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FRONT PROPAGATION AT THE NEMATIC-ISOTROPIC
TRANSITION TEMPERATURE*

APALA MAJUMDAR', PAUL A. MILEWSKIf, AND AMY SPICER'

Abstract. We study the gradient flow model for the Landau-de Gennes energy functional for
nematic liquid crystals at the nematic-isotropic transition temperature on prototype geometries. We
study the dynamic model on a three-dimensional droplet and on a disc with Dirichlet boundary
conditions and different types of initial conditions. In the case of a droplet with radial boundary
conditions, a large class of physically relevant initial conditions generate dynamic solutions with
a well-defined nematic-isotropic interface which propagates according to mean curvature for small
times. On a disc, we make a distinction between “planar” and “nonplanar” initial conditions, and
“minimal” and “nonminimal” Dirichlet boundary conditions. Planar initial conditions generate so-
lutions with an isotropic core for all times, whereas nonplanar initial conditions generate solutions
which escape into the third dimension. Nonminimal boundary conditions generate solutions with
boundary layers, and these solutions can either have a largely ordered interior profile or an almost
entirely disordered isotropic interior profile. Our examples suggest that while critical points of the
Landau-de Gennes energy typically have highly localized disordered-ordered interfaces, the transient
dynamics exhibits observable interfaces of potential experimental relevance.
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1. Introduction. Nematic liquid crystals are classical examples of mesophases
between conventional solid and liquid phases; they are anisotropic liquids with pre-
ferred directions of molecular alignment, these directions being referred to as “di-
rectors” in the literature [1, 2]. In other words, nematic liquid crystals are complex
liquids with orientational order. Nematics in confinement are an exciting source of
challenges for mathematicians and practical scientists alike. We study dynamically
metastable nematic configurations with interfaces in prototype geometries within the
Landau-de Gennes (LdG) theory for nematic liquid crystals. In this framework, the
nematic state is described by the Q = {Q;;}-tensor, a symmetric, traceless 3 x 3
matrix, interpreted as a macroscopic measure of the nematic order [1, 2]. The LdG
energy functional comprises a bulk potential, determining nematic order as a function
of temperature, and an elastic energy density which penalizes spatial inhomogeneities.
We work at the nematic-isotropic transition temperature, where both the isotropic
and nematic phases are minimizers of the bulk potential, and with the one-constant
elastic energy density in the limit of the vanishing elastic constant. This limit, describ-
ing macroscopic domains (see [3]) with length scales much larger than the nematic
correlation length, is studied in detail in the context of energy minimizers in [4].

We adopt the gradient flow model to describe the nematodynamics in the ab-
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sence of fluid flow at a constant temperature. Gradient flows are evolution equations
driven by a decreasing energy [5]. Our model is derived from the LdG energy with the
L?-norm as the dissipation mechanism and is described by a system of five coupled
nonlinear parabolic partial differential equations. Standard theory for parabolic sys-
tems shows that we have a unique “dynamic” time-dependent solution for physically
relevant initial and boundary conditions. Gradient flow models have been previously
used in the context of liquid crystal (LC) dynamics. For example, in [6, 7] the authors
study a one-dimensional gradient flow model and the effects of biaxiality and elastic
anisotropy. In [8], the authors study nematic-isotropic front propagation using the
method of matched asymptotic expansions within the more general Beris—Edwards
theory for nematodynamics [9]. In particular, they account for fluid flow and the
coupling between fluid flow and nematic order. They derive evolution laws for the
velocity field, the director field of nematic alignment, and the nematic-isotropic in-
terface, but without any special attention to the effects of boundary conditions and
initial conditions. We work in a simpler dynamical framework with no fluid flow but
with focus on how the dynamics is affected by the choice of boundary and initial data.

At the nematic-isotropic transition temperature, the LdG bulk potential bears
strong resemblance to the Ginzburg-Landau (GL) potential in superconductivity. In
our first model problem we study a three-dimensional droplet with Dirichlet radial
boundary conditions. We use the concept of “normalized energy” for the GL gradient
flow model in [10, 11] to prove that nematic-isotropic interfaces propagate according
to mean curvature in certain model situations. The long-time dynamics is described
by an explicit critical point of the LdG energy—the radial hedgehog (RH) solution
[12, 13, 14]. The RH solution has perfect radial symmetry, with perfect radial nematic
alignment and an isolated isotropic point at the center, referred to in the literature
as a point defect [13]. We focus on the interplay between initial conditions and tran-
sient dynamics followed by convergence to the static RH solution using four different
representative initial conditions. The transient dynamics has some universal features
which may have experimental repurcussions.

In section 4, our second model problem focuses on dynamic solutions on a disc
with Dirichlet conditions, subject to two distinct types of initial conditions: pla-
nar and nonplanar. Planar Q = {Q;;}-tensors, i,j = 1,2,3, have zero Q13 and
Q23 components and nonplanar Q-tensors do not. Using standard techniques, we
prove that planar initial conditions evolve to planar dynamic solutions which have
an isotropic point at the center of the disc for all times. These solutions develop a
nematic-isotropic interface which propagates inwards and is arrested near the origin.
Nonplanar initial conditions, including small “nonplanar” perturbations of planar ini-
tial conditions, converge to a universal nonplanar profile. The “small-time” dynamics
is almost indistinguishable from the planar case; however, the interface collapses at
the origin, and the dynamic solution escapes into an entirely ordered nonplanar state.
We track the transient dynamics and numerically compute quantitative estimates for
the “persistence time” of the interface.

These numerical results are complemented by some analysis for radially symmetric
planar critical points of the LdG energy that have been reported in [15] for low
temperatures. We generalize some of the results in [15] to the nematic-isotropic
transition temperature and use these critical points to construct radially symmetric
and nonsymmetric initial conditions for the numerical simulations. The different
types of initial conditions suggest that the transient dynamics has universal features
independent of the symmetry or uniaxiality /biaxiality of the initial condition. Namely,
in all cases, we have a well-defined nematic-isotropic interface as a pronounced feature
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of the evolution trajectory, which we illustrate by the eigenvalue evolution of the LdG
Q-tensor and plots of |Q|? as a function of time.

The first two model problems have minimal boundary conditions which are min-
imizers of the LdG bulk potential. In the last section, we study two-dimensional
(2D) and three-dimensional (3D) LdG dynamic solutions on a disc with nonminimal
boundary conditions. The 2D case can be easily understood, and all dynamic solutions
exhibit a rapidly growing isotropic core with a thin boundary layer near the lateral
surface. The 3D solution landscape is richer, and the transient dynamics is sensitive
to the initial condition. If the initial condition is planar with an nematic-isotropic
interface relatively close to the center of the disc, then the interface propagates to-
wards the center, replicating the planar dynamics in section 4. If the planar initial
condition has an nematic-isotropic interface relatively close to the boundary of the
disc, the interface propagates outwards, yielding an almost entirely isotropic interior
and replicating the 2D dynamics. In all cases, we have a boundary layer to match
the fixed nonminimal Dirichlet condition. Here, the transient dynamics is sensitive to
the initial interface location, a feature which is missing in the model problems with
minimal Dirichlet boundary conditions.

