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Abstract—Computer networks are ubiquitous and growing
exponentially, with a predicted 50 billion devices connected by
2050. This tremendous growth dramatically increases the attack
surface of both private and public networks. These attacks often
influence the behaviour of the system, leading to the detection of
the attack. In this manuscript we model the path of an attack
through the network by graphs. The model developed aims to
better integer attackers intentions. Using the data produced by
5 honeypots, we apply our model. The preliminary results show
that the approach is useful to rapidly detect anomalies in the
experiment dataset.

I. INTRODUCTION

Computer networks are ubiquitous and play a pivotal role
in the way users and machines interact with each other.
The advent of the Internet of Things (IoT) has significantly
increased the number of devices connected to the Internet, with
an estimation of 50 billion devices connected by 2020, hence
increasing both the network complexity and attack surfaces on
both networks and devices.

In the field of telecommunications, a perfect network is a
set of interconnected nodes. On the Internet, however, a system
newly connected to the Internet is likely to be contacted by
thousands of malicious nodes, mostly bots, from all around the
World in less than 24 hours, with the main purpose of probing
the newly connected system.

In order to protect networks, it is thus necessary to un-
derstand the motivations of the attackers, the methods applied,
but most importantly, its identity. This can be achieved through
profiling the attacks, hence being able to both understand and
learn about the actions of an attacker. This can be achieved by
modelling the attack flow path within a network.

Network modelling is complex due to the number of paths
network packets can follow. In this paper a model based on
graph theory is developed. This model aims at representing
network activities and to categorize network users as either
the author or the victim of a cyber-attack.

To the best knowledge of the authors the majority of models

disregards the users, then this model tends to include the user
has a central piece of the model. The main contribution of
this paper is the introduction of a new model centred around
the user. The model helps refine malicious users and attack
characteristics.
Furthermore, numerous graphs derived from the model high-
lights peculiarities in the network traffic, with the ability to
identify patterns that can be used to understand the intentions
of a malicious user as well as detect misconfigurations and
services failure.

The remainder of this paper is organized as follows.
Section II presents the state-of-the-art in modelling cyber-
attacks and cyber-security visualization. Section III introduces
the main model as well as different applications that generate
new representations of network communications. Section IV
presents a case study realized on five different honeypots
scattered around the world, validating our approach, finally,
Section V concludes this paper.

II. RELATED WORKS

Network activity models have different goals, one of them
is to improve understanding of cyber-attacks as well as increase
the detection rate and speed. This method allows improving the
cyber-defence and provide better tools to monitor networks
and systems [7]. Generally, humans are particularly good at
recognizing visual patterns, therefore, transforming data and
numbers into figures (e.g. plots, graphs, etc.) and images can
substantially improve cyber-attack detection and understanding
through visualization of important information. The domain of
security visualization, has recently been expanded into Human
Computer Interaction (HCI) [14, 26, 27]. Security visualization
can be classified into three types according to [31]: geographic
visualizations, abstract topological representations and plot-
based representations. Each type is based on different models
in order to define the core elements used to produce visual
results.

Different approaches and techniques have been used such
as graph theory or Petri Nets [11,29,30] to model networks.
Graph theory is one of the favourite models used to represent
activities in space and time. Such modelling approach is often
used in GIS for example to model urban spaces [12,13].
However, NetFlow models are one of the most used methods
to deal with network information [15,32]. NetFlow is the
aggregation of packets based on information such as the source
and destination IP address, IP protocol, source and destination
ports as well as the type of service. This method is used to help
monitor networks rapidly but it is often not powerful enough
to detect anomalies or outliers.

Each model is based on a formal representation in order
to use the abstraction level and the operators offered by the
theory chosen. When identifying cyber-attacks, attack trees and
attack forests are often preferred [3, 19]. In an attack tree the
root node represents the final goal of the attacker while the sub-
nodes are the steps leading towards the goal. This structure is
also used to build cyber-defence trees or countermeasures [21].
Depending on the model chosen, different patterns can emerge.
These patterns can then be used for the attribution of cyber-
attacks, find the identity and/or the location of an attacker [5,
18,23,28] and are generally used for cyber-threat intelligence.



