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Abstract We consider the diffusion-limited evaporation of thin two-dimensional ses-
sile droplets either singly or in a pair. A conformal-mapping technique is used to cal-
culate the vapour concentrations in the surrounding atmosphere, and thus to obtain
closed-form solutions for the evolution and the lifetimes of the droplets in various
modes of evaporation. These solutions demonstrate that, in contrast to in three di-
mensions, in large domains the lifetimes of the droplets depend logarithmically on
the size of the domain, and more weakly on the mode of evaporation and the separa-
tion between the droplets. In particular, they allow us to quantify the shielding effect
that the droplets have on each other, and how it extends the lifetimes of the droplets.
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1 Introduction

The evaporation of sessile droplets has been studied extensively in recent years [1].
Topics of particular interest include particle transport during drying [2–4] and the
resulting instabilities [5], nano-scale phenomena [6], and droplet lifetimes [7–9].

A physically realistic model of droplet evaporation must describe vapour trans-
port in the surrounding atmosphere. In the simplest setting, this requires us to solve
Laplace’s equation for the vapour concentration ĉ in the atmosphere, subject to a sat-
uration condition ĉ = ĉsat on the surface of the droplet and a no-flux condition on the
substrate [10,11]. The diffusive mass flux Ĵ from the free surface of the droplet then
controls the evolution, and hence the lifetime, of the droplet.

F. G. H. Schofield · A. W. Wray · D. Pritchard · S. K. Wilson (�)
Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond
Street, Glasgow G1 1XH, Scotland, United Kingdom
E-mail: feargus.schofield@strath.ac.uk, alexander.wray@strath.ac.uk, david.pritchard@strath.ac.uk,
s.k.wilson@strath.ac.uk



2 Feargus G. H. Schofield et al.

In the limit in which the droplet is thin [12,13,9], the problem simplifies further
because the profile of the droplet may be neglected when imposing the boundary con-
ditions on ĉ. Thus, the mathematical problem typically becomes that of solving for ĉ
in a half-space or other large domain, subject to appropriate mixed boundary condi-
tions. Similar mixed boundary-value problems occur in physical contexts including
elastostatics [14], electrostatics [15], thermostatics [16], and hydrodynamics [17].

A range of mathematical techniques can be deployed to solve such problems
[14,18]; contributions go back at least as far as the work of Weber [19], who pre-
sented what is effectively the vapour concentration field induced by a thin circular
droplet. Subsequent work has employed methods including separation of variables
[20], orthogonal polynomial expansions [21], Fourier or Hankel transforms [22,23],
and Green’s functions [24].

In two dimensions, additional techniques become available, notably conformal
mapping [25,16]. This makes two-dimensional analogues of droplet evaporation prob-
lems appealing from the modeller’s point of view: although two-dimensional prob-
lems may be somewhat artificial, their greater tractability allows more thorough anal-
ysis to be carried out. However, in two dimensions there is a fundamental difficulty
concerning the specification of appropriate boundary conditions [14], which we will
overcome, in the spirit of the work of Yarin et al. [26], by considering a suitably
relaxed boundary condition.

In practice, droplets rarely occur in isolation, and so it is important to understand
how droplets evaporate in the presence of other evaporating droplets. Previous studies
of the evaporation of multiple sessile droplets have employed a variety of experimen-
tal, numerical and analytical approaches [27–38]. The critical difference between the
evaporation of single and of multiple droplets is the occurrence of the shielding ef-
fect, namely that the presence of other evaporating droplets increases the local vapour
concentration, and so each droplet evaporates more slowly than it would in isolation.

Again, analogous problems have been studied in other physical contexts. The
first relevant study by Greenwood [39] examined the interaction of large numbers
of microcontacts in electric contact theory, treating them as independent at leading
order, and introducing an interaction term at higher order. Similar approaches have
since been applied to elastic punches [40] and flow through pores [41], and have
been put on a more rigorous asymptotic basis [42–44]. All these studies essentially
considered the equivalent of thin circular droplets in three dimensions; recent work
has used a variety of approaches to investigate the closely related problem of the
dissolution of immersed nanobubbles and nanodroplets [45–48].

In this study we consider the evaporation of thin two-dimensional sessile droplets.
In Section 2 we consider the one-droplet problem. We present the governing equa-
tions (Section 2.1), show that the most apparently natural problem does not have a
solution (Section 2.2), and then show that by considering a suitably relaxed boundary
condition we can obtain a physically acceptable solution via a conformal-mapping
technique (Section 2.3). We validate this solution against numerical simulations (Sec-
tion 2.4), and use it to obtain closed-form solutions for the evolution and lifetimes of
the droplet in various modes of evaporation (Section 2.5). We then develop asymp-
totic expressions for these lifetimes in a large domain (Section 2.5.4). In Section 3
we consider the two-droplet problem. We obtain a solution to this problem (Section
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3.1), which we again validate against numerical simulations (Section 3.2), before us-
ing it to obtain closed-form solutions for the evolution and lifetimes of the droplets
(Section 3.3). We develop asymptotic expressions for these lifetimes (Section 3.3.3),
and use these expressions to compare the lifetimes of a single droplet and a pair of
droplets in dimensional terms (Section 4).

2 One-droplet problem

2.1 Model

Consider a thin two-dimensional sessile droplet with constant surface tension σ̂ and
density ρ̂ , evaporating in the diffusion-limited regime. (For simplicity, we shall refer
to the fluid throughout as a droplet; viewed in three dimensions it is more accurately
described as a ridge or line.) Let it have semi-width R̂(t̂), contact angle θ̂(t̂) and
cross-sectional area Â(t̂). Using Cartesian co-ordinates (x̂, ŷ) with origin at the centre
of the base of the droplet, the droplet evaporates into a surrounding atmosphere with
constant coefficient of vapour diffusion D̂, vapour saturation concentration ĉ = ĉsat,
and ambient vapour concentration ĉ = ĉ∞ (< ĉsat). The vapour concentration in the
atmosphere is denoted by ĉ(x̂, ŷ, t̂), and the diffusive mass flux from the surface of the
droplet by Ĵ(x̂, t̂).