The paper is organized as follows. In section 2, we present the gradient flow
model for the Landau—de Gennes energy. In section 3, we study dynamic solutions
on a droplet with Dirichlet radial conditions. Section 4 follows, with emphasis on
planar and nonplanar initial conditions on a disc, and section 5 illustrates the diverse
possibilities with nonminimal boundary conditions. We conclude in section 6 with
future perspectives.

2. Preliminaries. The LdG Q-tensor order parameter is in the space of sym-
metric traceless 3 X 3 matrices, Sy = {Q €M Qi = Qjiy Qii = 0}. A Q-tensor
is said to be (i) isotropic if Q = 0, (ii) uniaxial if Q has a pair of degenerate nonzero
eigenvalues, and (iii) biaxial if Q has three distinct eigenvalues [1, 16]. A uniaxial
Q-tensor can be written as Q, = s (n ® n — I/3) with s € R and n € S? a unit vector.
The scalar, s, is an order parameter which measures the degree of orientational or-
der. The vector, n, is referred to as the “director” and labels the single distinguished
direction of uniaxial nematic alignment [2, 1].

We work with a simple form of the LdG energy given by

L
(21) 1Q)= [ 519" + 72(Q) v
Q
where
o 0Qi; 0Qy; _A o B 5 C o\ 2
(2.2) vVQl© = GT;.: ax;:’ f(Q) = 2trQ 3t1“Q + 1 (trQ?)”.

The variable A = «(T — T™*) is the rescaled temperature, «, L, B,C > 0 are
material-dependent constants, and T™* is the characteristic nematic supercooling tem-
perature [1, 16]. Further, trQ? = Q;;Q;; and trQ® = Q;; Q1 Qi for i,7,k =1,2,3. It
is well known that all stationary points of the thermotropic potential, fp, are either
uniaxial or isotropic [1, 16, 17]. The rescaled temperature A has three characteristic
values: (i) A = 0, below which the isotropic phase Q = 0 loses stability; (ii) the
nematic-isotropic transition temperature, A = B2/27C, at which fp is minimized by
the isotropic phase and a continuum of uniaxial states with s = sy = B/3C and n
arbitrary; and (iii) the nematic supercooling temperature, A = B2/24C, above which
the ordered nematic equilibria do not exist.
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Throughout the paper we work at the nematic-isotropic transition temperature,
investigating the propagation of fronts separating the isotropic phase from the ordered
nematic phase in the limit, LC'/R?B? — 0%, where R is a characteristic length scale
of the domain Q. We refer to this as the vanishing elastic constant limit for fixed
values of R, B, C, by analogy with the terminology in [4]. Continuum formulations are
typically valid in this limit [12, 3]. We work with the gradient flow model associated
with the LdG energy [18], and the dynamic equations are given by

(23) 1@ - 1aQ - 4Q-+ 5 (QQ - 11QPT) + ClQPal

where v is a positive rotational viscosity, QQ = Q;;Q;r with ¢,75,k =1,2,3, and I is
the 3 x 3 identity matrix. The system (2.3) comprises five coupled nonlinear parabolic
partial differential equations. We recall the following basic result about the existence
and uniqueness of solutions for such gradient flow systems.

PROPOSITION 2.1. Let Q C R3 be a bounded domain with smooth boundary, 0S).
Given a smooth fixed boundary condition Q(x,t) = Qu(r) on IQ and smooth initial
condition Q(x,0) = Qo(x), the parabolic system (2.3) has a unique solution, Q(x,t) €
C>(Q) for allt > 0.

Proof. The existence of a solution is standard; see [19] for a proof. From [20, 4], we
have that the dynamic solution is bounded for all times with |Q (r,t)| < \/2/3 B/3C
for t > 0. The uniqueness result follows from an immediate application of Gronwall’s
inequality to the difference Q4 = Q1 — Q2 of two solutions, Q; and Qs, subject to the
fixed boundary condition and the same initial condition. In particular, Q4(x,t) = 0
on 99 and Q4(x,0) = 0 for x € Q. One can then show that Qq(x,t) = 0 for x € 2
and for all t > 0. d

3. Front propagation on 3D spherical droplets. Our first example concerns
nematic droplets. Let €2 be the unit ball in three dimensions; 2 := {X € R3 x| < 1}.
We work with a uniaxial Dirichlet boundary condition,

(3.1) Qb=£<f“®f“—§),

where t is the 3D radial unit vector. Qy is a minimizer of the bulk potential fp in
(2.2). For illustration, we first work with uniaxial radial initial conditions that have
a front structure such as

0, 0<Ix|<ro,
Qb7 ro < |X| < 17

(3.2) Q(x,0) = {

for some % < 19 < 1. We refer to these as “radial hedgehog”-type initial conditions
by analogy with the static RH solution, as described in section 1. We are interested
in the qualitative properties of dynamic solutions of (2.3) subject to these initial and
boundary conditions, such as front propagation and transient dynamics. Looking for

“dynamic” RH-type solutions, we work with an ansatz of the form

(3.3) Q(r,t) = h(r,t) <f~®f~— %)

where h : [0,1] x [0,00) — R is the scalar order parameter that depends only on r,
the radial distance from the origin, and time. On substitution into (2.3), we have a
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solution of the form (3.3) if the scalar order parameter h is a solution of

6h 3

2
(34) ’yht - hrr—F;hr— 7"_2 + Eh(h+ —h) (2h—h+>,

with hy = % and L = %, where v is a rescaled viscosity coefficient. The boundary
conditions are h(0,t) =0, h(1,t) = hy for all ¢ > 0, and the initial condition is

0 0<
(3.5) h(r,0) = { , UET <7,
hy, ro<r<l.

The evolution equation for h in (3.4) is simply the gradient flow model associated
with the energy functional

(3. . _ /022@{1 (@>+ 22 M} ”

4rVL 3 \dr r? VL

Given a smooth solution h(r,t) € C°°(]0,1] x [0, 00)), we can appeal to the unique-
ness result in Proposition 2.1 to deduce that (3.3) is the physically relevant solution,
and hence the 5D evolution problem in (2.3) reduces to a single evolution equation
for a scalar order parameter.

