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Abstract. Brändén and Claesson introduced mesh patterns to provide ex-
plicit expansions for certain permutation statistics as linear combinations of
(classical) permutation patterns. The first systematic study of the avoidance
of mesh patterns was conducted by Hilmarsson et al., while the first system-
atic study of the distribution of mesh patterns was conducted by the first
two authors.

In this paper, we provide far-reaching generalizations for 8 known distri-
bution results and 5 known avoidance results related to mesh patterns by
giving distribution or avoidance formulas for certain infinite families of mesh
patterns in terms of distribution or avoidance formulas for smaller patterns.
Moreover, as a corollary to a general result, we find the distribution of one
more mesh pattern of length 2.

Keywords: mesh pattern, distribution, avoidance

AMS Subject Classifications: 05A15

1 Introduction

Patterns in permutations and words have attracted much attention in the
literature (see [6] and references therein), and this area of research continues
to grow rapidly. The notion of a mesh pattern, generalizing several classes
of patterns, was introduced by Brändén and Claesson [3] to provide explicit
expansions for certain permutation statistics as, possibly infinite, linear com-
binations of (classical) permutation patterns. Several papers are dedicated to
the study of mesh patterns and their generalizations [1, 2, 5, 7, 8, 9, 13, 14].
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Let J0, kK denote the interval of the integers from 0 to k. A pair (τ, R),
where τ is a permutation of length k written in one-line notation and R is a
subset of J0, kK × J0, kK, is a mesh pattern of length k. Let (i, j) denote the
box whose corners have coordinates (i, j), (i, j+1), (i+1, j), and (i+1, j+1).
Let the horizontal lines represent the values, and the vertical lines denote the
positions in the pattern. Mesh patterns can be drawn by shading the boxes
in R. For example, the picture

represents the mesh pattern with τ = 231 and R = {(1, 2), (2, 1)}. A mesh
pattern (τ, R) of length k ≥ 2 is irreducible if the permutation τ = τ1τ2 · · · τk
is irreducible, that is, if there exists no i, where 2 ≤ i ≤ k, such that τj < τi
for all 1 ≤ j < i. For convenience, in this paper we assume that if τ is of
length 1 then it is not irreducible, even though normally such a τ is assumed
to be irreducible. All mesh patterns of interest in this paper can be found in
Tables 1–3, where patterns’ numbers < 66 are coming from [4, 10]. Also, we
let Z := .

A subsequence π′ = πi1πi2 · · ·πik of a permutation π = π1π2 · · ·πn is an
occurrence of a mesh pattern (τ, R) if (a) π′ is order-isomorphic to τ , and
(b) the shaded squares given by R do not contain any elements of π not
appearing in π′. For example, the mesh pattern of length 3 drawn above
appears twice in the permutation 24531 (as the subsequences 241 and 453).
Note that even though the subsequences 251 and 451 are order isomorphic
to 231 (the τ in the drawn pattern), they are not occurrences of the pattern
because of the elements 4 and 3, respectively, be in the shaded squares. See
[4] for more examples of occurrences of mesh patterns in permutations.

Let Sn be the set of permutations of length n. Given a permutation π,
denote by p(π) the number of occurrences of pattern p in π. Denote by S(p)
set of permutations avoiding p. We let Ap(x) be the generating function for
S(p) and let

Fp(x, q) :=
∑

n≥0

xn
∑

π∈Sn

qp(π).

In this paper we provide various generalizations of results in [10]. The
main idea of this paper is to consider a mesh pattern p, and to replace some
of its unshaded boxes by mesh patterns. To illustrate this idea, consider the
mesh pattern
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P =
p1

obtained from the smaller mesh pattern Y = by inserting a mesh pattern
p1 in the box (1, 1). We can then find the distribution of P in terms of the
distribution of p1, which not only allows us to obtain three results in [10] at
the same time (distributions of the patterns Nr. 12, 13, and 17; see Section 2)
but also to derive the previously unknown distribution of the pattern

Nr. 66 =

(pattern’s number is introduced by us in this paper) which is not equivalent
to any of the patterns in [4].

For a more sophisticated example illustrating the power of our results in
this paper, suppose that one wants to find the distribution of the mesh pat-
tern in Figure 1. Approaching this problem directly is probably not doable.
However, one can see that the elements a and b give a mesh pattern of the
form in Figure 4, so that Theorem 3.2 can be applied with p1 there given by
the elements c and d, which give a mesh pattern of the form in Figure 7, so
that Theorem 3.5 can be applied. Finally, p1 in Theorem 3.5 in our example
is nothing else but the mesh pattern Nr. 66, so Corollary 2.4 can be applied.
This will result in the distribution of the mesh pattern in Figure 1 be

F (x)



1 + x(F (x)− 1)





1

1 + x2F (x)
(

F (x)− 1− qx
∑∞

n=1

∏n−1
i=1 (q + i)xn

) − 1







 ,

where F (x) :=
∑

n≥0 n!x
n.