Following the approach of [12,13,9], we nondimensionalise and scale according
to

(x̂, ŷ) = R̂0(x,y), R̂ = R̂0R, θ̂ = θ̂0θ , Â = R̂2
0θ̂0A,

ĉ = ĉ∞ +(ĉsat− ĉ∞)c, Ĵ =
D̂(ĉsat− ĉ∞)

R̂0
J, t̂ =

ρ̂ θ̂0R̂2
0

D̂(ĉsat− ĉ∞)
t,

(1)

where R̂0 = R̂(0) and θ̂0 = θ̂(0).
The vapour concentration is assumed to be quasi-steady, and so c satisfies Laplace’s

equation
∇

2c = 0 (2)

throughout the atmosphere.
Assuming that the droplet is sufficiently small, the Eötvös–Bond number Eo =

ρ̂ ĝR̂2
0/σ̂ will be small; under these conditions the free surface of the droplet is ap-

proximately parabolic and its cross-sectional area is given by

A =
2
3

R2
θ . (3)

The flux from the droplet is given by

J =−∂c
∂y

for |x| ≤ R, (4)

which may be evaluated at y = 0 due to the thinness of the droplet. Similarly, the
saturation condition, c = 1, on the surface of the droplet may also be imposed on
y = 0.
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The saturation condition on the droplet and the no-flux condition on the substrate
thus become

c(x,0) = 1 for |x|< R,
∂c
∂y

(x,0) = 0 for |x|> R, (5)

respectively. To complete the problem we require a suitable boundary condition to be
imposed in the “far field”; this turns out to be non-trivial to specify.

2.2 No solution in an infinite half-space

The simplest problem to specify is evaporation into an infinite half-space, so we aim
to solve (2) subject to the far-field condition

c→ 0 as x2 + y2→ ∞ in y > 0, (6)

as well as to a mixed boundary condition on y = 0 of the form

c(x,0) = f (x)(> 0) for |x|< R,
∂c
∂y

(x,0) = 0 for |x|> R. (7)

Applying a cosine transform to (2) and imposing the far-field condition (6) leads to a
solution of the form

c =
∫

∞

0
u−1A(u)e−uy cos(ux)du, (8)

where the function A(u) is to be determined. Imposing the boundary condition (7)
requires that ∫

∞

0
u−1A(u)cos(xu)du = f (x) for |x|< R, (9)∫

∞

0
A(u)cos(xu)du = 0 for |x|> R. (10)

The work of Sneddon [14, §4.5] shows that requiring regularity of c at the contact
line x = R imposes the condition∫ R

0

f (x)√
R2− x2

dx = 0, (11)

so specifying that the function f (x) is any positive constant is not an admissible
boundary condition, and so, as could have been anticipated from the behaviour of the
fundamental solution of Laplace’s equation in two dimensions, the problem specified
by (2), (5) and (6) has no solution. We note that (11) precludes not only solutions to
the simplest problem in which the saturation concentration is constant on the droplet,
but also solutions to more general problems in which it varies along the droplet sur-
face due, for example, to changes in temperature [11,49].
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2.3 Solution in a finite domain via conformal mapping

Since the most apparently natural problem does not have a solution, we instead look
for a closely related analogue that does. We therefore consider a slightly modified
problem in which the far-field condition (6) is replaced by a similar Dirichlet condi-
tion at a distant, but finite, boundary. We therefore aim to solve

∇
2c = 0 in y > 0, x2 + y2 < γ

2, (12)

subject to the standard boundary conditions on y = 0,

c(x,0) = 1 for |x|< R,
∂c
∂y

(x,0) = 0 for R < |x|< γ, (13)

and the relaxed boundary condition

c = 0 for y > 0, x2 + y2 = γ
2. (14)

While it is difficult to find an analytical solution in a domain that is exactly semi-
circular, we can obtain a solution in a semi-elliptical domain that approaches a semi-
circular shape as it becomes large.

We proceed using conformal mapping. Let

z = x+ iy, w = u+ iv. (15)

Then the mapping

z = g(w) =−R cos
(

π

2
(w+1)

)
(16)

maps the semi-infinite strip (u,v) ∈ (−1,1)× (0,∞) in the w-plane to the upper half
of the z-plane. In particular, the rectangle (−1,1)× (0,S) shown in Figure 1(a) is
mapped to the semi-ellipse with semi-major axis length

√
Ψ 2 +R2 and semi-minor

axis length Ψ shown in Figure 1(b) and given by

z =
√

Ψ 2 +R2 cos(s)+ iΨ sin(s) for 0≤ s≤ π, (17)

where

Ψ = Rsinh
(

πS
2

)
. (18)

An important point to note is that the shape of the semi-elliptical domain in the
z-plane given by (17) depends on R as well as on Ψ . Thus, in general, for a droplet
whose semi-width changes as it evolves, the shape of the domain also changes. How-
ever, in the regime of most interest, Ψ � R, in which the domain is large, equation
(17) gives

z =Ψeis [1+O(Ψ−2)
]
, (19)

and so the domain is semi-circular with radiusΨ and independent of R up to O(Ψ−2)�
1.
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Fig. 1 (a) The rectangular domain in the w-plane and (b) the semi-elliptical domain in the z-plane for the
one-droplet problem.

In the rectangular domain in the w-plane we seek a harmonic function Φ(u,v)
satisfying

Φ(u,0) = 1,
∂Φ

∂u
(−1,v) = 0 =

∂Φ

∂u
(1,v), Φ(u,S) = 0. (20)

Solving the problem for Φ in the rectangular domain immediately gives the corre-
sponding solution for c in the semi-elliptical domain.

By inspection, the solution in the rectangular domain is given by

Φ(u,v) = 1− v
S
= 1− ℑ(w)

S
, (21)

so

c(x,y) = 1− ℑ
(
g−1(z)

)
S

= 1− 1
arcsinh(Ψ/R)

ℑ

[
arccos

(
− z

R

)]
, (22)

and the flux is given by

J(x) =−∂c
∂y

(x,0) =
1

arcsinh(Ψ/R)
1√

R2− x2
for |x|< R. (23)

In particular, the flux satisfies

J ∼ 1√
2Rarcsinh(Ψ/R)

1√
R− x

as x→ R−, (24)

and so it has the same (integrable) square-root singularity at the contact line x = R as
in the corresponding three-dimensional problem [10].