In [10], the authors study a closely related problem for front propagation on 3D
balls in the GL framework. They rigorously prove that for suitably defined initial
conditions (as in (3.5)) with appropriately bounded energy, the front propagates ac-
cording to mean curvature. Our governing equation (3.4) is similar to that studied
in section 3 of [10]; however, we have an extra term: —6h/r? in (3.4). In particular,
we cannot quote results from [10] and [11] without verifying that the key inequalities
are unchanged by the additional term for L sufficiently small. In the next few para-
graphs, we verify the necessary details to reach the desired conclusion. Let p(t) be
the solution to

dp 2 _ 1
(3.7) pri > p(0) =19 € (2,1),

or alternatively, p(t) = /r§ —4t. We define Ty =  (r§ — ;). This is the first time
for which p(t) = % and is independent of L. Next, let

_Jo, o< <p(t),
(3.8) ) = {h+, p(t) <r <1

Our goal is to show that the solution h(r,t) of (3.4), subject to suitably defined initial
conditions, resembles the function f(r,t) for T < T7, in the sense that

1
(3.9) / 2 Ih(rt) — F(r,8)] dr — 0 as L — 0.
0

As in [10], the key step is to define a weighted energy as shown below:

¢(R,r){\/i<“’_?%+ 20° )+w2(h+_w)2}dR,

3 (R+p)? VL

1=p(7)

Bolul(r) = |

—p(7)
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where
(310)  w(R7) = h(R+p(t)t), —p(r) SR<1—p(r), 720,
and ¢(R,T) is a weight function
2R R\?
(3.11) (R, T)=exp|——|(14+— ] .
p p
In particular, w (R, 7) is a solution of
- VL 6wVl | 3
We follow the steps in Proposition 3.2 of [10] to show that
d 2VL [ 4¢ -
1 —E < _ 2= 2 _L1/2 2
319 Bl <350 [T om et ans S0

for 7 < Ty. By contrast, in [10], the weighted energy in the GL framework is strictly
decreasing. We have lesser control on the weighted energy but the inequality (3.13)
suffices for our purposes, for L sufficiently small.

Next, we define an interface energy which yields lower bounds for the weighted
energy

2 S
(3.14) g(s) = %/0 w (hy —w) dw,

Ry . . . . - .
and so g(hy) = —= is an interface energy associated with an nematic-isotropic front.

3v3
Further, let

(3.15)

- <
o(R) = 0, p(1) < R <O,
hy, 0<R<1-—p(r).

We can adapt a lemma in [11] to show the following result.

ProOPOSITION 3.1. If for some smooth function w,

(3.16) /a lg(w) — g(v)] ds < g(ZJr)EO‘ and Eylw] < Cq,

where 0 < a < 1/4 and a = p(T1)/2V/2, then E4[w](T) > g(hy) — CoL'/?=2 — CyL2
for T <1y and positive constants Cq,Co, Cs independent of L.

It remains to construct initial conditions w(R,0), which satisfy the hypothesis of
Proposition 3.1. The construction is parallel to that in [21, eq. (1.22)], and we give a
statement for completeness.

PROPOSITION 3.2. Define the function

hy

(3.17) o(R) = p——cTL
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At =0, R=r —r9, and for L sufficiently small, define

hy, R > 2LY4,

(he — o (757)) B35 +hy,  LY* < R<2LV4,
(3.18) w(R)=4q0o (%) , _L[VA< R< VA,

o (—1im) %ﬁm, —2LY* < R< —LYV4,

0, R < —2LY4

Then Eglw] < g(hy) + CLY* for a positive constant C independent of L as L — 0.
Finally, we have the next proposition, by analogy with the main theorem in [11].
PROPOSITION 3.3. Let 0 < o < §, and assume that Eg[w](0) < g(hy) + c1L*®

for some constant ¢; > 0 independent of L and that, for a as above,

(3.19) / 19 (w(R,0)) — g(v)| dR < @La.

—a

Let T, be the first time for which

(3.20) /ﬂ|muma79>—g@annndR::“Z*Uw.

Then T, > min (11, C) for some positive constant C independent of L as L — 07. In
other words, we have

(3.21) /a lg(w(R, 7)) —g(v)] dR < @Ea

for all T < T,, and T is of order one.

The proof follows verbatim from [11]. Equipped with a weighted energy, estimates
for the rate of change of the weighted energy, and bounds for the weighted energy
along with suitable initial conditions, we adapt arguments from Theorem 3.1 of [10]
to prove the next result.

THEOREM 3.4. Let Q be the unit ball in R3. Let hy (r,t) denote the solution of
the evolution equation (3.4), subject to the fixed boundary conditions and an initial
condition with an interface structure and appropriately bounded weighted energy:

VL w_}%_F 2w? +w2(h+—w)2 r?dr < g(hy) +TLY*
3 (R+pp VI =S

with T' independent of L and v (r) = Tiz exp [ —2(L —1)]. Then for any T < T,
9

To

(3.22) A'wv>

where T, has been defined in Proposition 3.3, we have

T
(3.23) lim /0 /Q |hg (r,t) — f (r,t)| 7 drdt = 0,

L—0

where f(r,t) has been defined in (3.8).
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Comments on the proof. The condition (3.22) is equivalent to the bound in
Proposition 3.2, which can be realized by initial conditions with “efficient interfaces.”
The key ingredients are the rate of change of the weighted energy in (3.13), the lower
bound for the weighted energy in terms of g(hy) in Proposition 3.1, and the upper
bound in (3.22). These ensure that the system does not have sufficient energy to
create additional interfaces away from R = p(7) and that h is effectively constant
(either h =0 or h = hy) away from R = p(7). Given hy (r,t), we obtain the unique
solution Q7 (x,t) of the evolution equation (2.3), subject to the boundary and initial
conditions, given by Qy (x,t) = b (|x[,t) (F® & — ).

3.1. Numerical simulations on the sphere. We numerically compute solu-
tions of the gradient flow system (2.3) on a 3D droplet, with the fixed boundary
condition Qp in (3.1) and various types of initial conditions. From the numerical
results in [13], the radial hedgehog (RH) solution is the global minimizer of the LdG
energy for this model problem; the RH solution is a uniaxial solution of the form
H=s(r) (f®#— ), where s(0) = 0 and s(r) > 0 for r > 0. In particular, s rapidly
interpolates between s = 0 and the boundary value of sy = B/3C over a distance
proportional to the nematic correlation length, and the localized region of reduced
order near r = 0 is referred to as the “defect core.” We expect the long-time dy-
namics to converge to the RH solution for all choices of initial conditions. However,
we are equally interested in the transient dynamics and the dynamic persistence of
nematic-isotropic interfaces. In what follows, we look at four different initial con-
ditions: uniaxial initial conditions within the remit of Theorem 3.4, uniaxial initial
conditions outside the scope of Theorem 3.4, biaxial initial conditions, and initial
conditions that break the radial symmetry of the order parameter.

Let R be the radius of the droplet; we nondimensionalize system (2.3) by setting

t= 2, x =% to yield

‘%;E” _AQy — % <AQ11 +20(Q% + Q3 + Q% + QuiQoz + Q% + Q3)Qu
(3.24) - 3@+ @h + Qs ~ 205 - 200 203) ).

992 _ AGm -+ (AQ22 +20(Q% + QB + Ql + Q1iQas + Qy + Q3) Qo
(3.25) - 5@+ Q%+ Qh - 20% - 200 - 20

‘93}2 = AQus - % <AQ12 +20(Q, + Q32+ Q1o + QuQaa + Q15 + Q35)Qu2
(3.26) = B(Qu1Q12 + Q12Q22 + Q13Q23)> ,

0 _ AQu - < (Ang +20(Q + Q% + @ + QuuQaz + Q% + Q3)Qus
(3.27) — B(Q12Q23 — Q22Q13)) ,

‘9?;3 = AQss - % <AQ23 +20(Q, + Q32+ Qo + QuuQaa + Q15 + Q35)Qas
(3.28) — B(Q12Q13 — stQn)),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1304 APALA MAJUMDAR, PAUL A. MILEWSKI, AND AMY SPICER
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FiG. 3.1. |Q(r,t)|? on the cross section of the unit ball at ¢ =0 for Case I and Case 11, at

t =0, t=0.001, and t = 0.125. The spatial resolution is h = 256

where A denotes the Laplacian with respect to the rescaled coordinate x. (In what
follows, we drop the bars from the dimensionless variables.) We take R? = 10710 m?
L=2N/m’ B=064x10*N/m* C=0.35x 10*N/m’, and A = B throughout
the paper and work with either L = 0.05 or 0.01 [13].