In Tables 1 and 2 we give references to our enumerative results related
to distribution and avoidance, respectively. Moreover, in Table 3 we give
references to our distribution and avoidance results on certain generalizations
of short mesh patterns. We note that the patterns p1, p2, p3 in Tables 1–3
can be empty, in which case one needs to substitute the generating functions
Api(x) and Fpi(x, q) by 0 and qF (x), respectively, in our results. Indeed,
one can assume that any permutation contains exactly one occurrence of the
empty pattern, which makes the substitutions work. Also, in the case of
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Nr. Repr. p Generalization p1 p2 p3 Distribution

X
p1

Irreducible - - Theorem 4.1

Y
p1 Any - - Theorem 2.1

12 - - - - Corollary 2.2

13 p1 Any - - Theorem 3.1

Corollary 2.3

17 - - - - Corollary 2.4

19 p1 Any - - Theorem 3.2

20
p1

p2

Any Any - Theorem 3.3

22
p1

p2

p3 Any Any Any Theorem 3.4

28 p1 Any - - Theorem 3.5

33
p1

Irreducible - - Theorem 4.2

66 - - - - Corollary 2.5

Table 1: Distributions of generalizations of short mesh patterns. Note that
pattern X is essentially equivalent to pattern Z in the sense of distribution.
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Nr. Repr. p Generalization p1 p2 Avoidance

27
p1

p2 Any Any Theorem 5.5

28 p1

p2

Any Any Theorem 5.1

30
p1

Two general classes - Theorem 5.4

Table 2: Avoidance for generalizations of short mesh patterns.

a

b

c

d

e

f

Figure 1: A mesh pattern of length 6

empty p1, one needs to set k = 1 in our results related to the pattern Nr. 34
(in Theorems 5.7 and 5.8). In this way, one can obtain any previous results
in [4, 10] related to the patterns appearing in this paper.

In this paper, we need the following result.

Theorem 1.1 ([10, Theorem 1.1]). Let

F (x, q) =
∑

n≥0

xn
∑

π∈Sn

q (π) =
∑

n≥0

xn
∑

π∈Sn

q (π)

and let A(x) be the generating function for S( ) = S( ). Then,

A(x) =
F (x)

1 + xF (x)
, F (x, q) =

F (x)

1 + x(1− q)F (x)
.
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Nr. Repr. p Generalization p1 p2 Reference

33
p1

. .
. Irreducible - Theorem 4.3

34 p1 Any - Theorem 5.7

34 p1

p2

Any Any Theorem 5.8

Table 3: Generalizations of short mesh patterns allowing replacement of
τ = 12 either by an increasing permutation or by a permutation beginning
with the smallest element with all boxes shaded. The distributions are given
for Nr. 33, and 34 with p1 but without p2, and the avoidance for Nr. 34 with
p1 and p2.

This paper is organized as follows. In Section 2 we present distribution
and avoidance results for certain mesh patterns derived from the pattern Y .
In Section 3 we study the distribution and avoidance for certain patterns
derived from the patterns Nr. 13, 19, 20, 22, and 28. Section 4 is dedicated
to the distribution and avoidance for certain mesh patterns derived from
the pattern X . In Section 5 we deal with avoidance results for certain mesh
patterns derived from the patterns Nr. 27, 28, 30, and 34. Finally, we provide
some concluding remarks in Section 6.

2 A generalization of the pattern Y

In this section, we consider a generalization of the pattern Y = . As
an application of our general results, we will find the distributions of the
following patterns:

Nr. 12 = , Nr. 13 = , Nr. 17 = , Nr. 66 = .

Theorem 2.1. Suppose that p is the pattern shown in Figure 2, where p1 is
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any mesh pattern, and the label a is to be ignored. Then,

Ap(x) = (1− x)F (x) + xAp1(x), (1)

Fp(x, q) = (1− x)F (x) + xFp1(x, q). (2)

a

p1

Figure 2: Related to the proof of Theorem 2.1.

Proof. Any permutation counted by F (x) either avoids p, which is counted
by Ap(x), or contains at least one occurrence of p. The generating function
for the latter case is x(F (x) − Ap1(x)). Indeed, for any occurrence of p, the
element a in Figure 2 is the same. Now the North East box in the figure must
contain at least one occurrence of p1, which is counted by F (x)−Ap1(x), and
the element a contributes the factor of x. This leads to

Ap(x) + x(F (x)− Ap1(x)) = F (x). (3)

For the distribution, we have the following functional equation:

Ap(x) + x(Fp1(x, q)−Ap1(x)) = Fp(x, q). (4)

Our proof of (4) is essentially the same as that in the avoidance case. In
particular, the contribution of the North East box is Fp1(x, q)−Ap1(x), since
every occurrence of p1 there, along with the element a, will give an occurrence
of p, and all occurrences of p are obtained in this way. The formulas (1) and
(2) now follow from the formulas (3) and (4), respectively. This completes
the proof.

