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Defects detected by most thermographic inspection are represented in the form of 2D image, which might limit
the understanding of where the defects initiate and how they grow over time. This paper introduces a novel
technique to rapidly estimate the defect depth and thickness simultaneously based on one single-side inspection.
For the first time, defects are reconstructed and visualised in the form of a 3D image using cost-effective and
rapid pulsed thermography technology. The feasibility and effectiveness of the proposed solution is demon-

strated through inspecting a composite specimen and a steel specimen with semi-closed airgaps. For the com-
posite specimen, this technique can deliver comparatively low averaged percentage error of the estimated total
3D defect volume of less than 10%.

1. Introduction

As a highly efficient and powerful non-destructive testing (NDT)
technique, pulsed thermography (PT) offers a rapid, contact-free, high-
efficient inspection and shows promising applicability to in-situ mon-
itoring applications [1-4]. Beyond defect detection, quantitative char-
acterisation of defect information including shape, size and depth, and
estimation of thermal properties have been proven to be essential and
decisive for through-life engineering [5-11]. The features within the
transient temperature of inspected object have been widely used to
evaluate defect depth (the distance from the inspected surface to the top
surface of the defect). For example, the Peak Slope Time method (PST)
[4,12] employs the peak time of the first derivative curve of tempera-
ture contrast, which is approximately proportional to the square of the
defect depth. Furthermore, Absolute Peak Slope Time method (APST)
[13] multiplies the square root of its time to temperature decay curve,
and then estimates the defect depth by the peak time of the first deri-
vative curve. Differently, the Logarithm Second Derivative method
(LSD) [14] estimates the defect depth by fitting the logarithmic second
derivative of temperature decay curve using a polynomial model. The
Nonlinear System Identification method (NSI) [7], although similar to
the LSD method on principles, improves depth estimation and realizes
an automatic model order selection for polynomial fitting. The Least-
Squares Fitting method (LSF) [15,16] fits the temperature decay curve
with a theoretical heat transfer model to determine the defect depth
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directly.

It has been observed that the measured defects of aforementioned
methods are usually presented as 2D images. However, 2D visualisation
is rather limited in representing and explaining the evolution and
progression of a defect. Defects are typically not two-dimensional ob-
jects but evolve in 3D space over time. It is of great significance to
predict the life of in-service components and to give feedback to design
and maintenance [17]. 3D visualisation of inspected parts can provide a
better understanding and more details of the defects and reduce op-
erational time and improve quality control of production in industry.
For example, in the area of manufacturing, 3D images from computed
tomography (CT) has been widely used to analyse the types of porosity
defects occurred in the materials from castings [18-21]. In the area of
nuclear and aerospace industries, 3D visualisation is reconstructed from
the digital X-ray images and has been used to view the location, shape
and size of the defects like corrosion, delamination and crack, and
evaluate the thickness of walls in the object of titanium aerospace in-
vestment casting [22,23]. However, the X-ray technology is compara-
tively time consuming [24], comes with potential health risks [25] to
the user and is typically limited with respect to the maximum size of the
parts to be analysed [22,26-29].

Only few publications have studied the 3D reconstruction and vi-
sualisation of subsurface defects by pulsed thermographic inspection.
Plotnikov and Winfree [30] visualised a 3D tomogram of the defects by
using reversed time of the peak slope masked by the binary contrast
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image which is constructed by the thermal contrast method. Although
this method can visualise the defects in the form of a 3D image, it can
visualise only the depth of the defect and cannot visualise the thickness
of the defect. Ramirez-Granados et al. [31] proposed an approach for
3D reconstruction of subsurface defects by using a finite-difference
model. Firstly, a non-defect nodal network is established with the
properties and characteristics of the inspected object for detecting the
inner defects. Next, the shape, size, depth, thickness, and location of
subsurface defects are computed by means of the minimisation of a cost
function and the determination of a depth and a thickness function.
After that, each non-defect node of the established nodal network is
replaced with the computed defect node. This method requires the
knowledge of a-priori properties of the defects such as thermal con-
ductivity, density, and specific heat capacity at constant pressure,
which are typically unknown in on-site inspections. Elhassnaoui and
Sahnoun [32] proposed a method for 3D reconstruction of defect shape
located on the inaccessible back of a homogeneous material without the
need of thermal properties such as thermal diffusivity. Based on thermal
distribution, this method analyses thermal response on the object’s
surface and computes defect distance (defect depth and sample thick-
ness). It modifies the APST method [13] to evaluate defect distance of
the object by dividing arbitrary two points from the sample surface to
eliminate the thermal diffusivity. However, this method can only be
applied to the characterisation of surface defects.