Note, however, that the attribution of cyber-attacks is a very
challenging problem as numerous tools and software enable
hackers to remain anonymous.

To hide their identity, attackers can use Virtual Private
Networks (VPN), proxy servers or the TOR network. These
techniques were primarily developed to avoid censorship in
non-democratic countries and are now primarily used for
criminal activities [16]. The principle behind all these methods
remains the same: it enables a connection to a server (central-
ized or decentralized) that hides the true identity of a user.
However, if knowing the real identity of the attackers is often
impossible, anonymous servers are known (i.e. blacklist) and
alerts can be triggered when their use is detected.

Another way to become anonymous on the Internet is to
use compromised computers through a botnet. The compro-
mised computers called bots, zombies or ghost computers, are
controlled remotely and are used to attack other computers or
servers. Botnets have the ability to launch large scale attacks
such as Distributed Denial of Service (DDoS) against major
services providers, where the chance of success of the attack
is strongly correlated with the number of computers attacking.
Botnet detection is a very dynamic research field, where the
objective is to detect abnormal network communications in
order to identify whether a computer is compromised or not.
Several methods have been designed to detect bots either by
analysing network behaviour [25], or through clustering tech-
niques [8]. Criminal activities heavily rely on the anonymity
factor to perpetrate infractions. However, anonymity is only
one component as highlighted in criminology [9], other factors
play an important role when perpetrating crime.

Numerous crime prevention frameworks have been pro-
posed in criminology and sociology, focusing on different
aspect of the crimes committed, in order to provide an insight
on crime trends. These models often consider the offender as
the main factor, leaving out important components such as
the guardian, or a suitable target, hence for the purpose of this
manuscript the use of Routine Activity Theory (RAT) has been
privileged [4,20,22].

RAT assesses the conditions needed from crime to
take place in order to explain Direct Contact Predatory
Crime (DCPC), by including spatial and temporal patterns
alongside situational awareness. RAT is described by the three
following components.

e  Absence of Capable Guardian
e  Suitable Target
e  Motivated Offender

RAT implies that crime occurs due the lack of a capable
guardian (i.e. Network Firewall, Access Control Lists, An-
tivirus, etc.), the presence of a suitable target (i.e. a weak host
on a network, a user vulnerable to social engineering attacks,
etc.) and the presence of a motivated offender (i.e. a malicious
user, a script kiddie, ...).

Human actions are at the center of the modelling approach
presented. Placing the human in the attack process allows to
map the intentions, desires of the user as well as include and
analyse all the components provided by the RAT principle.

III. MODELLING APPROACH

This section describes the elements of our model and their
interconnections. First, we present the main principles of the
model, based on graph theory, then we introduce node fusion
rules to analyse network activities and understand what is
going on during the attack.

A. Main Principles

The objective is to model the network activity produced
by a complex system composed of many sub-systems. This
model can then further be used for the analysis of the activity
qualifying normal and abnormal behaviours by identifying
intention and desires.

An attacker (hg ) who wants to compromise a target
system, (h¢g), performs an action to reach his objective.
According to the theory of action, these actions are related
to intentions and desires [2]. Therefore, the attacker and the
victim are connected by the attacker intention through their
own systems as shown in Figure 1.
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Fig. 1. Network model with intentions

However, numerous systems can co-exist between the
attacker and the victim. It is nearly impossible to know the
exact path of a message on a network. To this end, a black
box is adopted to represent unknown systems used to transmit
packets. Figure 2 highlights the different components of a
network including the attacker and the victim. Note that, the
number of systems included in the black box is unknown.

Fig. 2. Network Model with humans

Let S be the set of systems and M the set of network
messages. The path between the victim system (s4-4) and the
attacker system (S,¢;) can be formally defined using graph
theory. As shown in Equation 1, G (t) = (S, M) represents
the path composed by the systems € S used by the attacker
(hqtr) to transmit a message € M to the victim hyng at a
time t.

Gtrg,atlc (ﬁ) = Strg, M0 (t)7 S0, BB[th tnflL mpy (tn)a Satk
(H



Where m(t) € M represent messages between systems,
sp € S the system is directly connected to the victim’s system
Strqg € S. BB, and where the black box, is a set of systems
and unknown messages.