The following results follow from Theorem 2.1.

Corollary 2.2 ([10, Theorem 2.4]). For the pattern Nr. 12 = p = , we

have

Ap(x) = (1− x)F (x) + x,

Fp(x, q) = (1− x)F (x) + xF (qx).
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Proof. The mesh pattern p is obtained from the pattern Y by inserting the
pattern p1 = . It is easy to see that Ap1(x) = 1 and Fp1(x, q) = F (qx).
After substituting these into (1) and (2), we obtain the desired result.

Corollary 2.3 ([10, Theorem 2.5]). For the pattern Nr. 13 = p = , we

have

Ap(x) = (1− x2)F (x),

Fp(x, q) = (1− x2 + qx2)F (x).

Proof. The mesh pattern p is obtained from the pattern Y by inserting the
pattern p1 = . It is easy to see that Ap1(x) = 1 and Fp1(x, q) = F (qx).
Together with Ap1(x) = F (x) − xF (x), and Fp1(x, q) = F (x) − xF (x) +
qxF (x), we have the desired result.

Corollary 2.4 ([10, Theorem 3.2]). For the pattern Nr. 17 = p = , we

have

Fp(x, q) =

(

1− x+
x

1 + x(1− q)F (x)

)

F (x).

Also, Ap(x) = Fp(x, 0).

Proof. The mesh pattern p is obtained from the pattern Y by inserting the
pattern p1 = . By Theorem 1.1, we have Fp1(x, q) =

F (x)
1+x(1−q)F (x)

. After

substituting it into (2), we obtain the desired result.

The following result is new.

Corollary 2.5. For the pattern Nr. 66 = p = , we have

Ap(x) = (1− x)F (x) + x,

Fp(x, q) = (1− x)F (x) + x+ x

∞
∑

n=1

n−1
∏

i=0

(q + i)xn.

Proof. The mesh pattern p is obtained from the pattern Y by inserting the
pattern p1 = . Note that Ap1(x) = 1 and the distribution of p1 is given
by the unsigned Stirling numbers of the first kind [12, p. 19]:

Fp1(x, q) = 1 +
∞
∑

n=1

n−1
∏

i=0

(q + i)xn.

Substituting these into (1) and (2) gives the desired result.
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3 Distributions of several mesh patterns

In this section, we generalize known distribution results for the patterns

Nr. 13 = , Nr. 19 = , Nr. 20 = ,

Nr. 22 = , Nr. 28 = .

The theorems proved in this section are not so difficult (and somewhat simi-
lar), but they prepare the reader for the upcoming more involved distribution
or avoidance results.

3.1 The pattern Nr. 13

We first consider the generalization of the pattern Nr. 13 = .

Theorem 3.1. Suppose that p is the pattern shown in Figure 3, where p1 is

any mesh pattern, and the labels a and b are to be ignored. Then,

Ap(x) = F (x)− x2(F (x)− Ap1(x)),

Fp(x, q) = (1− x2)F (x) + x2Fp1(x, q).

a

b

p1

Figure 3: Related to the proof of Theorem 3.1.

Proof. We have the following functional equation:

Ap(x) + x2(F (x)− Ap1(x)) = F (x). (5)

Indeed, any permutation counted by F (x) either avoids p, which is counted
by Ap(x), or contains at least one occurrence of p. The generating function
for the latter case is x2(F (x)−Ap1(x)). Indeed, an occurrence of p implies at
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least one occurrence of p1 in the central box in Figure 3, which contributes
the factor of F (x)− Ap1(x). Besides, the factor of x2 is contributed by ab.

For the distribution, we have the following functional equation:

Ap(x) + x2(Fp1(x, q)− Ap1(x)) = Fp(x, q). (6)

The proof of (6) is essentially the same as that in the avoidance case. In
particular, the factor of Fp1(x, q) − Ap1(x) comes from the fact that in any
occurrence of p, a, and b in Figure 3 must be the same. The desired result
follows from (5) and (6). This completes the proof.

3.2 The pattern Nr. 19

Now we generalize the pattern Nr. 19 = .

Theorem 3.2. Suppose that p is the pattern shown in Figure 4, where p1 is

any mesh pattern, and the labels a, b, A, and B are to be ignored. Then,

Ap(x) = F (x)− x(F (x)− 1)(F (x)− Ap1(x)),

Fp(x, q) = F (x) + x(F (x)− 1)(Fp1(x, q)− F (x)).

a

b

A B

p1

Figure 4: Related to the proof of Theorem 3.2.