2.4 Numerical validation

In order to validate the solution obtained in Section 2.3 (i.e. in order to assess the ac-
curacy of the solution and to quantify the effect of the non-circularity of the domain),
we solved the problem in the semi-circular domain using COMSOL Multiphysics
[50]. In Figure 2 we compare these numerical solutions to the analytical solutions in
the semi-elliptical domain given by (22) and (23).
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Fig. 2 The vapour concentration and flux for the one-droplet problem for R = 1 and Ψ = 2 [(a), (d), (g)],
Ψ = 10 [(b), (e), (h)], and Ψ = 100 [(c), (f), (i)]. (a)–(c) show solutions for the vapour concentration along
the x-axis, c(x,0); (d)–(f) show solutions for the vapour concentration along the y-axis, c(0,y); (g)–(i)
show solutions for the flux, J(x). Solid lines denote the analytical solutions in the semi-elliptical domain
given by (22) and (23), and dashed lines denote the corresponding numerical solutions in the semi-circular
domain.

Figures 2(a)–(c) show solutions for the vapour concentration along the x-axis,
c(x,0); (d)–(f) show solutions for the vapour concentration along the y-axis, c(0,y);
(g)–(i) show solutions for the flux, J(x). The first column [(a), (d), (g)] shows results
for Ψ = 2, the second column [(b), (e), (h)] shows results for Ψ = 10, and the third
column [(c), (f), (i)] shows results for Ψ = 100. In all cases the solid lines denote
the analytical solutions in the semi-elliptical domain, and the dashed lines denote
the corresponding numerical solutions in the semi-circular domain. Figures 2(a)–(f)
show that the vapour concentration c takes its saturation value c = 1 on the surface
of the droplet and decreases monotonically to its ambient value c = 0 at the edge
of the domain, and Figures 2(g)–(i) show that the flux J increases monotonically
with distance from a minimum value at the centre of the droplet and is singular at
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the contact line x = R. Figure 2 also shows that the analytical solutions accurately
capture the behaviour of the numerical solutions provided that Ψ is sufficiently large,
which is exactly as expected since it is for smaller domains that the semi-circular and
semi-elliptical domains are most different.

2.5 Evolution and lifetime of the droplet

The rate of change of the cross-sectional area (3) is given by the flux (23) integrated
over the surface of the droplet,

dA
dt

=
2
3

d
dt

[
R2(t)θ(t)

]
=−

∫ R

−R
J(x)dx =− π

arcsinh(Ψ/R)
. (25)

In order to integrate (25) to determine the evolution and lifetime of the droplet,
we require additional information about the behaviour of R(t) and θ(t), i.e. we need
to specify the mode in which the droplet is evaporating. The works by Stauber et al.
[7,8] and Schofield et al. [9] describe various modes of evaporation for axisymmetric
droplets. In the present work, we consider the two-dimensional analogues of three
of these modes: the constant-radius (CR) mode, the constant-angle (CA) mode, and
the stick–slide (SS) mode. (Throughout, for consistency with the three-dimensional
problem, we will refer to modes in which R is fixed as “constant-radius” modes, al-
though strictly R is not the radius but the semi-width of the two-dimensional droplet.)

2.5.1 Constant-radius (CR) mode

In the constant-radius (CR) mode, R(t)≡ R0 = 1. Noting that θ(0) = θ0 = 1, we may
immediately integrate (25) to obtain

θ(t) = 1− 3π

2arcsinhΨ
t, A(t) =

2
3

[
1− 3π

2arcsinhΨ
t
]
. (26)

Hence the lifetime of a single droplet evaporating in the CR mode is

tCR =
2

3π
arcsinhΨ . (27)

Figures 3(a,c,d) show the evolution and lifetime of a single droplet evaporating
in the CR mode. The contact angle θ and the area A both decrease linearly with
time t [Figures 3(a,c)]. As the size of the domain Ψ increases, the contact angle θ

and the area A decrease more slowly, and so the lifetime tCR increases monotonically
with Ψ [Figure 3(d)]. This is because in two dimensions the distance to the outer
boundary sets the distance over which the concentration decays to zero, and thus
controls the concentration gradient close to the droplet, as seen in (23). This strong
role of the outer boundary is a fundamental difference from the corresponding three-
dimensional problem, in which the distance to the outer boundary becomes irrelevant
for a sufficiently large domain, and so a far-field boundary condition can be safely
imposed “at infinity”.
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Fig. 3 Evolution and lifetime of a single droplet evaporating in the CR and CA modes: (a) contact angle
θ(t) in the CR mode given by (26), (b) semi-width R(t) in the CA mode given by (28), and (c) areas A(t)
given by (26) and (28), plotted as functions of t for Ψ = 10, 100 and 1000 with the arrows indicating the
direction of increasing Ψ ; (d) lifetimes tCR and tCA given by (27) and (29) plotted as functions of Ψ . In (c)
and (d) solid lines denote the CA mode and dashed lines denote the CR mode.

2.5.2 Constant-angle (CA) mode

In the constant-angle (CA) mode, θ(t)≡ θ0 = 1. Noting that R(0) = R0 = 1, we may
integrate (25) implicitly to obtain

t =
2

3π

[
arcsinhΨ −R2(t)arcsinh

(
Ψ

R(t)

)
+Ψ

(√
Ψ 2 +1−

√
Ψ 2 +R2(t)

)]
,

A(t) =
2R2(t)

3
. (28)

Hence the lifetime of a single droplet evaporating in the CA mode is

tCA =
2

3π

[
arcsinhΨ +Ψ

(√
Ψ 2 +1−Ψ

)]
, (29)
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which can be re-written as

tCA = tCR +
2Ψ

3π

(√
Ψ 2 +1−Ψ

)
. (30)

Figures 3(b,c,d) show the evolution and lifetime of a single droplet evaporating
in the CA mode. In contrast to the CR mode, the semi-width R and the area A now
both decrease nonlinearly with time t [Figures 3(b,c)]. However, as in the CR mode,
the lifetime tCA increases monotonically with Ψ [Figure 3(d)]. Figure 3(d) also illus-
trates, as (30) also shows, that due to its pinned contact lines, a droplet evaporating in
the CR mode always has a larger surface area, and hence a larger total flux and thus
a shorter lifetime, than the same droplet evaporating in the CA mode, i.e. tCR ≤ tCA
for all Ψ .