3D visualisation of hidden defects based on PT is promising, attac-
tive but challenging. A direct approach for pulsed thermography could
be to conduct two inspections from both the front and back of a part.
The defect depth for each inspection is calculated based on aforemen-
tioned methods, by which means the defect thickness can be computed
by considering the sample thickness. However, the deployment of this
approach can be limited because 1) one side of the inspected compo-
nent could be inaccessible e.g. an aircraft wing or fuselage; 2) the ac-
curacy of measurement could be compromised if the defect thickness is
very thin due to extreme closed values of defect depths from two in-
spections; 3) if the defect is too deep one side, the defect could be
missed, and 4) it introduces extra cost of inspection time.

This paper reports a new method of 3D reconstruction and visuali-
sation of subsurface defect shape based on a single-side thermographic
inspection. The proposed method with related theory background is
presented in Section 2. The experimental results are presented in
Section 3, while the conclusions are given in Section 4.

2. Methods and materials
2.1. Principle of pulsed thermography
In a pulsed thermographic inspection in reflection mode, a short and

high energy light pulse is projected onto the sample surface through one
or two flash lamps (see Fig. 1(a) for typical experimental setup) [33].
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Heat conduction then takes place from the heated surface to the interior
of the sample, leading to a continuous decrease of the surface tem-
perature [16]. An infrared camera controlled by a PC captures the time-
dependent response of the sample surface temperature. If the sample is
defect-free, the time when the temperature deviation occurs can be
used to estimate the thickness (if the thermal diffusivity is known) or
thermal diffusivity of local materials (if the thickness is known [5]). For
example, if the thermal diffusivity is known, the thickness of the sample
can be estimated based on the time of temperature deviation of f,
collected from the point 2 on the inspected surface (see Fig. 1(b)). This
approach can be extended to measure defect depth, d1 (see Fig. 2), by
considering the first time of temperature deviation of #, collected from
the point 1. The surface temperature due to the back-wall at depth L for
a homogeneous plate is given by [34]

Q s n2L? )
1+2 R -
«/ﬂpckt [ * ngl exp( at :| 6h)

where T'(t) is the temperature variation of the surface at time ¢, Q is the
pulse energy, p is the material density, c is the heat capacity, k is the
thermal conductivity of the material, R is the thermal reflection coef-
ficient of the interface with air, and « is the thermal diffusivity. Eq. (1)
can also be rewritten as
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where e denotes the thermal effusivity, which equals to \/ock. Although
Eq. (1) only applies to 1D heat transfer, it is proposed to approximate
the 3D heat transfer in the real world to simplify the problem.

2.2. Single-side inspection

As stated in Section 1, although the double-side inspection is
straightforward, there are a few limitations. This paper introduces a
novel single-side inspection approach to overcome these limitations.
The proposed method estimates the defect thickness h(x, y) by estab-
lishing a predictive model between h, the defect depth d (e.g. either d1
or d2) estimated from a single-side inspection, thermal wave reflection
coefficient (R), and shortest distance from the boundary of the defect to
the inspected point location p(x, y) (Dg;), written as

h(x,y) = f(R(x, y), d(x, y), Dais(x, ¥)) 3)

The defect thickness can then be inferred based on this model. The
values of d(x,y) and Dgys(x,y) are achievable using the existing
methods, but the challenge is to measure R(x, y). In this paper the New
Least-Squares Fitting method (NLSF) [8] is applied to estimate R and d
simultaneously.