A black box can be defined by Equation 2 :

BBtrg@tk (t) = [81, mq (t), ceey snmn(tn)] (2)

For a period of time (o, ty), Gtrg,atk(to, t,) represent the
graph composed of all the paths between an attacker (€ A, the
set of attackers) and a victim (trg), as shown in Equation 3.

H Gt'r‘g atkA

n), the black box is defined by:
snn(tn)]  (4)

Gtrg atk tO» ‘t S [t07t ] (3)

For a period of time (tg,t

BBtrg,atk[th tnfl] = [81, ml(tl)a ceey

As the black box and the system of the attacker are
unknown, for the rest of the paper we define Gyyg o1 (t) by
Equation 5.

Gtrg,atk‘ (t) = Strg, M0 (t) Sgtk (5)

Nodes are defined by the IP address and edges are messages
i.e. network packets. Using the IP address of the nodes, we
can obtain several information about a system, such as its
geolocation. From messages between systems we can extract
the original intention of the attacker.

We define the functions ipvd, country(s), city(s),
coord(s), s24(s), s16(s) returning, the IP address, the country,
the city, the coordinate, the /24 subnet and the /16 subnet
of a system s € S respectively. The function blacklisted(s)
returns 'true’ if an IP address is included in a known lists of IP
addresses that are considered suspicious, and "false’ otherwise.
The function intent(m) returns the intention of the attacker
using the content of the message m € M.

The model presented allows for an analysis of network
traffic and intentions that can be used to detect abnormal traffic.
Furthermore, by applying fusion rules using node information,
it is possible to merge nodes and create clusters from nodes
and edges information.

B. Graph Simplification

The different paths of the aforementioned model are com-
posed of numerous nodes and edges over a period of time.
In order to highlight patterns contained in these paths, a
simplification process is applied. This process can be seen as
flow aggregation similar to C-flow, introduced by [8]. C-flow
is a packet aggregator over a period of time. In order to be
aggregated, packets must share a protocol (e.g. TCP or UDP),
a source IP, a destination IP and port numbers.

In our approach the simplification is built by the aggre-
gation of packets over a period of time, however, our model
takes the intention of the attackers into account.The Nodes
and edges information can be used to merge system nodes,
ultimately, producing new graphs.

The different functions used for the aggregation were
defined previously in Section III, ie. (ipv4(s), country(s),
city(s), coord(s), s24(s), s16(s)). According to Rule 1, nodes
must share IP addresses and be connected to the victim by
messages carrying the same intention in order to be merged
together.

Equation 6 and Equation 7 represent an attack against a
single victim, by two attackers. Let atk1 = Giyrg.a, (o, tn)
and atks = Girg q, (to, tn) be two graphs representing all the
paths between a victim (trg) and two attackers (a; and as).

Gtrg,al (t()vtn) = 581] ‘ te t()vtn (6)

[5““97 Tn(()L1 (t)v

Girg,as (to, tn) = [Strg, mg? (t),552) | t € [to, tn]  (7)
The similarity between the two systems sg', sg? is identi-

fied by applying the similarity rule defined by Rule 1.

Rule 1 (Nodes Similarity).
Vti,tj € [thtn] | tj =t; + At

A

56 €Girg,aq (tostn):80% €Grrg,an (tostn)

Fmal,ma? | (serg,mel (8),501),(sergsma2 (£),552)

ipvd(syt) = ipvd(sy?)
<[ A ] = Sim(381,882)>

intent(mg) = intent(mg?)
Where At represent the period of time considered building
the aggregation of messages.

For example, let’s consider the graph G,[T] composed by
all messages received by x from a set of attackers over a period
of time 7. The simplification process using Rule 1 with At =
10 minutes returns a new graph G/“$"°"[T]. This graph is
composed of all the nodes included in the original graph G [T
sharing the same IP address as well as all the messages with
the same intention.

IV. CASE STUDY

In order to validate the model presented, a large dataset of
network traffic is necessary. The number of publicly available
dataset is scarce, due to the lack of metadata, and information
related to the generation of the dataset. To this end, and for
the purpose of this manuscript we generated a dataset using
honeypots.