2.5.3 Stick–slide (SS) mode

In the stick–slide (SS) mode, the contact line is initially pinned, while the contact
angle decreases until it reaches its critical de-pinning (receding) value θ = θ ∗ (0 ≤
θ ∗ ≤ 1) at the de-pinning time t = t∗. After de-pinning, the contact angle remains at
its critical value, while the semi-width decreases until it reaches zero. Thus we have

R(t)≡ 1 for 0 < t < t∗,

θ(t)≡ θ ∗ for t∗ < t < tSS.

}
(31)

In the pinned (i.e. the CR) phase, 0 < t < t∗, the droplet evolves according to (26), so
that

t∗ =
2(1−θ ∗)arcsinhΨ

3π
, (32)

while in the de-pinned (i.e. the CA) phase, t∗ < t < tSS, the droplet evolves according
to

t = t∗+
2θ ∗

3π

[
arcsinhΨ −R2(t)arcsinh

(
Ψ

R(t)

)
+Ψ

(√
Ψ 2 +1−

√
Ψ 2 +R2(t)

)]
.

(33)

Combining (32) and (33), the lifetime of a single droplet evaporating in the SS mode
is

tSS =
2

3π

[
arcsinhΨ +θ

∗
Ψ

(√
Ψ 2 +1−Ψ

)]
, (34)

which can be re-written as

tSS = tCR +
2θ ∗Ψ

3π

(√
Ψ 2 +1−Ψ

)
. (35)

Figure 4 shows the evolution and lifetime of a single droplet evaporating in the
SS mode. The de-pinning time t∗ decreases linearly with θ ∗, while the lifetime tSS
increases linearly with θ ∗ [Figure 4(d)]. Comparing (27), (30) and (35) shows that,
as might have been anticipated, the lifetime of a droplet evaporating in the SS mode
always lies between those of the same droplet in the CR and CA modes, i.e. tCR ≤
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Fig. 4 Evolution and lifetime of a single droplet evaporating in the SS mode: (a) semi-width R(t), (b)
contact angle θ(t), and (c) area A(t) given by (31)–(33), plotted as functions of t for θ ∗ = 0, θ ∗ = 1/4,
θ ∗ = 1/2, θ ∗ = 3/4 and θ ∗ = 1 with the arrows indicating the direction of increasing θ ∗; (d) de-pinning
time t∗ given by (32) (dashed line) and lifetime tSS given by (34) (solid line) plotted as functions of Ψ . In
all cases Ψ = 100.

tSS ≤ tCA for all Ψ and θ ∗. In the limit θ ∗ → 1− the SS mode approaches the CA
mode and thus tSS→ tCA

−, while in the limit θ ∗→ 0+ the SS mode approaches the
CR mode and thus tSS→ tCR

+.
We note that in Figure 4(a) all of the curves for which θ ∗ 6= 0 intersect at t =

tCR, and from (27), (32) and (33), the semi-width of the droplet at this time, R(tCR),
satisfies

R2(tCR)arcsinh
(

Ψ

R(tCR)

)
=Ψ

(√
Ψ 2 +1−

√
Ψ 2 +R2(tCR)

)
. (36)

Note that R(tCR) is a monotonically decreasing function of Ψ which takes its maxi-
mum value R(tCR) = 1/2 in the limit Ψ → 0+ and satisfies R(tCR)→ 0+ as Ψ → ∞.
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Fig. 5 The quasi-semi-elliptical domain in the ζ -plane for the two-droplet problem.

2.5.4 Asymptotic behaviour of the lifetimes in a large domain, Ψ � R

Consider the regime of most interest, Ψ � R, in which the domain is large and ap-
proximately semi-circular, and the condition at the outer boundary corresponds most
closely to a far-field condition. From (27), (29) and (34) we obtain

tCR =
2

3π
ln(2Ψ) +O

(
1

Ψ 2

)
, (37)

tCA =
2

3π
ln(2Ψ)+

1
3π

+O
(

1
Ψ 2

)
, (38)

tSS =
2

3π
ln(2Ψ)+

θ ∗

3π
+O

(
1

Ψ 2

)
, (39)

respectively. Equations (37)–(39) show that the lifetimes of the droplets all depend
logarithmically on the size of the domain, and differ by an amount of O(1) which
depends on the mode of evaporation. The corrections at O(Ψ−2) are of the same
order as the deviation of the domain from circularity.

3 Two-droplet problem

We now consider the analogous two-droplet problem in the ζ -plane, where ζ = η +
iξ . We assume that the droplets are identical, and use the initial semi-width of the
droplets as the characteristic length scale in the non-dimensionalisation. The droplets
are located so that they have inner contact lines at η = ±I and outer contact lines at
η =±Ω , where Ω > I, as shown in Figure 5. The cross-sectional area of each droplet
is then given by

A =
(Ω − I)2

θ

6
. (40)
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3.1 Solution in a finite domain via conformal mapping

Consider the conformal map

ζ = Γ (z) =
√

I2 + z2 (41)

from the z-plane to the ζ -plane. This maps the real interval (0,R) in the z-plane to
the real interval (I,Ω) where Ω =

√
I2 +R2 in the ζ -plane, preserving the saturation

condition on the droplet. It maps the real interval (R,
√

Ψ 2 +R2) in the z-plane to
the real interval (Ω ,

√
Ψ 2 +Ω 2) in the ζ -plane, preserving the no-flux condition on

the substrate. It maps the imaginary interval (0, iI) in the z-plane to the real interval
(0, I) in the ζ -plane: the symmetry condition on the imaginary axis in the z-plane now
becomes a no-flux condition on the real interval (0, I) in the ζ -plane. With a suitable
choice of branch cut, the equivalent regions in the left half of the z-plane are mapped
into corresponding regions in the left half of the ζ -plane. The outer boundary of the
domain, given by the rectangle in the z-plane and the semi-ellipse (17) in the z-plane,
is mapped to the quasi-semi-elliptical curve shown in Figure 5 and given by