The thermal wave reflection coefficient (R) can be directly com-
puted from the Eq. (4). The analytical model is written as

Fig. 1. (a) Experimental configuration
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where A = %ﬁ , W= d;z , d is the defect depth, a is the thermal dif-
fusivity, t is ;ampling duration, £ is the starting time of sampling, M is a
large iteration number, and Ty;sr is computed temperature from opti-
misation technique. There are five parameters to be estimated including
A, W, R, t;, and s. This method employs a nonlinear least-squares solver
(in Matlab called Isqnonlin) to solve this five-parameters optimisation
problem. Through initially setting the lower and upper bounds for each
parameter, the NLSF estimates the optimal parameters that has

min ”TNLSF(t) - T(t)”
,WR, 5,8

()

where T is the raw temperature on the surface. Once the optimal
parameters are estimated, if a is known, the defect depth (d) can be
estimated by

d=JW-a (6)

Alternatively, if d is known, the thermal diffusivity can be estimated
by

a=d>w

A

7

2.3. Double-side inspection

The method of double-side inspection reconstructs the 3D structure
of defects by evaluating the defect depth from both sides of the sample.
As seen in Fig. 2, the defect thickness (h), at the position of x and y, can
be calculated by

h(x,y) = L(x,y) — (d1(x, y) + d2(x, y)) ®

where h(x, y) is the defect thickness, L(x, y) is the thickness of the
sample, d1(x, y) is the defect depth from the top surface, and d2(x, y) is
defect depth from the bottom surface. The thickness of the sample can
be measured by general measurement tools such as ruler or Vernier
calipers, or by the thermographic inspection directly through the
method introduced in Section 2.1 if an automatic approach is required.
Defect depth can be estimated by methods such as PST [4,12], LSD
[14], APST [13], NSI [7], LSF [15,16], or NLSF [8] method. In this
paper, the NLSF method is employed to estimate the defect depth due to
its fine performance.

2.4. Inspection process

The single-side inspection and the double-side inspection can be
described in the flowcharts as shown in Fig. 3. For the single-side in-
spection, the first step is to select the region of interest (ROI), which
aims to select a region for defect estimation and visualisation to reduce
overall processing time. The ROI was selected manually in this paper.
The second step is defect measurement to obtain subsurface

\

Fig. 2. The side view of subsurface defects.

p(x,y)

information of ROI including defect depth (d), the shortest distance
from the boundary of the defect to the inspecting point (Dg;s), and
thermal wave reflection coefficient of the defect (R), which are
achieved by the NLSF method. The third step is noise reduction to en-
hance image quality (R image and d image), which is achieved by the
application of a Median Filter [35] in this paper. The fourth step is to
establish the relationship model between h, R, and Dgy;, shown in Eq.
(3), based on the estimated parameters in the second step. The fifth step
is to estimate the defect thickness based on the established model. The
last step is to visualise the defect in the form of a 3D image, where the
reconstructed defect (size, depth, thickness, and location of the defect)
is fused with the dimension (width, length and thickness) of the sample
to produce a volume image. This volume image is then rendered and
displayed in the form of a 3D image. For the double-side inspection,
most steps are similar to the single-side inspection except the second,
the fourth, and the fifth step. In the second step, the sample’s thickness
and defect depth of the both side of the sample are required, whilst the
defect depth from the single-side inspection requires one side only. The
fourth step is to align the position of the defect region between the front
side and the back side and the fifth step is to estimate the defect
thickness from Eq. (8).

2.5. Specimens

2.5.1. Sample 1

A flat plate of carbon fibre reinforced polymer (CFRP) material was
used in this study. The plate was made of unidirectional Toray 800
carbon fibres pre-impregnated with Hexcel M21 epoxy resin and
manufactured in a traditional autoclaving process. The dimension of
Sample 1 is 75 mm X 230 mm X 8 mm. As illustrated by Fig. 4(a), it
includes five block defects with a thickness (k) of 0.5 mm, 1.0 mm,
2.0 mm, 3.0 mm, and 4.0 mm, respectively, named Defectl to Defect5.
The width (r), length, and depth (d) for all defects are 10 mm, 75 mm,
and 2 mm respectively. The distance between two adjacent defects is
30 mm, which aims to reduce the influence from the adjacent defects on
the thermal behaviour. A side view of the produced sample is shown in
Fig. 4(b). It should be noted that these defects are not fully closed be-
cause two sides of the defects are open. This sample is aimed at
studying the relationship between R, h, and Dy;; when d is fixed.