Here, and in the subsequent sections of this paper, the system of reaction-diffusion
equations (3.24)—(3.28) is solved as follows. The unit ball is embedded into the unit
cube [—1, 1]3, which is discretized with a uniform Cartesian grid with spatial resolution
h. We implement a special case of an immersed boundary method (see, for example,
[22]) and apply the boundary conditions at all discrete points within distance £ of
the boundary. For interior points, the solution satisfies the system (3.24)—(3.28), and
in the exterior of the physical domain we solve the simple heat equation (i.e., take
A = B = C = 0) and use periodic boundary conditions on the cube. This setup makes
it simple and efficient to use higher-order and spectral schemes for spatial derivatives.
Timestepping is accomplished with a standard fourth-order Runge-Kutta scheme.
Simple finite difference schemes are also implemented to verify the results.

The first two initial conditions are uniaxial RH-type initial conditions of the form

(3.29) Q(r,0) = h(r,0) (f 2 — %) .

Case I prescribes an initial condition, h(r,0), with an interface structure given by
h(r) = $hy (1+tanh ((r—ro)/ \/Z)), and Case II describes an initial condition without
an interface structure given by h(r) = hyr. Case I is within the remit of Theorem 3.4,
and the numerics demonstrate that the solution retains the nematic-isotropic interface
for all times and that the interface propagates towards the origin according to mean
curvature for small times, equilibrating near the origin for long times. For long times,
the radius of the isotropic core scales, as expected, with v/ L and arises out of the
saddle structure of @ at the origin. The dynamic solution in Case II very quickly
develops an inwards-propagating interface separating the isotropic core at the center
from the ordered nematic state and then follows the same evolution path as Case I
(see Figures 3.1, 3.2, and 3.3). The long-time behavior of the dynamic solutions for
Cases I and II are indistinguishable within numerical resolution, as expected.
For Case III, we use a biaxial initial condition given by

(3.30) Q(r,0) = h(r) <f®f"— é) +s(r)y(me@m —pRp),

where m = (cos 6 cos ¢, cosfsin ¢, —sin ) and p = (—sin ¢, cos ¢,0). The function
h(r) has an interface structure, as in Case I, and s(r) = r(1 —r). This case is outside
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0
0 0.025 0.05 0.075 0.01 0.125
t

Fi1c. 3.2. Interface position for Case I and Case I with ro = 0.5 (black), and predicted position
according to motion by mean curvature (blue) for L = 0.05 (dashed) and L = 0.01 (solid). In Case
II an interface quickly develops, so the two curves are indistinguishable. The spatial resolutions for
L =0.05 and L =0.01 are h = -1 and -+ respectively.
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Fi1c. 3.3. Eigenvalues of Q(r,t) as a function of v, for Case I and Case 11 (dotted), at t = 0,
t =0.001, and t = 0.125.
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Fic. 3.4. FEigenvalues of Q(r,t) as a function of v for initial condition (3.30), at t = O,
t=1.5x10"%, and t = 0.085.

the scope of Theorem 3.4, and we are not guaranteed the uniaxial radial symmetry of
the dynamic solution. The numerics show that the dynamic solution quickly becomes
uniaxial within numerical resolution, as demonstrated by the evolution of the eigen-
values of Q(r,t) in Figure 3.4. The dynamic solution exhibits an inwards-propagating
interface separating the isotropic core at r = 0 from the ordered nematic state, and
the interface equilibrates near the origin. We also numerically compute the differences

Qij(r,t) _ (Xin _ %)‘
Q| w3
as a function of time, and our numerics show that this difference vanishes everywhere

away from the origin, since |Q(0,¢)| = 0 for large times; see Figure 3.5.
Case IV breaks the radial symmetry of the initial order parameter by employing
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1 03 1 03 1 03
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“ 05 0 o5 1 4y 05 0 o5 1 4y 05 0 o5 1
X X X

FiG. 3.5. Qi1(r,t) — hy((cos ¢sinf)? — ) on the cross section of the unit ball for initial
condition (3.30) at t =0 (left), t = 1.5 X 10_4 (middle), and t = 0.085 (right). The spatial
resolution is h =

56'

0.5

0.15 > 0

-0.5

-1

-1 -0.5 0 0.5 1 i -1 -0.5 0 0.5 1
X X X

FiG. 3.6. |Q(r,t)|? on the cross section of the unit ball for initial condition (3.31) att = 0

(left), t = 0.05 (middle), and t = 0.1 (right). The spatial resolution is h = 5z5.

a uniaxial initial condition of the form (3.29) with

VL

Here, the initial interface is ellipsoidal in shape. The interface becomes circular and
the subsequent dynamics are indistinguishable from those of Case I, as seen in Figure
3.6.

2 02 2 .2 2 29
(3.31)  h(r,0,4,0) = GBC <1+t anh (T sin” 6(cos” ¢ + 4sin” ¢) + 21~ cos™ 6 0.5>>'

These examples illustrate that while the static RH solution has a localized defect
core of reduced order near the origin that may not be experimentally observable, the
transient solutions exhibit well-defined nematic-isotropic interfaces (see Figure 3.2).
These interfaces propagate towards the droplet center and may be experimentally
observable.

4. Fronts on a disc.

4.1. Analysis on a disc. We take our computational domain to be the unit
disc defined by

(4.1) Q={(r0)eR*0<r<1,0<6<2r},

with fixed boundary condition Q = Q. = 2 (n; ®n; — %) onr =1 for ng =
(cos @, sin 6, 0)—the 2D radial unit vector. This boundary condition is purely uniaxial
and is a minimum of the bulk potential. We study dynamic solutions of the parabolic
system, (2.3), subject to Q = Q. on r = 1 with different types of initial conditions. We
note that such solutions also survive as translationally invariant solutions, independent
of z, on a cylinder with free boundary conditions on the top and bottom surfaces.
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We first present some heuristics based on critical points of the LdG energy on
a disc subject to this Dirichlet condition. The gradient flow model dictates that
dynamic solutions evolve along a path of decreasing energy, converging to a critical
point of the LdG energy [5]. Hence, the long-time behavior can be predicted by an
analysis of the corresponding stationary problem. In [4], the authors present a general
analysis of LdG energy minimizers on 3D nice domains (see (2.1)) in the L — 0 limit.
Based on their analysis, the minimizers converge strongly in W12 (Q; Sp) to a limiting
harmonic map of the form Q = s (n* ®n* — %) such that s = 0 or s = B/3C a.e.
(so that Q is a minimum of fp) and the director n* is a solution of the harmonic
map equations An* + |Vn*|?n* = 0 (also see [23] for recent work on planar domains).
The convergence is shown to be uniform away from the singularities of the limiting
harmonic map, which need not be unique. There are at least two harmonic maps on
a disc with the boundary condition n* = (cos#,sin6,0) on r = 1 [24],

2x 2y 1—1?
1+r2’ 1472714072 )°

(4.2) n; = (cosf,sinf,0) and ny = <

We conjecture that there are at least two competing profiles for dynamic solutions of
this 2D problem, defined in terms of n; and ns above:

I B I
(4.3) Q1=s<n1®n1—§) and Q2=%<n2®nz—§>.