ζ =

[
I2 +

(√
Ψ 2 +Ω 2− I2 cos(s)+ iΨ sin(s)

)2
]1/2

for 0≤ s≤ π. (42)

However, as in the one-droplet problem, in the regime of most interest, Ψ � I, in
which the domain is large, equation (42) gives

ζ =Ψeis [1+O(Ψ−2)
]
, (43)

and so the domain is again semi-circular with radius Ψ and independent of I and Ω

up to O(Ψ−2)� 1.
The solution in the quasi-semi-elliptical domain is given by

c(η ,ξ ) = c(ζ ) = c(w(z(ζ ))) (44)

= 1− 1

arcsinh
(

Ψ/
√

Ω 2− I2
)ℑ

arccos

−
√

ζ 2− I2

Ω 2− I2

 . (45)

Figure 6 shows the contours of the vapour concentration c(η ,ξ ) for the two-
droplet problem given by (45) and the corresponding contours of c(x,y) for the one-
droplet problem given by (22). In both cases, far from the droplet(s) the contours
approach the (semi-elliptical or quasi-semi-elliptical) shape of the outer boundary,
and near to the droplet(s) the contours approach the flat shape(s) of the droplet(s).
For the two-droplet problem the concentration in the region between the droplets is
increased relative to that in the one-droplet problem, and near to the droplets the
concentration falls away more gradually than it does in the one-droplet problem, and
resulting in the shielding effect described in Section 1.

The flux is given by

J(η) =− ∂c
∂ξ

(η ,0) =
1

arcsinh
(

Ψ/
√

Ω 2− I2
) η√

Ω 2−η2
√

η2− I2
. (46)



14 Feargus G. H. Schofield et al.

(a) (b)
c = 0.55

c = 0.7

y ξ

x η

Fig. 6 Contours of the vapour concentration (a) c(x,y) for the one-droplet problem given by (22) when
R = 1, and (b) c(η ,ξ ) for the two-droplet problem given by (45) when I = 1 and Ω = 3. In both cases
Ψ = 100 and the contours are shown with increments of 0.05.

In particular, the flux satisfies

J ∼ 1√
2(Ω 2− I2)arcsinh

(
Ψ/
√

Ω 2− I2
) ×



√
I

η− I
as η → I+,√

Ω

Ω −η
as η →Ω−,

(47)

confirming that it again has square-root singularities at both contact lines.

3.2 Numerical validation

As we did in the one-droplet problem, in order to validate the solution obtained in
Section 3.1, we solved the two-droplet problem in the semi-circular domain using
COMSOL Multiphysics [50]. In Figure 7 we compare these numerical solutions to
the analytical solutions in the quasi-semi-elliptical domain given by (45) and (46).

Figures 7(a)–(c) show solutions for the vapour concentration along the η-axis,
c(η ,0); (d)–(f) show solutions for the vapour concentration along the ξ -axis, c(0,ξ );
(g)–(i) show solutions for the flux, J(η). The first column [(a), (d), (g)] shows results
for Ψ = 4, the second column [(b), (e), (h)] shows the corresponding results for Ψ =
10, and the final column [(c), (f), (i)] shows the corresponding results for Ψ = 100.
In all cases the solid lines denote the analytical solutions in the quasi-semi-elliptical
domain, and the dashed lines denote the corresponding numerical solutions in the
semi-circular domain. As in the one-droplet problem, Figure 7 shows that c takes
its saturation value on the surface of the droplets and decreases monotonically to its
ambient value at the edge of the domain, that J is singular at the contact lines x = I
and x = Ω , and that the analytical solutions accurately capture the behaviour of the
numerical solutions provided that Ψ is sufficiently large.

However, Figures 7(a)–(f) also show that c decreases monotonically to an (un-
saturated) minimum value between the droplets, and that this value is an increasing
function of Ψ : this latter behaviour reflects the smaller concentration gradients, and
thus the higher concentrations, which occur near to the droplets in larger domains. In
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

c c c

c c c

J J J

η η η

ξ ξ ξ

η η η

Fig. 7 The vapour concentration and flux for the two-droplet problem for I = 1, Ω = 3 and Ψ = 4 [(a), (d),
(g)], Ψ = 10 [(b), (e), (h)], and Ψ = 100 [(c), (f), (i)]. (a)–(c) show solutions for the vapour concentration
along the η-axis, c(η ,0); (d)–(f) show solutions for the vapour concentration along the ξ -axis, c(0,ξ );
(g)–(i) show solutions for the flux, J(η). Solid lines denote the analytical solutions in the quasi-semi-
elliptical domain given by (45) and (46), and dashed lines denote the corresponding numerical solutions in
the semi-circular domain.

addition, Figures 7(g)–(i) clearly illustrate the shielding effect that the droplets have
on each other. In particular, as (47) shows, the flux near to the outer contact line is
suppressed less by the presence of the other droplet, and so remains larger than the
flux near to the inner contact line, resulting in the skewed flux profiles shown in Fig-
ures 7(g)–(i). In particular, the minimum value of the flux no longer occurs at the
centre of each droplet (as it does in the one-droplet problem).
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3.3 Evolution and lifetime of the droplets

Using the solution for the flux given by (46), the evolution and lifetime of the droplets
are determined by

dA
dt

=
1
6

d
dt

[
(Ω(t)− I(t))2

θ(t)
]
=−

∫
Ω

I
J(η)dη =− π

2arcsinh
(

Ψ/
√

Ω 2− I2
) .
(48)

In the one-droplet problem we investigated three modes of evaporation (namely
the CR, CA and SS modes), but in the two-droplet problem there is a much richer
variety of possible behaviours because any of the four contact lines may, in principle,
move independently of the other three. In the present work, we consider four canon-
ical behaviours, in each of which the droplets remain symmetric about the ξ -axis.
Specifically, we consider the following modes of evaporation:

1. The constant-inner-and-outer-contact-line (CIO) mode: the inner and outer con-
tact lines of both droplets are pinned at η =±I(0) =±I0 and η =±Ω(0) =±Ω0
as the droplets evaporate.