2.5.2. Sample 2

As a use case, Sample 2 was made from steel with a dimension of
210 mm X 240 mm X 35 mm, as shown in Fig. 5. There is an ‘S’ shape
triangular air-gap through the sample. By measurement, at the top side
of the sample, the defect is estimated to be triangular in shape, which
has the base about 25 mm and the maximal thickness about 20 mm,
illustrated in Fig. 5(c). At the bottom side of the sample, the defect is
also estimated to be triangular in shape, which has the base about
16 mm and the maximal thickness about 16 mm, illustrated in Fig. 5(d).
The sample was inspected at the flat side using the proposed single-side
thermographic inspection, illustrated as Fig. 5(b).



A. Sirikham, et al.

O

1. Region of Interest Selection

U

2. Defect Measurement:
d’ Ra Ddis

U

3. Noise Reduction

&

4. Data Analysis:
constructing h model

&

5. Reconstruction:
evaluating h from the model

&

6. 3D Visualisation

&

END

(a)

Infrared Physics and Technology 104 (2020) 103151

START

&

1. Region of Interest Selection

U

2. Defect Measurement:
d’ R’ Ddis

U

3. Noise Reduction

&

4. Data Analysis:
constructing h model

&

5. Reconstruction:
evaluating h from the model

&

6. 3D Visualisation

&

END

(®)

Fig. 3. Inspection process for (a) the single-side inspection and (b) the double-side inspection.

2.6. Experimental setup

The experiments were conducted using the Thermoscope® II pulsed-
active thermography system that comprises of two capacitor banks
powered Xenon flash lamps mounted in an internally reflective hood
and a desktop PC to capture and store data. The scheme of the ex-
perimental set-up is illustrated in Fig. 1(a). A FLIR SC7000 series in-
frared (IR) radiometer operating between 3.0 and 5.1 um and a spatial
resolution of 640 x 512 pixels was used to perform the inspection. The
samples were placed with their surface perpendicular to the IR camera’s
line of sight at 250 mm from the lens. The apply energy was approxi-
mately 2 kJ over an inspection area of 250 mm x 200 mm. The pixel

£
5
~

pitch is 0.32 mm. Considering the thickness of Sample 1 and the low
thermal diffusivity of CFRP, a sampling rate of 10 Hz was used and
totally 900 frames (equivalent to 90 s) were captured after the flash.
Considering the thickness of Sample 2 and the high thermal diffusivity
of steel, a sampling rate of 50 Hz was used and totally 500 frames
(equivalent to 10 s) were captured.

Fig. 4. Illustration of Sample 1 (a) Sample design (b) Side view.
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Fig. 5. Snapshots of Sample 2: a steel plate with triangle air-gap defects (a) the back side of the sample (b) the front side of the sample and inspected side (c) the top

side of the sample (d) the bottom side of the sample.

3. Results and discussions
3.1. Results of Sample 1

3.1.1. Single-side inspection

Due to the large width of Sample 1 (230 mm), the defects of this
sample suffer non-uniform heating for a single inspection, which could
lead to unreliable results [36]. To reduce this effect, in this study the
sample has been inspected five times, where each defect was placed on
the centre of the camera’s view once. An area of the centralised defect
with the size of 160 X 120 pixels for five data files was then cropped
and merged into one file with a size of 160 X 600 pixels for easier
analysis. Fig. 6 shows a snapshot of the raw thermal image at time 23 s.
The defects are labelled as “(1)”, “(2)”, “(3)”, “(4)”, and “(5)” to re-
present the defect thickness of 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm, and
4.0 mm, respectively. The ROI of each defect is about 10 mm X 10 mm
(around 30 x 30 pixels), as highlighted in Fig. 6, which are used for
evaluating the performance of the proposed technique.