Proof. We have the following functional equation:

Ap(x) + x(F (x)− 1)(F (x)−Ap1(x)) = F (x), (7)

where the right hand side counts all permutations. Indeed, each permutation
either avoids p, which is given by the Ap(x) term in (7), or it contains at
least one occurrence of p. The latter case is given by the second term on
the left hand side of (7), which shall be proved in the following. To pick
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the occurrence ab in Figure 4, we choose b the highest possible and a is then
uniquely determined. Referring to this figure, we note that the East box must
contain at least one occurrence of p1, which is counted by F (x) − Ap1(x).
Furthermore, the boxes A and B together with a, which is the maximum
element in the permutation AaB, contribute the factor of F (x) − 1. Note
that a must exist, so AaB is not empty and there are no other restrictions
for AaB. Finally, b contributes the factor of x. Thus, we complete the proof
of (7) and hence give the formula of Ap(x).

For the distribution, we have the following functional equation:

Ap(x) + x(F (x)− 1)(Fp1(x, q)−Ap1(x)) = Fp(x, q). (8)

The proof of (8) is essentially the same as that in the avoidance case. Since
a is uniquely determined, the boxes A and B together with a contribute the
factor of F (x)−1. The East box contributes the factor of Fp1(x, q)−Ap1(x),
since each occurrence of p1 in that box induces one occurrence of p. Finally,
the factor of x corresponds to the element b, which completes the proof of
(8). Substituting the formula of Ap(x) into (8) gives the formula of Fp(x, q)
as desired.

3.3 The pattern Nr. 20

Now, we generalize the pattern by adding p1 and p2 in it.

Theorem 3.3. Suppose that p is the pattern shown in Figure 5, where p1
and p2 are any mesh patterns, and the labels a and b are to be ignored. Then,

Ap(x) =F (x)− x2(F (x)− Ap1(x))(F (x)−Ap2(x)),

Fp(x, q) =F (x) + x2
(

(Fp1(x, q)− Ap1(x))(Fp2(x, q)− Ap2(x))−

(F (x)− Ap1(x))(F (x)− Ap2(x))
)

.

Proof. We have the following functional equation:

Ap(x) + x2(F (x)−Ap1(x))(F (x)− Ap2(x)) = F (x). (9)

Indeed, the right hand side of (9) counts all permutations. On the left hand
side, Ap(x) gives avoidance of p, and the other term, to be justified next,
counts permutations with at least one occurrence of p. Indeed, the elements
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a

b
p1

p2

Figure 5: Related to the proof of Theorem 3.3.

a and b contributing the factor of x2 are uniquely determined, which is evident
from Figure 5. Referring to this figure, we note that the upper (resp., lower)
non-shaded box A (resp., B) must contain at least one occurrence of p1 (resp.,
p2) counted by F (x)−Ap1(x) (resp., F (x)−Ap2(x)). Thus, we complete the
proof of (9) and hence give the formula of Ap(x).

For the distribution, we have the following functional equation:

Ap(x) + x2(Fp1(x, q)−Ap1(x))(Fp2(x, q)− Ap2(x)) = Fp(x, q). (10)

The proof of (10) is essentially the same as that in the avoidance case. The
box A (resp., B) contributes the factor of Fp1(x, q)−Ap1(x) (resp., Fp2(x, q)−
Ap2(x)), since each occurrence of p1 in A, together with any occurrence of p2
in B, form an occurrence of p. Together with the factor of x2 corresponding
to ab, we complete the proof of (10). Substituting the formula of Ap(x) into
(10) gives the desired result.

3.4 The pattern Nr. 22

Next we generalize the pattern by adding p1, p2, and p3 in it.

Theorem 3.4. Suppose that p is the pattern shown in Figure 6, where p1,

p2, and p3 are any mesh patterns, and the labels a and b are to be ignored.

Then,

Ap(x) =F (x)− x2(F (x)− Ap1(x))(F (x)−Ap2(x))(F (x)− Ap3(x)),

Fp(x, q) =F (x) + x2
(

(Fp1(x, q)− Ap1(x))(Fp2(x, q)− Ap2(x))(Fp3(x, q)−Ap3(x))

− (F (x)− Ap1(x))(F (x)−Ap2(x))(F (x)− Ap3(x))
)

.
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a

b
p1

p2

p3

Figure 6: Related to the proof of Theorem 3.4.

Proof. Any permutation, counted by F (x), either avoids p, which is counted
by Ap(x), or contains at least one occurrence of p. In the latter situation,
the elements ab in an occurrence of p are uniquely defined. Indeed, looking
at Figure 6 we see that another occurrence of p cannot be inside of any of
the unshaded boxes:

• if p would occur in the box labeled with p1, it would contradict the
South East box being shaded;

• if p would occur in the box labeled with p2, it would contradict the
element b being in the North East shaded box;

• if p would occur in the box labeled with p3, it would contradict the
element a being in the South West shaded box.

Moreover, another occurrence of p cannot begin at the box

• labeled p1 because of the two shaded top boxes;

• labeled p2 because of the element a;

• labeled p3 because of the North East box being shaded.