2. The constant-angle-centred (CAC) mode: both droplets evaporate with constant
contact angle and remain centred at η =±(I +Ω)/2 =±(I0 +Ω0)/2.

3. The constant-angle and constant-inner-contact-lines (CAI) mode: both droplets
again evaporate with constant contact angle, but now their inner contact lines are
pinned at η =±I0.

4. The constant-angle and constant-outer-contact-line (CAO) mode: both droplets
again evaporate with constant contact angle, but now their outer contact lines are
pinned at η =±Ω0.

3.3.1 Constant-inner-and-outer-contact-line (CIO) mode

In the CIO mode, the inner and outer contact lines of both droplets are pinned, I ≡ I0
and Ω ≡Ω0 = I0 +2. We may then immediately integrate (48) to obtain

θ(t) = 1− 3π

4arcsinh
(

Ψ/
√

Ω 2
0 − I2

0

) t,

A =
(Ω0− I0)

2

6

1− 3π

4arcsinh
(

Ψ/
√

Ω 2
0 − I2

0

) t

 . (49)

Hence the lifetime of a pair of droplets evaporating in the CIO mode is

tCIO =
4arcsinh

(
Ψ/
√

Ω 2
0 − I2

0

)
3π

. (50)

Figure 8 shows the evolution and the lifetime of a pair of droplets evaporating in
the CIO mode. As for a single droplet in the CR mode, the contact angle θ and the
area A both decrease linearly with time t [Figure 8(a,b)] and the lifetime tCIO increases
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(a) (b)

(c) (d)

θ A

tCIO tCIO

t t

Ψ I0

✏✏✏✏✏✏✶
✏✏✏✏✏✏✶Ψ

Ψ

Fig. 8 Evolution and the lifetime of a pair of droplets evaporating in the CIO mode: (a) contact angle θ(t)
and (b) area A(t) given by (49) plotted as functions of t for Ψ = 10, Ψ = 100 and Ψ = 1000 with the
arrows indicating the direction of increasing Ψ ; lifetime tCIO given by (50) plotted (c) as a function of Ψ

and (d) as a function of I0 when Ψ = 100. In (a)–(c) all curves are for I0 = 1 and Ω0 = 3.

monotonically with Ψ [Figure 8(c)]. In addition, since the shielding effect is weaker,
and hence evaporation is faster, when the droplets are more widely separated, the
lifetime tCIO decreases monotonically with the separation between the droplets, 2I0
[Figure 8(d)].

3.3.2 Constant-angle (CAC, CAI, CAO) modes

In the CAC, CAI and CAO modes, the contact angle remains constant, θ(t)≡ θ0 = 1.
The three modes are distinguished by the different behaviours of the contact lines.

In the constant-angle-centred (CAC) mode, the droplets remain centred at η =
±(I +Ω)/2 =±(I0 +Ω0)/2. It is therefore convenient to write

I(t) = Γ −∆(t), Ω(t) = Γ +∆(t) (51)
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where Γ = (I0 +Ω0)/2 is the position of the centre of the right-hand droplet and
∆(t) = (Ω − I)/2 is its semi-width. We may then integrate (48) implicitly to obtain

18πΓ
2t = 24Γ

2
(

arcsinh
(

Ψ

2
√

Γ

)
−∆

2 arcsinh
(

Ψ

2
√

Γ ∆

))
+
√

4Γ ∆ +Ψ 2
(
Ψ

2−2Γ ∆
)
Ψ −

√
4Γ +Ψ 2

(
Ψ

2−2Γ
)
Ψ . (52)

Hence the lifetime of a pair of droplets evaporating in the CAC mode is

tCAC =
1

18πΓ 2

[
24Γ

2 arcsinh
(

Ψ

2
√

Γ

)
+Ψ

4−
√

4Γ +Ψ 2
(
Ψ

2−2Γ
)
Ψ

]
. (53)

In the constant-angle-and-inner-contact-line (CAI) mode, the inner contact line is
pinned, I ≡ I0. We may then integrate (48) implicitly to obtain

FCAI(Ω) = FCAI(Ω0)+
3π

2
t, (54)

where

FCAI(Ω) =
I2
0
4

3arctanh

 Ψ 2−Ω I0− I2
0

Ψ

√
Ψ 2 +Ω 2− I2

0

− arctanh

 Ψ 2 +Ω I0− I2
0

Ψ

√
Ψ 2 +Ω 2− I2

0


+

Ω

2
(2I0−Ω)arcsinh

 Ψ√
Ω 2− I2

0

−Ψ

2

√
Ψ 2 +Ω 2− I2

0

+Ψ I0 ln
(

Ω +
√

Ψ 2 +Ω 2− I2
0

)
. (55)

Hence the lifetime of a pair of droplets evaporating in the CAI mode is

tCAI =
2

3π
[FCAI(I0)−FCAI(Ω0)] . (56)

In the constant-angle-and-outer-contact-line (CAO) mode, the outer contact line
is pinned, Ω ≡Ω0. We may then integrate (48) implicitly to obtain

FCAO(I) = FCAO(I0)+
3π

2
t, (57)
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where1

FCAO(I) =
Ω 2

0
4

3arctanh

 Ψ 2 +Ω0I +Ω 2
0

Ψ

√
Ψ 2 +Ω 2

0 − I2

− arctanh

 Ψ 2−Ω0I +Ω 2
0

Ψ

√
Ψ 2 +Ω 2

0 − I2


+

I
2
(2Ω0− I)arcsinh

 Ψ√
Ω 2

0 − I2

+
Ψ

2

√
Ψ 2 +Ω 2

0 − I2

+ΨΩ0 arctan

 I√
Ψ 2 +Ω 2

0 − I2

 . (58)

Hence the lifetime of a pair of droplets evaporating in the CAO mode is

tCAO =
2

3π
[FCAO(Ω0)−FCAO(I0)] . (59)

Figure 9 shows the evolution and the lifetime of a pair of droplets evaporating
in the three constant-angle modes. The difference between the modes is most clearly
seen in Figure 9(a), which shows the inner and outer contact lines moving towards
the centre of the droplet in the CAC mode, the outer contact line moving inward in
the CAI mode, and the inner contact line moving outward in the CAO mode. Despite
these differences, the evolution of the area A, which decreases nonlinearly with t, is
similar for all three modes [Figure 9(b)]. As in the CAI mode, the lifetimes tCAC, tCAI
and tCAO increase monotonically with Ψ [Figure 9(c)] and decrease monotonically
with the separation between the droplets, 2I0, [Figure 9(d)].