The relationship between defect thickness (h) and thermal wave

reflection coefficient (R) requires to be established before prediction of
h. To reduce the influence of the heat leaked to each opened side on the
results, only a region of 6 x 30 pixels on the middle area of each defect
were sampled to establish the model. Estimated R values were averaged
and are shown in Table 1. The averaged R values, denoted by Rgy,, in
the middle area were used as the representative of R to establish the
Rave Vs h relationship. It is observed that the averaged value of R in-
creases following the increase of defect thickness. This observation is
expected because the heat is more difficult to be leaked through the 3D
conduction around air-gap if the defect is thicker. As can be seen from
the plot between R,, and h in Fig. 7, the associate is not linear but
approximately exponential. An exponential fitting was applied on them,
and the relationship between R,, and h can be written as

Rave = —0.2820e05%s + 0.5974 ©

To estimate the value of h using the measured R, the model (9)
can be reversed as

Raw data at frame 230 (at time: 23.00 s);
K 5 B T

6 - M7700
13 - El
[}
£ 19 717600 §
£26 TE“
32 7500 £
38 ] k-

45 - W 7400

51 /5 k- 14 )
32 64 96 128 160 192
mm

Fig. 6. The raw thermal image at the frame 230 for Sample 1 after combining 5 inspections, where the regions of interest are highlighted.
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Table 1
The average of estimated R values in the middle area of each defect.

Defect The designed h The averaged R (Rqye) in the middle area of
(mm) 6 X 30 pixels
Defect 1 0.5 0.4765 =+ 0.0025
Defect2 1.0 0.5461 =+ 0.0037
Defect 3 2.0 0.5858 = 0.0071
Defect 4 3.0 0.6004 = 0.0034
Defect 5 4.0 0.5940 += 0.0039
Raye — 0.5974
h = —0.5898ln— % ———
—0.2820 (10)

Fig. 8 shows plots of estimated R and d of the cross-section at line
90, where it can be clearly seen that the R values are not consistent for
one defect even though the five defects have a consistent thickness. It
indicates that there are some other factors affected the R value. It is
suggested in Fig. 8 that R value at both sides of defect’s boundary is less
than the middle region. This observation could be caused by the fact
that the heat around the middle of the defect is more difficult to leak
than that around the boundary of the defect. This issue must be ad-
dressed if the identified model from the regions of 6 X 30 pixels is
applied to the ROI of 30 X 30 pixels. To improve the accuracy of R
estimation, the shortest distance from the boundary of the defect to the
inspected point (Dg;), shown in Fig. 2, is taken into account to correct
the R value. The re-calculated R (R,,) is a function of R and Dy;,

Ryew = f(R, Dyis) 1)

This function can be approximated by a polynomial model, para-
meters of which can be estimated based on the known Dy;. The esti-
mated model is written as
RYIEW

= 0.2214 + 0.7413R — 0.0168Dg; + 0.6135R? + 0.0011Dg;2 — 0.0326R
Dyis 12)
After that, the defect thickness can be reconstructed by
Ryew — 0.5974
h = —0.5898ln—* ———
—0.2820 13)

The average of the estimated defect thickness of each defect for the
regions of 30 x 30 pixels is shown in Table 2. It is suggested that the
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maximum error of the estimated depth for all defect is less than 13%.
For Defect 2-4, the error is less than 5%. It is interesting to observe that
Defect 1 and Defect 5, which are close to the boundary of the sample,
have the larger error than others, which could be caused by the man-
ufacturing error. The average R value increases following the increase
of the measured defect thickness (h). The error of the estimated defect
thickness is less than 19%, particularly for Defect 1-4, the error is less
than 10%. The large error of h for Defect 5 is caused by the saturated R
value, which is 0.53, the same as the R value for Defect 4.

The reconstructed defects for the regions of 30 x 30 pixels are vi-
sualised in Fig. 9, which suggests that the proposed technique can ef-
fectively reconstruct the 3D structure of simple defects. The estimation
of the bottom surface has an increasing error following the increment of
defect thickness.