So, a and b will contribute the factor of x2. Referring to this figure, we note
that the non-shaded box labeled by p1 (resp., p2 and p3) must contain at least
one occurrence of p1 (resp., p2 and p3) and thus is counted by F (x)−Ap1(x)
(resp., F (x)−Ap2(x) and F (x)− Ap3(x)). Thus, we obtain

Ap(x) + x2(F (x)−Ap1(x))(F (x)− Ap2(x))(F (x)− Ap3(x)) = F (x),

which leads to the formula of Ap(x).
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For the distribution, we have the following functional equation:

Ap(x) + x2
(

Fp1(x, q)−Ap1(x)
)(

Fp2(x, q)−Ap2(x)
)(

Fp3(x, q)−Ap3(x)
)

=Fp(x, q). (11)

The proof of (11) is essentially the same as that in the avoidance case. The
only remark is that any occurrence of the pair (p1, p2, p3) in their respective
non-shaded boxes induce an occurrence of p. Substituting the formula of
Ap(x) into (11) gives the formula of Fp(x, q). This completes the proof.

3.5 The pattern Nr. 28

We now generalize the pattern by adding p1 in it.

Theorem 3.5. Suppose that p is the pattern shown in Figure 7, where p1 is

any mesh pattern, and the labels a, b, A, and B are to be ignored. Then,

Ap(x) =
F (x)

1 + x2
(

F (x)−Ap1(x)
)

F (x)
,

Fp(x, q) =
F (x)

1 + x2
(

F (x)− Fp1(x, q)
)

F (x)
.

a

bA

B

p1

Figure 7: Related to the proof of Theorem 3.5.

Proof. Similar to the avoidance case of Theorem 3.2, we have

Ap(x) + x2Ap(x)
(

F (x)− Ap1(x)
)

F (x) = F (x). (12)

The only term requiring an explanation here is x2Ap(x)
(

F (x)−Ap1(x)
)

F (x)
corresponding to permutations with at least one occurrence of p. Among all
such occurrences consider ab with leftmost possible a as shown in Figure 7.
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Note that the element b is then uniquely determined. Further, the middle box
must contain at least one occurrence of p1, which is counted by F (x)−Ap1(x),
and the permutation in box A must be p-avoiding since a is the leftmost.
Moreover, box B can contain any permutation, and thus its contribution is
F (x). Finally, a and b contribute the factor of x2, which completes the proof
of (12) and hence gives the formula of Ap(x).

For the distribution, we have the following functional equation:

Ap(x) + x2Ap(x)
(

Fp1(x, q)− Ap1(x)
)

Fp(x, q) = Fp(x, q). (13)

The proof of (13) is essentially the same as that in the avoidance case. We
just remark that any occurrence of p1 in the middle box gives an occurrence
of p, which explains the term Fp1(x, q)−Ap1(x), and Fp(x, q) on the left hand
side of (13) records occurrences of p in box B.

4 Patterns derived from the pattern X

This section gives the distribution of an infinite family of mesh patterns ob-
tained from the pattern X = . Namely, we generalize X by considering

p1 , where p1 is an irreducible mesh pattern. Moreover, we use the same

approach to study the distribution of a family of patterns that can be de-

rived from the pattern Nr. 33 = . Such distributions cannot be directly

obtained from our results for
p1 , since p1 must be irreducible there.

4.1 The pattern X

In our next theorem we consider a generalization of X .

Theorem 4.1. Suppose that p is the pattern shown in Figure 8, where p1 is

an irreducible mesh pattern of length ≥ 2, and the label a is to be ignored.

Then,

Ap(x) =

(

1 + xAp1(x)
)

F (x)

1 + xF (x)
,

Fp(x, q) =

(

1 +
∑

i≥1

xi

i
∏

j=1

Fp1(x, q
j)

1 + xFp1(x, q
j)

)

F (x)

1 + xF (x)
.
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p1

A

a

Figure 8: Related to the proof of Theorem 4.1.

Proof. Let B(x) be the generating function for X-avoiding permutations.
Then, it follows from Theorem 1.1 that

B(x) =
F (x)

1 + xF (x)
. (14)

We next justify the following functional equation:

Ap(x) + xB(x)
(

F (x)−Ap1(x)
)

= F (x). (15)

The right hand side counts all permutations. On the left hand side, Ap(x)
counts p-avoiding permutations. If a permutation contains at least one oc-
currence of p, we can consider the occurrence with the leftmost possible a as
shown in Figure 8. Referring to this figure, we note that the Noth East box
must contain at least one occurrence of p1, which is counted by F (x)−Ap1(x),

and a permutation in box A must be -avoiding since a is the leftmost.
Finally, a contributes the factor of x. This completes the proof of (15).
Substituting (14) into (15), we obtain the formula of Ap(x).