As Figures 9(c,d) show, the lifetimes of the three constant-angle modes are very
similar, and it is only when the separation between the droplets is small that the
difference between them becomes important. Specifically, Figure 9(d) shows that the
difference between tCAC, tCAI and tCAO becomes negligible when I0 & 5 (i.e. when
the droplet separation is several times the width of the droplets). As the droplets
evaporate, the droplet separation is smallest in the CAI mode and largest in the CAO
mode, resulting in the slowest evaporation, and hence the longest lifetime, in the
CAI mode and the fastest evaporation, and hence the shortest lifetime, in the CAO
mode. This point is further illustrated by Figure 10, which shows the lifetimes tCAI,
tCAC, tCAO and tCIO plotted as functions of Ψ . In particular, Figure 10 shows that as
the droplet separation increases the lifetimes of the three constant-angle modes (but
not that of CIO mode) become virtually indistinguishable. We will discuss the latter
behaviour in more detail in Section 3.3.3 below.

3.3.3 Asymptotic behaviour of the lifetimes in a large domain, Ψ � I

The results shown in Figure 10 motivate us to derive asymptotic expressions for the
lifetimes of the droplets when Ψ � I. Noting the difference between closely-spaced
and widely-separated droplets, we consider the regimes I0� 1 and I0� 1 separately.

1 Note that, as a check on the correctness of (55) and (58), we may (up to an unimportant additive
constant) recover FCAO from FCAI by replacing Ω with I, I0 with Ω0 and Ψ with iΨ in (55), and FCAI from
FCAO by replacing I with Ω , Ω0 with I0 and Ψ with iΨ in (58).
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(a) (b)

(c) (d)

Ω

I A

tCAI

tCAC

tCAO

tCAI
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tCAO

t t

Ψ I0

✲

✏✏✏✏✏✏✶
Ψ

Ψ

Fig. 9 Evolution and lifetime of a pair of droplets evaporating in the CAC (solid lines), CAI (dotted lines),
and CAO (dashed lines) modes: (a) contact line positions I(t), Ω(t) and (b) area A(t) given by (40), (52),
(54) and (57) plotted as functions of t for Ψ = 10, Ψ = 100 and Ψ = 1000 with the arrows indicating the
direction of increasing Ψ ; lifetimes tCAC, tCAI and tCAO given by (53), (56) and (59) plotted (c) as functions
of Ψ and (d) as functions of I0 for Ψ = 100. In (a)–(c) all curves are for I0 = 1 and Ω0 = 3, while (d) also
includes the leading-order behaviour in the asymptotic regime 1� I0 �Ψ given by 4/(3π) ln(Ψ/

√
I0)

(dot-dashed line).

In the regime I0 � 1�Ψ , the initial droplet separation is much less than the
initial droplet semi-width. Equations (50), (53), (56) and (59) then yield

tCIO =
4

3π
ln(Ψ) − 2I0

3π
+O

(
I0

2,
1

Ψ 2

)
, (60)

tCAC =
4

3π
ln(Ψ)+

1
3π

− 2I0

3π
+O

(
I0

2,
1

Ψ 2

)
, (61)

tCAI =
4

3π
ln(Ψ)+

2
3π

− 4I0

3π
+O

(
I0

2 log I0,
1

Ψ 2

)
, (62)

tCAO =
4

3π
ln(Ψ)+

2
π

(
1− 4

3
ln2
)
+

4I0

3π
(1−2ln2)+O

(
I0

2,
1

Ψ 2

)
, (63)
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tCAI

tCAC

tCAO

tCIO

Ψ

CAI, CAC, CAO
CIO

CAI, CAC, CAO
CIO

Fig. 10 Lifetimes of a pair of droplets evaporating in the CAI (top curve in each set), CAC, CAO and CIO
(bottom curve in each set) modes given by (50), (53), (56) and (59) plotted as functions of Ψ when I0 = 0
(top set of curves), I0 = 10 and I0 = 100 (bottom set of curves).

respectively.
On the other hand, in the regime 1� I0 �Ψ , the initial droplet separation is

much greater than the initial droplet semi-width. Equations (50), (53), (56) and (59)
then yield

tCIO =
4

3π
ln
(

Ψ√
I0

)
− 2

3πI0
+O

(
1
I2
0
,

I0

Ψ 2

)
, (64)

tCAC =
4

3π
ln
(

Ψ√
I0

)
+

1
3π
− 2

3πI0
+O

(
1
I2
0
,

I0

Ψ 2

)
, (65)

tCAI =
4

3π
ln
(

Ψ√
I0

)
+

1
3π
− 4

9πI0
+O

(
1
I2
0
,

I0

Ψ 2

)
, (66)

tCAO =
4

3π
ln
(

Ψ√
I0

)
+

1
3π
− 8

9πI0
+O

(
1
I2
0
,

I0

Ψ 2

)
, (67)

respectively.
Equations (60)–(67) show that, as in the one-droplet problem, in the regime Ψ �

I, the lifetimes of all four modes depend logarithmically on the size of the domain.
When I0 � 1, equations (60)–(63) show that the lifetimes depend on the mode

of evaporation at O(1). The lifetime of the CIO mode is the shortest because, due to
their pinned contact lines, the droplets in this mode have the largest surface area, and
hence evaporate the fastest. Of the three constant-angle modes, the CAO mode has
the shortest lifetime and the CAI mode the longest lifetime. This is because when the
inner contact lines are pinned the droplets remain closer together and hence evaporate
more slowly than in the CAC mode due to a stronger shielding effect, whereas when
the outer contact lines are pinned the droplets move further apart and hence evaporate
more quickly than in the CAC mode due to a weaker shielding effect.
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On the other hand, when I0� 1, equations (64)–(67) show that the influence of
the different behaviours of the contact lines on the three constant-angle modes is very
weak and at O(1) the lifetimes of the CAC, CAI and CAO modes all coincide with
each other, but differ from the lifetime of the CIO mode by 1/(3π).