3.1.2. Double-side inspection

In this experiment Defect 4 and Defect 5, with the thickness of 3 mm
and 4 mm, respectively, were in the focus because they can be detected
from both sides of the sample. Defect 1, Defect 2 and Defect 3 were not
selected because the defect depth of the back of these defects are too
deep (5.5 mm, 5.0 mm, and 4.0 mm, respectively) to measure con-
sidering the depth to width ratio of a defect. The NLSF method was
applied on the selected regions to estimate the defect depth where the
thermal diffusivity (o) was chosen as 0.5 x 10~ ° m?/s. The estimated
defect depth after reducing noise from inspection of two sides are
shown in Fig. 10. Observation from the front of the part shows that the
measured depths for Defect 4 and Defect 5 are similar. This is expected
as both defects have a 2 mm depth, as illustrated in Fig. 4. The depth
map from the back shows that Defect 4 (light blue) is much deeper than
Defect 5 (deep blue). In the data analysis process, the defect position at
the front and the back of the part was aligned and registered. After that,
the defect thickness was calculated by Eq. (8). The estimated para-
meters including defect depths and thickness are shown in Table 3. It is
observed that, on the front, the average of the estimated defect depth of
Defect 4 is approximately identical to the design (2 mm) with an error
of 1%, while Defect 5 has about 10% error. For the back of the part, the
average error of the estimated defect depth for Defect 4 and Defect 5 are
around 18% and 16%, respectively. The computed defect thickness of
Defect 4 and Defect 5 are 3.55 mm and 4.50 mm, which have the
percentage error of 18.33% and 12.50%, respectively. Finally, the
surface information (dimension of the sample) and subsurface in-
formation (defect depth and defect thickness) were used to build the 3D

R o VS h Relationship

av

* raw
exponential fitting

0.46
0.5 1 1.5 2

25 3 3.5 4

h (mm)

Fig. 7. The plot of Ryy,.-h curve of Sample 1.
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Fig. 8. Plots of estimated R and d of the cross-section at line 90.

Table 2
Estimated value of Sample 1 from single-side inspection.

Defect Ground Truth (mm)

Average of the estimated value Error (mm)
d h d(mm) h(mm) R d h
Defect 1 2.00 0.50 1.74 + 0.05 0.45 + 0.01 0.41 + 0.06 0.26 0.05
Defect 2 2.00 1.00 1.96 + 0.06 1.02 + 0.16 0.48 * 0.06 0.04 0.02
Defect 3 2.00 2.00 1.91 = 0.05 2.15 + 0.38 0.51 = 0.07 0.09 0.15
Defect 4 2.00 3.00 2.00 + 0.07 2.96 + 0.50 0.53 + 0.07 0.00 0.04
Defect 5 2.00 4.00 1.79 + 0.06 3.25 + 1.04 0.53 + 0.06 0.21 0.75
3D Visualisation
o
7
ol
7, | -
x 5 {
‘I‘ 4 l
N
g3 |
E 2| -
. 160
— 128
0 96
: 64
32 L 32
. 0 Y mm (x-axis)
mm (y-axis)

Fig. 9. The 3D visualisation of the five defects of Sample 1 using the proposed single-side inspection.

volume image and visualised in the form of 3D image, as shown in
Fig. 11. It is clearly visible that Defect 5 is thicker than Defect 4, and the
estimated 3D volume for both defects is close to the design shown in
Fig. 4. It should be noted that the z-axis is scaled up to better visualise
the detail of the defect surface.

3.2. Results of Sample 2

Sample 2 was inspected by the single-side inspection because the
defect was too deep to measure from the other side. To find the re-
lationship between R and h, R values in three areas with a size of

100 x 60 pixels were sampled as highlighted in Fig. 12. It should be
pointed out that the R values of 100 vertical pixels were averaged.
Fig. 13 plots the cross-section at line 200 of the estimated R and d,
where the three selected areas are highlighted. It can be observed that
the middle area has the highest value of R, then the left one and the
right now. Proven in the experiments of Sample 1, a higher value of R
suggests a thicker defect. As illustrated in Fig. 5, the maximal thickness
of the left defect is about 20 mm, and the right one is about 16 mm.
Based on the observation of the R values, the maximum thickness of the
middle area is assumed to be 24 mm. A numerical model was then
established to represent the relationship between R and h, written as
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Fig. 10. The estimated defect depth image of Sample 1 after reducing noise (a) at the front side (b) at the back side, where the left defect is Defect 4 and the right one

is Defect 5.