In order to study the distribution of p, we also need the distribution of p1.
Let Bp1(x, q) be the distribution of p1 on X-avoiding permutations. Then,

Bp1(x, q) + xBp1(x, q)Fp1(x, q) = Fp1(x, q). (16)

This equation is obtained by considering X-avoiding permutations separately
from the other permutations, and only the second term on the left hand side,
corresponding to permutations with at least one occurrence of X , requires a
justification. Consider the occurrence of X with the leftmost a as in Figure 8.
Any permutation in box A is X-avoiding and thus contributes the factor of
Bp1(x, q). Since p1 is irreducible, the two non-shaded boxes in Figure 8 are
independent from each other. In other words, an occurrence of p1 cannot
start in A and end in the other non-shaded box. Thus, the contribution of
the North East box is the factor of Fp1(x, q) in (16). This, along with the
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factor of x corresponding to a, completes the proof of (16). Therefore, it
follows from (16) that

Bp1(x, q) =
Fp1(x, q)

1 + xFp1(x, q)
. (17)

a1

a2

ai

A0

A1

. .
.

Ai

Figure 9: Related to the proof of Theorem 4.1.

Now we consider the distribution of p. Claim that

B(x) +B(x)
∑

i≥1

xi

i
∏

j=1

Bp1(x, q
j) = Fp(x, q). (18)

Indeed, each permutation, counted by Fp(x, q) on the right hand side, either
avoids X , which is counted by B(x) on the left hand side, or contains at
least one occurrence of X . In the latter case, suppose a1, a2, . . . , ai are all
occurrences of X in a permutation as shown in Figure 9, so all the boxes Aj ,
where 0 ≤ j ≤ i, are X-avoiding. Our key observation is that any occurrence
of p1 in a box Aj, where 1 ≤ j ≤ i, together with each of the ak, where
1 ≤ k ≤ j, contribute an occurrence of p. Thus, the contribution of Aj is
Fp1(x, q

j) for 1 ≤ j ≤ i, and the contribution of A0 is B(x). Finally, xi is
given by ai’s and we can sum over all i ≥ 1. This completes the proof of (18).
Substituting the formulas of B(x) and Bp1(x, q) into (18) gives the formula
of Fp(x, q). This completes the proof.

Note that p1 in Theorem 4.1 must be of length ≥ 2 because the result does
not work for p1 = . In the latter case though we deal with the pattern

Nr. 16 = , whose avoidance and distribution are solved in [10].
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4.2 The pattern Nr. 33

In our next theorem we obtain a generalization of the pattern Nr. 33 = .

Theorem 4.2. Suppose that p is the pattern shown in Figure 10, where p1
is an irreducible mesh pattern of length ≥ 2, and the labels a, b, A, and B

are to be ignored. Then,

Ap(x) =

(

1 + x2Ap1(x)
)

F (x)

1 + x2F (x)
,

Fp(x, q) =
F (x)

1 + xF (x)
+

(

F (x)

1 + xF (x)

)2
(

x+
∑

i≥2

xi

i
∏

j=2

Fp1(x, q
(j
2
))

1 + xFp1(x, q
(j
2
))

)

.

a

b
p1

A

B

Figure 10: Related to the proof of Theorem 4.2

Proof. The case of avoidance is similar to our considerations of the pattern
X = . We assume that the elements a and b in an occurrence of p

in Figure 10 are leftmost possible. But then, the boxes A and B will be
X-avoiding. Thus, we have the following functional equation:

Ap(x) + x2B2(x)
(

F (x)− Ap1(x)
)

= F (x). (19)

Substituting (14) for B(x) into (19), we obtain the formula of Ap(x).
For the distribution, we have the following functional equation:

B(x) + xB2(x) +B2(x)
∑

i≥2

xi

i
∏

j=2

Bp1(x, q
(j
2
)) = Fp(x, q), (20)

where Bp1(x, q) is given in (17). Our proof of (20) is essentially the same as
that of (18) and we omit it. The only difference is that here we have two
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X-avoiding boxes A and B resulting in the factor of B2(x) instead of B(x).
Substituting (17) for Bp1(x, q) into (20), we obtain the desired formula of
Fp(x, q), and thus complete the proof.

p1

. .
.

Figure 11: Related to Theorem 4.3

The proof of the following theorem follows similar steps to those in The-
orem 4.2, and thus is omitted. We note that Theorem 4.3 is a far-reaching
generalization of Theorem 4.2.

Theorem 4.3. Suppose that p is the pattern shown in Figure 11, where p1
is an irreducible mesh pattern. Let pattern X = . Then the distribution

of p is

Fp(x, q) =
k
∑

i=1

xi−1

(

F (x)

1 + xF (x)

)i

+

(

F (x)

1 + xF (x)

)k
∑

i≥k

xi

i
∏

j=k

Fp1(x, q
(jk))

1 + xFp1(x, q
(jk))

.

5 Remaining avoidance cases

In this section, we study avoidance of generalizations of the patterns:

Nr. 27 = , Nr. 28 = , Nr. 30 = , Nr. 34 = .

