is similar to that of a single electron confined in same infinite potential well except for

much reduced level spacings for ion quasi-particles which is proportional to the electron to

ion mass-ratio. Several basic physical properties of quasineutral quantum plasmas such as

the ion quasi-particle contribution to heat capacity and thermal expansion can be directly

calculated using the obtained energy spectrum at low temperature limit. We also investi-

gated the quantized frequency spectrum of weakly and fully nonlinear arbitrary amplitude

quantum Faraday excitations using the pseudo-potential method.
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