Table 3
Estimated values of Sample 1 from the double-side inspection method.

Defect Ground Truth (mm) Average of the estimated value (mm)
Defect depth Defect thickness Defect depth Defect thickness
Front side Back side Front side Back side
dl d2 h dl d2 h
Defect 4 2.00 3.00 3.00 1.98 = 0.05 2.47 = 0.05 3.55 = 0.10
Defect 5 2.00 2.00 4.00 1.82 = 0.07 1.68 = 0.06 4.50 = 0.10
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Fig. 11. The 3D visualisation of Sample 1 from the double-side inspection.

h= (1.0698-106)60,105}:)-106 — 1.0698-10° (14)

As the last step, the 3D volume image was reconstructed by combing
the surface dimension (size and thickness of the sample) and subsurface
information (defect depth and defect thickness) and result is shown in
Fig. 14. The triangular ‘S’ shape defect can be clearly observed which
matches the appearance of the defect shown in in Fig. 5(c) and
Fig. 5(d). To validate the result using other NDT methods, Fig. 15 shows
the comparison of the 2D image of the defect from pulsed thermo-
graphy and X-ray. It can be seen that the defect shape of both images is
similar. A quantitative comparison between these two imaging mod-
alities in terms of 3D defect reconstruction was not conducted in this
paper due to the distortion of thermal images caused by the lens. A
further study is required to correct this distortion before conducting a
comprehensive comparison.

4. Conclusions

This paper has developed a novel 3D reconstruction and visualisa-
tion approach for subsurface defect based on one single-side PT in-
spection under the reflection mode. The defect thickness, a key para-
meter to reconstruct defect in a 3D form, was measured through
estimating thermal wave reflection coefficient value and establishing its
relationship with defect thickness using an empirical model. For the
comparison purpose, this paper also introduces a double-side inspection
approach that estimates the defect thickness by measuring the defect
depths from both sides of a part. And then the estimated thickness,
depth and size of the defect, including dimension of the part were
combined and visualised in the form of a 3D image.

The proposed technique has been tested on two samples with arti-
ficial defects on carbon fibre-reinforced polymer (CFRP) and steel ma-
terials, and the results show that:
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Fig. 12. The averaged R region over the top side triangle defect area for Sample
2.

a. In comparison with the double-side inspection, the proposed single-
side inspection is not only faster, but also increases the applicability
of 3D defect reconstruction. There are many cases where industrial
components can be accessed only on one side, such as airplane wing.
Furthermore, some defects are too deep to detect or measure the
depth, such as Defect 1-3 in Sample 1 and Sample 2, which limits
the applications of the double-side inspection.

b. For the Sample 1, the single-side inspection can measure the defect
thickness with an error less than 10% if the thickness is less than
3 mm. The error increases if the thickness increases. For example,
the error for the defect with a thickness of 4 mm is 19%.

c. The double-side inspection can produce more accurate thickness
measurement if the defect is thick. For defects with thin thickness,
the single-side inspection is more appropriate.

d. The thermal wave reflection coefficient is not only related to the
thickness of defect but also related to the shortest distance to the
defect boundary.

e. The proposed 3D defect reconstruction solution can effectively as-
sess the defect or damage in CFRP and steel by offering more details
of structure and friendly visualisation.

Infrared Physics and Technology 104 (2020) 103151
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Fig. 14. 3D defect visualisation of Sample 2 defects using the proposed single-
side inspection.

A drawback of this method is that the defect thickness is a function
of multiple correlated parameters, which may constrain its application
on irregular shape defects. Based on experiments in this research, it is
also discovered that the model to estimate defect thickness is subject to
materials. Besides, changing of material properties of tested specimen
and defect shape may also have impact on the precision of method
model and then the estimation of defect thickness. To fully explore its
potential and improve the applicability of the proposed method, a
further study is required by considering different materials with a
variety of defect shape, size, depth and thickness. We will also focus on
a more comprehensive comparison to other NDTs for 3D defect re-
construction and visualisation.
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