5.1 Pattern Nr. 28

The following theorem allows us to generalize the known avoidance result [10]

for the pattern Nr. 28 = by inserting two mesh patterns, p1 and p2,
into it. We were unable to find the distribution of the pattern in the next
theorem because of difficulties of controlling occurrences of the patterns p

and p2, at the same time, in the rightmost bottom box.
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Theorem 5.1. Let p be the pattern shown in Figure 12, where the labels a,

b, and A are to be ignored, and p1 and p2 are any mesh patterns. Then, the

avoidance of p is given by

Ap(x) =
F (x) + x2F (x)Ap2(x)

(

F (x)−Ap1(x)
)

1 + x2
(

F (x)−Ap1(x)
)

F (x)
.

a

bA

p1

p2

Figure 12: Related to the proof of Theorem 5.1

Proof. Let A(x) be the generating function for the number of permutations

avoiding the pattern p1 . Then, it follows from Theorem 3.5 that

A(x) =
F (x)

1 + x2(F (x)−Ap1(x))F (x)
.

We have the following functional equation:

Ap(x) + x2A(x)
(

F (x)− Ap1(x)
)(

F (x)− Ap2(x)
)

= F (x). (21)

Indeed, each permutation, counted by F (x) on the right hand side, either
avoids p, counted by Ap(x), or contains at least one occurrence of p. In the
latter case, among all such occurrences, we can pick the occurrence ab with
the leftmost possible a as shown in Figure 12. Referring to this figure, we
note that the central box must contain at least one occurrence of p1,which
is counted by F (x) − Ap1(x), and the rightmost bottom box must contain
at least one occurrence of p2, counted by F (x) − Ap2(x). Moreover, the

permutation in box A must avoid the pattern p1 , which is counted by

A(x), since a is the leftmost possible element in an occurrence of p. Finally,
a and b contribute the factor of x2. This completes our proof of (21) and
hence gives the formula of Ap(x) as desired.
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Remark 5.2. Note that exactly the same enumeration result as that in The-

orem 5.1 holds for the pattern p1

p2

. Indeed, in the proof of Theorem 5.1

one just essentially need to substitute the “leftmost a” by the “rightmost b”.

5.2 Pattern Nr. 30

We next consider generalizations of the pattern Nr. 30 = .

Lemma 5.3 ([10, Theorem 3.5]). Let p = , F (x, q) =
∑

n≥0 x
n
∑

π∈Sn
qp(π),

and A(x) be the generating function for S(p). Then,

A(x) =
(1 + x)F (x)

1 + x+ x2F (x)
, F (x, q) =

(1 + x− qx)F (x)

1 + (1− q)x+ (1− q)x2F (x)
.

The avoidance of the patterns in the next two theorems is based on
Lemma 5.3, but we were not able to derive the distribution of these pat-
terns extending the respective formula in Lemma 5.3.

Theorem 5.4. Suppose that p is the pattern shown in Figure 13, where p1
is a mesh pattern with the leftmost bottom box non-shaded, and the labels a,

b, and A are to be ignored. Then, the avoidance of p is given by

Ap(x) =
(1 + x)F (x) + x2Ap1(x)

1 + x+ x2F (x)
.

a

b
p1

A

Figure 13: Related to the proof of Theorem 5.4

Proof. We have the following functional equation

Ap(x) +
x2F (x)

1 + x+ x2F (x)

(

F (x)− Ap1(x)
)

= F (x). (22)
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Indeed, the right hand side counts all permutations, and the left hand side
considers separately permutations avoiding p, counted by the Ap(x) term in
(22), and those containing at least one occurrence of p. In the latter case,
among all such occurrences, we can pick the occurrence ab with the leftmost

possible a as shown in Figure 13. Referring to this figure, we note that
the North East box must contain at least one occurrence of p1, counted by
F (x)−Ap1(x). Moreover, a permutation in box A must avoid both patterns

and , since a is the leftmost possible. We denote by B(x) the
generating function of such permutations. Then, we have that

B(x) + xB(x) =
(1 + x)F (x)

1 + x+ x2F (x)

by dividing the -avoiding permutations, whose enumeration is given by

Lemma 5.3, into two parts depending on whether they avoid . Note

that when a permutation contains the pattern , the sub-permutation

consisting of the first n − 1 positions avoids both patterns and .
Therefore, we get that

B(x) =
F (x)

1 + x+ x2F (x)
.

Finally, a and b contribute the factor of x2. Substituting the formula of
B(x) into (22), we obtain the desired formula of Ap(x). This completes the
proof.

5.3 Pattern Nr. 27

We next consider avoidance of a generalization of the pattern Nr. 27 = .

Theorem 5.5. Suppose that p is the pattern shown in Figure 14, where p1
and p2 are any mesh patterns, and the labels a, b, and A are to be ignored.