As n; is not defined at r = 0, Q; must have an isotropic point at r = 0, with
s — B/3C rapidly away from r = 0. We refer to Q; as being the 2D planar radial
hedgehog profile. However, ny has no singularity on €, and Qs does not have an
isotropic core. We predict that dynamic solutions of (2.3), subject to Q = Q. on
r = 1, converge to Q; away from the origin (where n; is singular) if escape into
the third dimension is not allowed. The dynamic solutions converge to Qs if escape
into the third dimension is allowed. Next, we have a lemma which demonstrates that
escape into the third dimension is not allowed for certain initial conditions. We refer
to a Q-tensor as being “planar” if the components @13, Q23 = 0 are identically zero
on 2 and “nonplanar” if not. In particular, Q., is a planar Q-tensor.

LEMMA 4.1. Let Q(r,t) be a solution of (2.3) on Q, with fized boundary condition
Q = Q. onr =1 and a planar initial condition Q(r,0) such that |Q(r,0)] < \/g (%)
forr e Q. Then Qi3 = Qa3 =0 for allt > 0.

Proof. The proof is an immediate application of Gronwall’s inequality [25]. From
20, 4], we have the following L>*-bound for the dynamic solution: |Q (r,t)] < /2 (&)
for ¢t > 0. The two governing PDEs for ()13 and ()23 can be written in the form

322;3 — LAQ13 = F(Q)Q13 + BQ12Q23,
(4.4) agt% — LAQ13 = G(Q)Q23 + BQ12Q13,

where I’ and G are bounded functions by virtue of the L*>°-bound above. We integrate
by parts, use the fact that Q13 = Q23 = 0 on r = 1, and apply Gronwall’s inequality
to obtain

a9 ([ @trhav) <o ([ ok ek av)
Q Q

so that Q13 = Q23 = 0 for all ¢t > 0. 0

= 0’
t=0
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4.1.1. Radially symmetric static solutions. We consider a particular class
of planar critical points of the LdG energy on a disc, introduced in [15] for low
temperatures (described by A < 01in (2.2)), referred to as radially symmetric solutions.
The theoretical results in this section are a generalization of the results in [15] to the
nematic-isotropic transition temperature. We work in a different temperature regime
where the LdG bulk potential has two equal energy minima, and hence we cannot a
priori assume that the results in [15, 26] apply to our case. These solutions are labelled
by two order parameters v and v that depend only on the radial distance from the
origin. We can perform some explicit analysis for these critical points, which are
good examples of planar Q-tensors. We first show that there exist radially symmetric
planar (u,v)-critical points of the LdG energy on a disc at the nematic-isotropic
transition temperature, which are unstable in the sense that the second variation of
the LdG energy is negative for admissible perturbations. We use these critical points
to construct planar initial conditions for the LdG gradient flow model. We then use
numerical simulations to corroborate our heuristics that the corresponding dynamic
solutions quickly develop a radially symmetric nematic-isotropic interface (even when
the initial data is not radially symmetric) and converge to Q; everywhere away from
the origin. Next we investigate the effect of small “nonplanar” perturbations of the
planar initial conditions and show that the solution follows the planar dynamics for
small but noticeable times, followed by an abrupt escape into the third dimension at
r = 0 and long-time convergence to Q2. As in [15], we study the LdG Euler-Lagrange
equations,

B2
(4.6) LAQ=—Q-B <QQ —

Qr
27C !

2
31) +clare,

and look for solutions of the form

(4.7) Q-

3 o - mem) +o0) (pop- 3 ).

3

where m = (—sin#, cos6,0) and p = (0,0,1). The critical points (4.7) are referred
to as k-radially symmetric solutions in [15, 26] with k = 2; we note that the authors
normalize the tensors in (4.7), while we choose not to normalize the tensors for ease
of presentation. It is straightforward to verify that solutions of the form (4.7) exist if
the functions u and v satisfy the following system of coupled second-order ordinary
differential equations:

48) w0 ) _u (3—2 +ipvtc (“—2 + 2—”2>> :

r 2 L\27C 3 2 3
/ 2 2 2
ey S0 v (B Bu (w20 L e
(4.9) v (r) + " _L<27C 3 +C 5 T 3 +4LBu,

with 4(0) = v'(0) = 0 with u(R) = B/3C and v(R) = —B/6C, consistent with the
boundary condition Q = Q. on r = 1. As in [15], we can prove the existence of a
solution pair (u,v) of (4.8)—-(4.9) by appealing to a variational problem. Define the

energy
1 2 2 2
_ T+ tonz o L) ¢ B (L 2
5(“’”)_/0 <(4(”) F3WH S ) Y rer (2 T

C (ut u? ot B 202wl
41 ~ (L ) 2o (L) ) rar
(4.10) +L<16+ 6 +9) 3LU<9 2>)TT
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This is the LdG energy of the (u,v)-ansatz in (4.7), defined on the admissible set
S = {(u,v) : [0,1] = R2[/ru/, /7o', u/\/r, /rv € L*(0,1), u(l) = B/3C, v(1) =
—B/6C}. The proof of the following lemma is standard and omitted here for brevity
(see [15]).

LEMMA 4.2. For each L > 0 there exists a global minimizer (u,v) € [C°(0,1) N
C(]0,1))] x [C®°(0,1) N C1([0,1])] of the energy (4.10) on S, which satisfies the ODEs
for w and v in (4.8)—(4.9).

Next, we look at some qualitative properties of the (u,v)-solutions. Similar ques-
tions have been addressed in the recent paper [26], in the temperature regime A < 0,
with the exception of the monotonicity argument in Lemma 4.4 below, and we repro-
duce all necessary details for completeness.

LEMMA 4.3. Let (u,v) be a global minimizer of the energy &€ in (4.10) subject to

u(l) = £ andv(l)=—&. Then0<u< £ and - & <v <0 for0<r<1.