A honeypot is a security tool that can be analysed, probed,
attacked and compromised without risk for a network infras-
tructure [24]. Honeypots are often used to deceive attackers,
study attacking methods as well as obtain new and current
malware samples [1, 6, 17].

Various types of honeypots exist, each dedicated to a
specific use. Honeypots can be classified into three categories:
low interaction honeypots, medium interaction honeypots and
high interaction honeypots. Low interaction honeypots have
limited interactions between the system and the attackers.
The honeypot only emulate services. This type of honeypot



presents a low level of risk due to the low interaction. Medium
interaction honeypots are between low level interaction hon-
eypots and high interaction honeypots. While the honeypot
is deprived of an operating system, it emulates complex ser-
vices enabling interaction with malicious users. Finally, high
interaction honeypots are the most complex type of honeypots.
These run a full operating system including services and a
complex configuration. The main advantage of high interaction
honeypots is that services are not emulated, hence, attackers
are interacting with a real target while the owners can track
the attackers by capturing all their interactions.

A. Experiment

For the purpose of this research a high interaction honeynet
was set up, gathering detailed information on a controlled
infrastructure. In order to correlate data from multiple sources,
5 virtual private servers were purchased in 5 different locations
(Fremont, Newark, London, Tokyo and Singapore). Figure 3
shows the five location across the world.

Each honeypot was deployed with the same configuration.
All of them running Ubuntu 16.04 LTS with an SSH server
(openSSH), an FTP server (Pure-ftpd) and a web server
(Apache2). The web server hosted an authentication page with
a PHP script to track login attempts. All network messages
captured were stored in a daily PCAP file using the TCPDUMP
command. 10 Gb of raw data was generated within a month.

Applying the RAT theory principles, a capable guardian
was omitted, i.e. no firewall was configured and the services
running on servers are the ones which are often the most
targeted by attackers.

B. Data analysis

In this section the data gathered over a period of one month
by the honeynet is analysed.

For this experiment we classified network messages into 7
different intentions, divided into 2 main categories: Informa-
tion gathering and attacks. In the information gathering cate-
gory, 4 classes are defined, indicating the main characteristics
of the targeted network: Network infrastructure, DNS (Domain
Name Server), ICS (Industrial Control Systems) and Web. The
attack category concerns the secure remote access attempts and
unsecured remote access attempts.

Table I defines how the protocols have been used to classify
intentions. The four intentions defined by the information
gathering category are related to the first phase of the cyberkill
chain, the reconnaissance phase, while the intentions defined
by the attack category, refers to post-reconnaissance. The in-
tention classification is related to the objectives of the analysis
and the case study. It is important to note that the intentions
used in this work may not be suited to another case study,
for example, for a local area network legitimate intentions or
pre-approved intentions might be considered.

The characteristics of the honeypots and their location in
the world are provided in Table II. The first row represents the
number of distinct IP addresses that established a connexion
with the honeypots. The second row represents the number
of network packets exchanged between the honeypot and the
attackers. The third and fourth rows indicate the number of

TABLE 1. PROTOCOL ATTRIBUTION FOR INTENTION

Intention Protocols
Network Infrastructure ICMP ; SIP ; SNMP ; SSDP
Ew | DNS DNS ; LLMNR ; MDNS ; NBNS
é 5 ICS BAChnet ; DNP3.0 ; IPMI ; XDMCP ; ...
Web HTTP
” Control SSH ; SSHv2
< File Sharing FTP ; TFTP

protocols used against each honeypot respectively. The last
row of Table II indicates the number of countries the attackers
operated from, by geolocating IP addresses. Wireshark does
not offer the ability to directly assign a geolocation to an IP
address using the GeolP API. This API is based on a free
database, GeoLite'.

As TP addresses are mostly dynamic, the same IP address
doesn’t always belong to the same owner. In the study, we
consider that a source is associated with an IP address for
24 hours. At the end of this arbitrary tenure, we consider that
the IP address is linked to a new source.