Then, the avoidance of p is given by

Ap(x) = F (x)− x2 F (x)

1 + xF (x)

(

F (x)− Ap1(x)
)(

F (x)− Ap2(x)
)

.
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p =
a

b

p1

p2

A

Figure 14: Related to the proof of Theorem 5.5

Proof. We have the following functional equation:

Ap(x) + x2B(x)
(

F (x)− Ap1(x)
)(

F (x)− Ap2(x)
)

= F (x), (23)

where B(x) is the generating function for the number of X-avoiding permu-
tations given in Theorem 1.1, which satisfies

B(x) =
F (x)

1 + xF (x)
.

Indeed, F (x) on the right hand side of (23) counts all permutations. On the
left hand side of (23), we count separately permutations avoiding p, counted
by the Ap(x) term, and those containing at least one occurrence of p. In the
latter case, among all occurrences of p, we pick the occurrence ab with the
leftmost possible b as shown in Figure 14 and a is then uniquely determined.
Referring to this figure, we note that the South West box must contain at
least one occurrence of p1, counted by F (x)−Ap1(x), and the East box must
contain at least one occurrence of p2, counted by F (x) − Ap2(x). Moreover,
the permutation in the box A must avoid the pattern X , counted by B(x),
since b is the leftmost possible. Finally, a and b contribute the factor of x2.
Thus, this completes the proof of (23). Substituting the formula of B(x)
into (23), we obtain the desired formula of Ap(x).

Theorem 5.5 generalizes the avoidance of the pattern Nr. 27. However,
generalizing its distribution is hard, because we need to control at the same
time occurrences of the patterns p and Z = in the box A. Moreover, we
cannot further generalize Theorem 5.5 by placing a mesh pattern p3 in the
box A, because A must avoid Z when requiring from b to be the leftmost,
so we will be forced to control two patterns p3 and Z at the same time.
Of course, we can require from b to be the rightmost, but then we will be
forced to control two patterns in the East box. Finally, swapping A and p2
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in Theorem 5.5 leads to the same enumeration result, which is not hard to
see.

5.4 Pattern Nr. 34

We next consider generalizations of the pattern Nr. 34 = .

Lemma 5.6 ([10, Theorem 3.7]). Let p = . Then, the avoidance and

distribution of p are

Ap(x) =
F (x)

1 + x2F (x)
, Fp(x, q) =

F (x)

1 + (1− q)x2F (x)
.

Replacing the two elements in the pattern Nr. 34 by the pattern 1p1,
where p1 is any permutation of {2, 3, . . . , k}, k ≥ 2, with all boxes shaded as
in Figure 15, we can apply essentially the same arguments as in the proof of
Lemma 5.6 in [10] to obtain the following theorem.

p = p1

Figure 15: Related to Theorem 5.7

Theorem 5.7. Suppose that p is the pattern shown in Figure 15, where k ≥ 1
elements are in increasing order in the middle box. Then, the avoidance and

distribution of p are given by

Ap(x) =
F (x)

1 + xkF (x)
, F (x, q) =

F (x)

1 + (1− q)xkF (x)
.

The avoidance of the pattern Nr. 34 can be generalized, which is done in
the next theorem, but the distribution is hard because we need to control p2
and p in the same box in that theorem.

Theorem 5.8. Suppose that p is the pattern shown in Figure 16, where p1
is any permutation of {2, 3, . . . , k}, k ≥ 1, with all boxes shaded, p2 is any
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mesh pattern, and the labels a and A are to be ignored. Then, the avoidance

of p is given by

Ap(x) = F (x)−
xkF (x)

1 + xkF (x)

(

F (x)− Ap2(x)
)

.

p = p1

p2

a

A

Figure 16: Related to the proof of Theorem 5.8

Proof. Let D(x) be the generating function for the number of permutations
avoiding the pattern in Figure 15. Then, it follows from Theorem 5.7 that

D(x) =
F (x)

1 + xkF (x)
.

We have the following functional equation:

Ap(x) + xkD(x)
(

F (x)− Ap2(x)
)

= F (x). (24)

Indeed, the right hand side counts all permutations. On the left hand side,
we count separately permutations avoiding p, counted by Ap(x), and those
containing at least one occurrence of p. In the latter case, among all occur-
rences of p, we can pick the occurrence with the leftmost possible a as shown
in Figure 16. Referring to this figure, we note that the South East box must
contain at least one occurrence of p2, counted by F (x) − Ap2(x). Moreover,
the permutation in box A must avoid the pattern in Figure 15 that is counted
by D(x), since a is the leftmost possible. There are no other restrictions on
A because the pattern in Figure 15 cannot begin in A and end somewhere
else. Finally, the k elements in the middle box contribute the factor of xk.
Thus, by combing with the formula of D(x), we complete the proof of (24),
and hence give the formula of Ap(x).
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6 Concluding remarks

We have a number of general results related to distribution or avoidance of
several infinite families of mesh patterns. How to describe the class of mesh
patterns for which our distribution or avoidance results can be applicable?
Namely, in which situations one can break the problem of enumerating mesh
patterns into smaller problems using our theorems? What is the complexity
of recognizing the class?
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