Proof. We can prove the nonnegativity of u by following the arguments in [15, 26].
(The authors use the symmetry E [u, v] = E [—u, v] and the strong maximum principle
for (4.8) to deduce that u > 0 since u(1) > 0.) We assume v(r;) = v(r2) = 0 and
v > 0 for 1 < r < ry. Define the perturbation

U(T)v 0 S T S T1,
(4.11) o(r) =140, r <r<rg,
v(r), ro <7 <1.
A direct computation shows that
ra 2 Cv? B\? 2
(4.12) Efu,v]—Elu, 0] = /r1 r% + %TU (v - %) —|—rgL (Bv+ Cv?) dr >0,

contradicting the global minimality of the pair (u,v). Next, let us assume for a
contradiction that the minimum value of v : [0,1] — R, denoted by vyiy, is attained
at r = rg, and vy, is less than —%; i.e., Umin < —% at r = rg. At r = rg, the
left-hand side of (4.9) is nonnegative by definition of a minimum. From the maximum
principle (see [17, 4]), we have

2 22 2/ B
4.1 oL 2 ().
(4.13) QF=3+3 3(902>

N

If vin < — GC’ then u?(rg) < 902 Then for vy, < — @ we have

B2 B, n 2C 4 - B3 d

——Umin — = Vs — v, ———— an

27C 3 o3 o 54C?

u? B3
so that the right-hand side of (4.9) is negative, yielding a contradiction. The result
for u follows in the same manner, using the bound for v proven above. |

We next show that (u,v) are monotone functions, borrowing an idea from [27].
We make the elementary observation that v’ > 0 for 0 < r < o, since u attains its
minimum value at r = 0,

(4.15) ue(r) = u(r) + ea(r), ve(r) = v(r) + €eB(r),
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with a (1) = 8(1) = 0. In this case the second variation is given by

! 2 2 2 2
2E[a,ﬁ]::/0 [_+5_+ ]+%[B B _2Buf | 26}

1
_|_/
0

(4.16) +/01 7

In particular, §2E [a, 8] > 0 for all admissible «, 3 by the global minimality of (u,v).

B 2
[ u?B? + va +§ 2o + 1;&6 + Cugvozﬁ] dr

P o5,
Toec™ T g | dr

I

| 3

LEMMA 4.4. Let (u,v) be a global minimizer of the energy in (4.10). Then v’ >0
forr >0 and v <0 forr>0.

Proof. We assume for a contradiction that u and v are not monotone, so that
there exist points rq, 72,73, 74 with r1,75 € (0,1), r3 € [0,1) such that
"(rg) =0, u <0forr <r<rs,

= O’

=u(re
(4.17) V' (r3) =v'(r4) v >0 for rg <r <ry.

We differentiate the ODEs for v and v in (4.8)—(4.9), multiply by ru’ and rv respec-
tively, and integrate over r € [r1,r2] and r € [r3,r4] to get the following equalities:

T2 2
[ P | g + e’
ry

4 4r r 108C 8
1.,
(4.18) + %(u’)%Q + %v(u’)Q + ““6” (B + 2Cv)] —0
and
mf na, (V)? B? 2 2B o 20 o 0
/Ts S(U)+3r+ 810() 9v(v)+3v(v)
1,/

(4.19) + % [%uQ(v’)Q + 2% B+ 200)} dr = 0.

We define the perturbations «, 8 as follows:

(1.20) a(r):{o, i ﬂ(r)={0, =0

o ifu’ <0, v if v’ > 0.

These perturbations satisfy a(1) = (1) = 0, since v and v attain their maximum
and minimum values on r = 1, respectively. Substituting («, §) into (4.16) and using
(4.18)—(4.19), we obtain §°F [a, 3] < 0 and the required contradiction. 0

Finally, we demonstrate that this class of critical points is unstable in the static
sense, at the nematic-isotropic transition temperature. We consider a perturbation
about the critical point in (4.7), W;; = Q;; + €Vy; with V;; = 0 on 7 = 1, and
compute the second variation of the LdG energy about this critical point as shown
below:

1 A B C C
271 - 2, = 2= . . 1 . 2, ¥ 2 2
(4.21) & I_///2|VV| +57 V=7 Qi Vi Vit 7 (QV)*+ o2 |QFF[VI* V.
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We simply use the perturbation
B 10072 (1 — r?)?
(1 +100r2)

in (4.21). This integral is evaluated numerically using numerical solutions to (4.8)—
(4.9) and 6% < 0 for log;, L < —1.6, as illustrated in the graph of Figure 4.1.

(4.22) (ni@p+pen)

S
=)

-0.02
-0.04
-0.06

~0.0:
~15 -1.55 -1.6 -1.65 -1.7 -1.75 -1.8
\ogmL

FiG. 4.1. 621 for various L.

4.2. Numerical simulations. We numerically solve the LdG gradient flow sys-
tem in (3.24)—(3.28) on a disc subject to Q = Q. on = 1. We take R to be the disc
radius in the definition of the dimensionless variables, and the parameter values (R,
L, B, C) are as in section 3. We take L = 0.01 in this section, unless stated other-
wise. The focus is on the distinction between planar and nonplanar initial conditions.
Based on the heuristics presented in section 4.1.1, we argue that all dynamic solutions
develop an interface separating an isotropic core, centered at v = 0, from an ordered
uniaxial nematic phase away from r = 0. For planar initial conditions the interface
persists for all times and the dynamic solution has an isotropic core at r = 0 for all
times, whereas for nonplanar initial conditions the interface collapses at » = 0 and
the dynamic solution relaxes into the uniaxial state Qg in (4.3) for long times.

First, we consider planar (u,v)-type initial conditions of the form
(4.23) Q(r,O)z@(nl ®n; —m®@m) + v(r,0) <p®p—§),
where m = (—sin6,cos6,0), p=(0,0,1),and I=n; ® n; + m ® m + p @ p. Recall
that our boundary conditions enforce v = B/3C and v = —B/6C on r = 1. We let
u(r,0) and v(r,0) have the interface structure

u(r,0) = % <1 + tanh (T\_/%l(J)) 5 v(r,0) = —% (1 + tanh <T\;g0>>

for various values of ug and vg. It is worth noting that the corresponding dynamic
solution is given by

u(r,t)
2

(4.24) Q(r,t) = (n1 ®n; —m@m)+ ov(r,t) (p ®p— I)

3

if the dynamic order parameters satisfy

/ 2 2 2
o u'(r) du(r) u (B 2 u®  2v
(4.25) yur =u'(r) + " 2 7 \37c + 3Bv +C 5 + =) )
! B?  Bv u? 207 1
4.9 — ’U(’f’)_g - =" il “v ——~B2
(4.26) yor =v"(r) + " ARG +C > + 3 17 B
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t

F1G. 4.2. Interface position of dynamic solution (4.24) with initial condition (4.23), with ug =

0.6, vo = 0.4 for L = 0.05 (grey) and L = 0.01 (black) compared to motion by mean curvature
(blue).

0.3 0.3
— _

| 05 0 05 1 | 05 0 05 1
X X

FiG. 4.3. |Q(r,t)|? for up = 0.6, vo = 0.4 for the initial condition (4.23), att =0, t = 1072,

and t = 0.25. The spatial resolution is h = ﬁ.

From Proposition 2.1, this is the unique solution for this model problem. In fact,
we can go further and exploit the methods in [28] to compare the nematic-isotropic
interface motion in (4.24)—(4.26) with mean curvature motion. As in section 3, we
cannot quote results from [28] since the dynamic equations (4.24)—(4.26) differ from
the GL model in [28] by the additional term —4u/r? in (4.25) above. However, for
L sufficiently small this term may be controllable, and in Figure 4.2 we plot the
numerically computed interface location (plot r*(¢) such that |Q(r,¢)|* < $h2 for
r < r*(t)) and find good agreement with mean curvature propagation for small times.