TABLE II. HONEYPOTS STATISTICS
HP1 HP2 HP3 HP4 HP5
IP addresses 13.677 23.061 25.458 32.229 23.861
Sources 17.644 31.740 22.938 43.887 33.640
Packets 2.847.243 | 9.678.783 | 9.434.139 10.299.219 10.706.896
Protocols 41 47 59 48 44
Countries 245 246 241 281 243

Table II shows that the honeypot geolocation has no impact
on the cyber attacks they faced. In fact, for all honeypots
except HP1 and HP4, the number of packets and the number
IP addresses are similar. This phenomena is true for all
protocols.The number of different protocols is almost invariant
for all honeypots. After analysis, the most prevalent intention
is control.

In Figure 3 the locations of honeypots are specified as well
as the proportion of intentions by the attackers. As shown, all
honeypots follow the same pattern with a similar proportion
of malicious intentions.

Figure 4 represents the number of messages sent by the
100 most present sources and received by each honeypot. As
previously mentioned, the honeypot location has no impact on
the data gathered. However, we observe that the intentions of
HP1 are significantly below the others.The results obtained
for HP1 can be explained by the fact that the server stopped
working after 10 days. This was discovered by analysing the
PCAP files saved on the server.

Figure 5 represents the number of messages by intention
received by each honeypot. As shown, the data obtained for
HP3 is also dissimilar to HP2, HP4 and HP5. By analysing

Thttps://dev.maxmind.com/geoip/legacy/geolite




Intentions

\

® Network Infrastructure bs
' ~
€ -

8 DNS
mICS
Honeypots Places and intentions rates

© Web

@ Control
B File Sharing

Fig. 3.

HPl ——
HP2 - X

HP3 ——
HP4 - -3 --

=
an)
)
U
o

L

Messages

Sources

Fig. 4. Number of messages for the 100 most communicating sources

the intentions of the attacker using the model presented it
was also possible to detect an anomaly in the services of
HP3 during the acquisition period. Numerous systems and
system administrators are unable to consider all the logs due to
tremendous amounts generated, moreover, it takes an average
of 206 days to detect a cyber-attack on a system [10]. However,
through the model presented, and by considering the attacker’s
intention, it is possible to tremendously reduce the detection
of an anomaly in both the services, and the network.

Rule 1 is to reduce the number of elements analysed in the
experiment. To this end, different values for the aggregation
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Fig. 5. Number of messages by intention

TABLE III. SIMPLIFICATION PROCESS

[ [ Original data | 1D [ 1H [ 1oM [ 1M
[#messages | 13990758 | 19869 | 51433 | 114365 | 506 660 |

over time were used: 1 minute, 10 minutes, 1 hour and 1 day.

Table III shows the differences between the original data
and the simplified graph. The simplification process produces
a graph with 20 times less messages using 1 minute for time
aggregation. This result shows that the graph produced by
taking into account intentions reduces the amount of data to
analyse while using a small period of time for the aggregation.



V. CONCLUSION

The exponential amount of data being transmitted over
the networks and the increasingly large number of connected
devices make it difficult to detect abnormal behaviour. Current
research is oriented to the modelling of network flows and
detecting anomalies. However, these models and methods
often forget human factors and the intention of the attacker.
The model presented in this article aims to improve human
integration by profiling the human interaction during and after
an attack.

This paper also introduces an experiment validation using
a set of honeypots spread around the world collected a large
amount of raw network data in order to create a dataset for
the validation of the graph model presented.

The results showed that the model allows for quick
anomaly detection, such as the unavailable services by
analysing the attackers intention. Using current tools, it takes
an average of 206 days to detect a network breach. The model
presented allows to reduce this dramatically by analysing the
intention of the attacker. The model can also help identify
misconfigurations and service failures as presented in the case
study for Honeypot 3.

A simplification process is applied to the model showing
that the data to analyse can be reduced by 20 % without
losing in accuracy. Furthermore, we plan to study and design
new representations based on the model in order to show
more hidden patterns. Finally, all the data collected will be
freely available online to benefit the scientific community. The
method will also be tested on additional datasets extracted from
industrial networks and Cyber Physical Systems.
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