4 Comparison between the lifetimes of a single droplet and a pair of droplets

To provide further insight into the shielding effect the droplets have on each other, we
compare the lifetimes of a single droplet and a pair of droplets in dimensional terms.
For simplicity, we consider only the leading-order behaviour of the lifetimes in the
regime of most interest in which the domain is large and approximately semi-circular
with radius Ψ̂ .

Our reference point is the lifetime of a single droplet with initial semi-width R̂0,
which from (1), (37) and (38) is given by

t̂single ∼
2

3π
ln

(
2Ψ̂

R̂0

)
T̂ , where T̂ =

ρ̂ θ̂0R̂2
0

D̂(ĉsat− ĉ∞)
. (68)

A first natural comparison is with a pair of droplets, each with initial semi-width
R̂0/2, which together have the same total surface area as the single droplet (i.e. their
initial separation is 2Î0 = 0). In this case the vapour concentration and flux are iden-
tical in the two problems. However, the lifetimes are not the same, because the cross-
sectional area of the single droplet is twice the total cross-sectional area of the two
droplets. Specifically, from (60)–(63) we obtain

t̂area ∼
4

3π

ρ̂θ̂0(R̂0/2)2

D̂(ĉsat− ĉ∞)
ln

(
Ψ̂

R̂0/2

)
=

1
3π

ln

(
2Ψ̂

R̂0

)
T̂ , (69)

so that, as expected, the lifetime of the pair of droplets is half that of the single droplet,
i.e. t̂area ∼ t̂single/2.

Alternatively, we can consider the same total cross-sectional area of fluid, ar-
ranged either as two closely-spaced or two widely-separated droplets. In both cases
the droplets have initial semi-width R̂0/

√
2. If the droplets are closely spaced then

from (60)–(63) we obtain

t̂close ∼
4

3π

ρ̂θ̂0(R̂0/
√

2)2

D̂(ĉsat− ĉ∞)
ln

(
Ψ̂

R̂0/
√

2

)
=

2
3π

[
ln

(
2Ψ̂

R̂0

)
− 1

2
ln2

]
T̂ . (70)

At leading order the lifetime of the pair of droplets is the same as that of the single
droplet, but there is a negative O(1) correction because the two droplets have a larger
total surface area than the single droplet. On the other hand, if the droplets are widely
separated then from (64)–(67) we obtain

t̂wide∼
4

3π

ρ̂θ̂0(R̂0/
√

2)2

D̂(ĉsat− ĉ∞)
ln

 Ψ̂

R̂0/
√

2

√
R̂0/
√

2
Î0

=
2

3π

[
ln

(
2Ψ̂

R̂0

)
− 1

2
ln
(

23/2 Î0

R̂0

)]
T̂ .

(71)
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At leading order the lifetime of the pair of droplets is again the same as that of the
single droplet, but now there is a larger negative O(ln(Î0/R̂0)) correction due to a
weaker shielding effect when the droplets are widely separated.

To illustrate these results we take the representative parameter values ρ̂ = 998 kg m−3,
D̂ = 2.44× 10−5 m2 s−1, ĉsat = 1.94× 10−2 kg m−3 and ĉ∞ = 7.76× 10−3 kg m−3,
corresponding to water at 295 K, evaporating into an environment with ambient vapour
concentration ĉ∞ = 0.4 ĉsat [11]. We further take Ψ̂ = 1 m together with θ̂0 = 0.1 and
R̂0 = 1 mm, so that the droplet has a cross-sectional area of approximately 6.7×
10−8 m2.

With these parameter values, the timescale T̂ ≈ 351 s and the lifetime of a single
droplet is t̂single ≈ 567 s. The lifetime of a pair of droplets with the same total surface
area as the single droplet is t̂area ≈ 283 s. The lifetime of two closely-spaced droplets
with the same total cross-sectional area as the single droplet is t̂close ≈ 541 s, whereas
the lifetime of two widely-separated droplets with the same total cross-sectional area
as the single droplet is t̂wide ≈ 442 s if the droplets are separated by 2Î0 = 2 cm, and
t̂wide ≈ 356 s if the droplets are separated by 2Î0 = 20 cm.

5 Discussion and conclusions

In this contribution, we considered the diffusion-limited evaporation of thin two-
dimensional sessile droplets either singly or in a pair. This two-dimensional problem
is qualitatively different from the corresponding three-dimensional problem because,
in contrast to in three dimensions, in two dimensions the size of the domain remains
important even when it is much larger than the width of the droplets; it is therefore not
possible to obtain a solution to the two-dimensional problem with a far-field boundary
condition imposed “at infinity”. We therefore formulated a slightly modified problem
in which the far-field condition was replaced by a relaxed condition at a distant, but
finite, boundary. We then showed how a conformal-mapping technique may be used
to calculate the vapour concentrations, and hence obtain closed-form solutions for
the evolution and the lifetimes of the droplets in various modes of evaporation. These
solutions demonstrate that in large domains the lifetimes of the droplets depend log-
arithmically on the size of the domain, and more weakly on the mode of evaporation
and the separation between the droplets. In particular, they allowed us to quantify the
shielding effect that the droplets have on each other, and how it extends the lifetimes
of the droplets.

Although the present two-dimensional problem may be somewhat artificial, it
has direct practical applications, for example to the inkjet printing of circuits [26],
and may be realisable experimentally using a Hele-Shaw cell geometry. More fun-
damentally, it provides a rare opportunity to obtain a closed-form description of the
behaviour of interacting droplets and to quantify the shielding effect. It therefore per-
mits asymptotic and analytical insight into a class of problems of increasing scientific
and industrial interest.
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