A typical solution with an initial condition of the form (4.23) is shown in Figure
4.3. If ug # v, then Q(r,0) is necessarily biaxial, but it is hard to see the biaxial
character of the initial data by looking at |@Q|?. In order to see the rapid relaxation
to uniaxiality, we plot the eigenvalues of the dynamic solution, Q(r,t), as a function
of time (see Figure 4.4). Varying the values of ug and vy does not change the quali-
tative dynamics: Q(r, ) quickly becomes uniaxial for all choices of ug and vg, within
numerical resolution. The dynamic solution develops a radially symmetric interface
separating the isotropic core, centered at r = 0, from an ordered uniaxial nematic
state (away from r = 0), and the interface equilibrates near r = 0 for long times. We
have numerically computed the tensor-difference, Q(r,t) — Q1, as a function of time
(where Qg is introduced in (4.3)) and find that Q(r,t) — Qi everywhere away from
r =0, as expected. One component of this tensor difference is plotted in Figure 4.5.
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Fic. 4.4. Figenvalues of Q(r,t) for initial condition (4.23) with up = 0.6, vo = 0.4, at t = 0,
t=10"2, and t = 0.25.
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F1c. 4.5. Qui(r,t) — 55 (55 — 3) on the cross section of the cylinder at z = 0 for the initial
condition (4.23) with up = 0.6, vo = 0.4, at t =0, t = 1075, and t = 0.25.

FiG. 4.6. |Q(r,t)|? on z = 0 for initial condition (4.27) att =0, t = 0.06, and t = 0.2. The
spatial resolution is h = ﬁ‘

Next, we consider an initial condition of the form (4.23) with

B e [ 7= 0.6 (1+ (~).25 sin 50) 7
i Vi

(4.27) o(r,0,0) = B T 0.4 (1 +0.25sin50)

12C \/f

This is again a planar initial condition with an interesting star-shaped nematic-
isotropic interface that relaxes into a radially symmetric nematic-isotropic interface.
The subsequent dynamics is then indistinguishable from the case discussed above; this
is illustrated by Figures 4.6 and 4.7.

Finally, we consider a small perturbation to the planar (u,v)-initial conditions,

u(r,0,0) =
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Fia. 4.7. Qiui(r,t) — %(f—z - %) on the unit disc for the initial condition (4.27) at t = 0,

=)

t = 0.06, and t = 0.2.
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Fic. 4.8. Spatial dependence of eigenvalues of Q(r,t) at t = 0, t = 0.001, and t = 0.25 for
initial condition (4.28) with ug = 0.6, vo = 0.4.
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Fi1c. 4.9. Time evolution of eigenvalues of Q(r,t) at the origin for initial condition (4.28) with
uo = 0.6, vg = 0.4.

which yields nonplanar initial conditions. Let

(4.28) Q(r,0) = u(r,0) <n®n— %) + v(r,0) (p ®Xp— g) ,

where

n = <\/(1 —€e2(1 —17)2)cosf,\/(1 —e2(1 —r)2)sinb, e(1 — 7‘)) ,
I, =n;®n; + m®m,

and p is as before. The functions u(r,0) and v(r,0) are as defined previously. As
before, the dynamic solution quickly becomes uniaxial (within numerical resolution)
irrespective of ug and vy and develops a well-defined interface separating an interior
region, with Q = 0 near » = 0, from an ordered uniaxial nematic state elsewhere.
This interface propagates inward, but instead of being arrested at a small distance
from the origin, the interface collapses at the origin and the dynamic solution relaxes
to Q2 in (4.3). In particular, |Q(r,t)|> — Zh% uniformly for large times. Figures
4.8 and 4.9 show the time snapshots of the spatial distribution of eigenvalues, and
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Fia. 4.10. Qu1(r,t) — %(45{:2/(14—7‘2)2 — %) for initial condition (4.28) with ug = 0.6, vo = 0.4
att=0,t=0.001, and t = 0.6.
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Fic. 4.11. Time (t*) at which the interface is lost for various € and ug and vo; ug = 0.1
(purple), ug = 0.4 (blue), up = 0.5 (green), ugp = 0.6 (orange), and ug = 0.9 (red); vo = 1 —up for
initial condition (4.28) and L = 0.05.

the time evolution of the eigenvalues at » = 0, showing the convergence to a uniform
uniaxial solution. Figure 4.10 shows snapshots of the relaxation of one component of
Q to the corresponding Qa-component.

We also study how the initial nonplanarity (as measured by €) affects the char-
acteristic relaxation time to Qa. We observe that the modulus, |Q|? (0,t), jumps
abruptly from zero to %hi at some critical time. Let ¢t* be the first time for which

1
3
and we associate t* with the loss of interface structure. Figure 4.11 plots t* as a
function of —log,, € for various up and vg, and we find that t* o< —log;ye. This can

give quantitative estimates for the real-time persistence of nematic-isotropic interfaces
and their experimental relevance for model problems with nonplanar initial conditions.

1Q (0, >

2
h2,

5. Biaxial boundary conditions on a disc. The Dirichlet conditions in sec-
tions 3 and 4 are uniaxial minima of the bulk potential, fp, and are referred to as
minimal boundary conditions. In this section, we employ a biaxial planar boundary
condition that is not a minimum of fp at the nematic-isotropic transition tempera-
ture, given by

(5.1) Qb

:%(n1®n1—m®m)

This boundary condition is maximally biaxial with a zero eigenvalue, i.e., tng’ =0.
We refer to Qp as a nonminimal Dirichlet condition. From [29], we expect that
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LdG energy minimizers, subject to a boundary condition of this form, converge in
an appropriate sense to a limiting harmonic map that is a minimum of the bulk
potential almost everywhere and develop a boundary layer near » = 1 to match Qy,
in the vanishing elastic constant limit.

We study 2D and 3D dynamic solutions separately. A 2D solution is a symmetric
and traceless 2 x 2 matrix [18], and in such cases, we study maps from the disc to
a 2D target space with just two degrees of freedom. A 3D solution is a symmetric,
traceless 3 x 3 matrix, and in such cases, we study maps from a 2D domain into a 5D
target space.

We start this section with a discussion of the 2D case; 2D Q-matrices have trQ? =
0 and the corresponding evolution law simplifies to

(5.2) Q: = LAQ - AQ - C|Q*Q.
The simplest 2D dynamic solution, consistent with (5.1), is
(5.3) Q(r,t) = s(r,t) (n; ®n; —m ® m)

with 72 = 22 + y2. Tt is simple to check that the gradient flow model (5.2) admits a
solution of the form (5.3) if the function s(r,t) is a solution of

5. 4s s ( B? 9
(5.4) '\/St—{srr+7_r_2}_z<%+2cs)

with fixed boundary conditions

B
5.5 0,t) =0 1,t) = —
655) S0.0=0, 510 =1,
for all t > 0. The evolution equation (5.4) is simply the gradient flow model for the
functional

(5.6) Is] = /01 lr (%)2 4 g

and given a smooth solution, s(r,t) of (5.4)—(5.5) with suitable initial conditions,
(5.3) is the unique 2D solution. Further, the 2D potential has an isolated minimum
at s = 0 (see (5.6)), and hence we expect that any dynamic solution of (5.2) has an
outward-propagating interface that separates an almost isotropic core around r = 0
from the Dirichlet boundary condition at » = 1. The interface equilibrates near r = 1,
followed by a sharp boundary layer to match the fixed boundary condition.

Next, we present some heuristics for 3D dynamic solutions with a planar initial
condition of the form

27C 4

B? C
+ % (—82 + —s4> dr,

(57) Q(I‘,O) = S(Tv 0) (nl @ n _m®m)a
where s(r,0) has an interface structure, i.e.,

0, r <Tro,

%7 TO<T§17

(5.8) s(r,0) = {

for some rg € (0,1). Based on the analysis in section 4.1.1, all dynamic solutions
remain planar with Q13 = Q235 = 0. Hence, we expect Q(r,t) (for long times) to have
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an isotropic core centered at r = 0, and Q(r,t) converges to Q (introduced in (4.3))
away from r = 0, with a boundary layer near r = 1 to match the Dirichlet condi-
tion. However, we speculate that there is a second scenario for nonminimal boundary
conditions as in (5.1), which is not observed for minimal boundary conditions as in
section 4. If 1 —r¢ is sufficiently small, 3D solutions may exhibit an outward-growing
isotropic core since the isotropic phase is also a minimizer of the bulk potential, and
this scenario may be energetically favorable. All dynamic solutions with nonminimal
boundary conditions develop a boundary layer near » = 1, which has an energetic
cost. However, solutions with minimal boundary conditions (as in sections 3 and 4)
do not have boundary layers near r = 1, and in such cases it is energetically preferable
either to have a localized core of reduced order near r = 0 (as for planar 3D solutions)
or to have uniform order throughout the disc (as for nonplanar 3D solutions).

Thus, we expect sharp contrast in the behavior of 2D and 3D solutions. The
2D dynamic solutions have little nematic order, being largely isotropic or close to
isotropic, except near r = 1, and 3D dynamic solutions are largely uniaxial with
perfect nematic ordering (for at least a range of values of (), except near r = 0 and
r = 1. It is not clear whether 2D dynamic solutions could be physically relevant for
certain materials or temperature regimes. In the next section, we present numerical
results to validate our heuristics above.

5.1. Numerical simulations with biaxial boundary conditions. We nu-
merically solve (3.24)—(3.28) on a disc with the Dirichlet condition (5.1) on r = 1.
All other parameter values are as in section 4.2, with L = 0.01. The planar initial
condition is as in (5.7) with

s(r) = % (1 + tanh (T\;Em)) .

In the case of ry = 0.5, the solution quickly becomes almost uniaxial in the interior
by developing an inwards-propagating well-defined nematic-isotropic interface. This
is illustrated by a plot of eigenvalue evolution in Figure 5.1. The solution converges
to Qi(r,t) (see (4.3)) away from r = 0 for long times, with the core of reduced order
near r = 0 and a thin boundary layer near » = 1, as displayed in Figure 5.2. This is
as expected from the numerical results presented in section 4.

0.4 0.6, 0.6
0.4 0.4
02 \
0.2 0.2
0 < <
0 0
-0.2
-0.2 -0.2
-04 -0.4) -0.4
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

r r r

Fic. 5.1. Eigenvalues of Q(r,t) for initial condition (5.7) (with ro = 0.5) at t =0, t = 0.001,
and t = 0.25.

Next, we consider ro = 0.925 and observe a different behavior; the interface
evolves so that there is a thin boundary layer near r = 1 with a large, almost isotropic,
core in the interior. This is best illustrated with radial profiles of |Q|?, as seen in
Figure 5.3.
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1_-03 T -03 1_-03
<3 <2 <3

-0.4 -0.4 ~0.4

% 02 04 06 08 1 03 02 04 06 08 1

-0.
% 0.2 0.4 0.6 0.8 1

Fic. 5.2. Radial profile of Qi1(r,t) — %(% — %) for 8 = 0 for initial condition (5.7) (with

ro =0.5) at t =0, t = 0.001, and t = 0.25.
03 03
0.2 0.2
N 0.1 J N 0.1
g g
0 0
01 01
-0.2 0.2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
FIG. 5.3. Radial profile of |Q(r,t)|? for initial condition (5.7) with ro = 0.925, for t = 0 and
t =0.25.
04 0.4 04
02 f 02 02
< 0 < 0| <
-02 02 0.2
4 02 04 06 08 1 4 02 04 06 08 1 04

Fic. 5.4. Eigenvalues of Q(r,t) in the 2D model, for initial

2x107%, and t =2 x 1074,

We compare the 3D solutions above with 2D solutions

0.2 0.4 0.6 0.8 1

condition (5.7) at t = 0, t =

for the same system (5.2).

We work with planar initial conditions (5.7), with s(r) as before. The initial interface
grows rapidly to yield an almost entirely isotropic interior with a thin boundary
layer near » = 1. This is illustrated by the eigenvalue evolution in Figure 5.4, thus
corroborating our heuristics and analytical reasoning in the previous section.

6. Conclusions. We focus on the gradient flow model for the LdG energy on
prototype geometries, such as a droplet and a disc, with Dirichlet boundary conditions
and various initial conditions at the nematic-isotropic transition temperature. In
section 3, we consider the model problem of a 3D droplet of radius R, with radial
boundary conditions. In the case of uniaxial radially symmetric initial conditions
with a nematic-isotropic front structure, we adapt Ginzburg-Landau methods from
[10, 11] to prove that the nematic-isotropic interface propagates according to mean
curvature in the #% — 0 limit, for small times. However, the qualitative dynamics
seem universal for a large class of radially symmetric and nonsymmetric uniaxial
and biaxial initial conditions, and the long-time dynamics converges to the classical
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RH solution, which has been numerically demonstrated to be a global LdG energy
minimizer in this regime.

In sections 4 and 5, we focus on dynamic solutions on a disc. Our results are
largely numerical and complemented by heuristics and analytical reasoning. We
demonstrate how a choice of planar or nonplanar initial condition can influence the
long-time dynamic behavior. Planar initial conditions generate planar dynamic solu-
tions with an isotropic core around the center for all times, whereas nonplanar solu-
tions follow the planar dynamics for a length of time before relaxing into an uniaxial
state of perfect order for long times. In section 5, we look at nonminimal boundary
conditions. Nonminimal boundary conditions allow for dynamic scenarios outside the
scope of minimal boundary conditions, and since minimal boundary conditions are an
idealization, nonminimal Dirichlet conditions can be physically relevant too.

The long-time dynamics can be understood in terms of local and global mini-
mizers, or in some cases critical points, of the LdG energy. In cases where the LdG
critical points exhibit an nematic-isotropic interface, this interface may be localized
with little effect on global properties. Our numerical results show that a large class
of physically relevant LC model problems can exhibit a well-defined nematic-isotropic
interface for a length of time (see Figures 3.2 and 4.2), and these results give insight
into how boundary and initial conditions can be used to yield either largely disordered
or ordered nematic profiles. A natural next step is to rigorously analyze front forma-
tion and propagation with generic nonminimal boundary conditions and with more
general LdG energy functionals, including those with a sixth-order bulk potential that
allow for biaxial minima. We will report on these developments in the future.
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