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ABSTRACTProcess monitoring of wastewater treatment plant (WWTP) is a challenging industrial problem,
due to its exposure to the hostile working environment and signi�cant disturbances. This paper proposed a
novel fault diagnosis method, termed as optimization forecast components-support vector machine (OFC-
SVM). The method �rstly improved the forecastable component analysis (ForeCA) for feature extraction.
Secondly, in order to further enhance the method, the quadratic Grid Search (GS) algorithm is utilized to
optimize the parameters of the proposed method. Thirdly, to properly evaluate the method performance,
a new evaluation index is proposed, named Pre Alarm Rate (PAR), aiming to achieve the quantitative trade-off
between false alarm rate (FAR) and missed alarm rate(MAR). Then, the new ROC curve can be further
derived by PAR. Finally, the performance of OFC-SVM is strictly compared with other �ve methods as well
as validated by a Monte Carlo model and a full-scale WWTP.

INDEX TERMS Fault diagnosis, grid search (GS), feature extraction, forecastable component analysis,
support vector machine, wastewater treatment.

I. INTRODUCTION
With the increasing complexity of industrial system, pro-
cess monitoring strategy of industrial process have become a
hotspot [1]�[3]. WWTP is a complex industrial system with
mixture of physical, chemical and biological reactions. Also,
the hostile working environment and signi�cant disturbances
further add further dif�culty for process monitoring. If not
monitored well, a WWTP will not only bring about economic
losses, but also cause the secondary pollution of rivers. So we
conduct an in-depth study on monitoring the common sen-
sor fault in wastewater treatment plants. Data-driven process
monitoring is one of the most popular industrial monitoring
methods, because it does not require the prior knowledge and
can achieve better performance by comparison with math-
ematical models [4]. During recent decades, SVM receives
more and more attentions, which is based on the theory
of VC (Vapnik-Chervonenkis Theory). SVM can not only
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trade-off the complexity and learning capability in the case of
exposing to small sample [5], but also can use structural risk
minimization to effectively compensate for the over-�tting
problem [6]. Relying on the above advantages and excel-
lence generalization ability, SVM has quickly attracting the
researcher attention, thus resulting in successfully application
to the diagnosis of abnormal events in machinery, medicine
and other �elds subsequently [7]�[10]. Although SVM has
been successfully applied in many different �elds, it is rarely
used in wastewater treatment processes monitoring. Also,
uncertain disturbances, large time-delay and multi-variable
coupling make building an effective SVM model dif�cult,
mainly due to the fact that SVM is sensitive to noises.
In addition, process redundant features will not only greatly
reduce the diagnostic accuracy, but also increase the storage
overload.

In the feature-based fault diagnosis, it is necessary to
consider model performance degradation caused by useless
features [6]. Chang et al. proposed to use PCA to extract
effective features [11]. However, industrial data are generally
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non-linear, and PCA cannot effectively extract the non-linear
characteristics. Zhang et al. proposed that adaptive KPCA
to extract useful features of nonlinear data, and then com-
bined with SVM for fault diagnosis of high-voltage circuit
breaker [9]. Although KPCA can extract the non-linear char-
acteristics, the diagnosis performance will degrade when the
data do not follow Gaussian distribution. Cao et al. compared
the performance of SVM, PCA-SVM, KPCA-SVM and ICA-
SVM, showing that effective feature extraction can indeed
improve SVM performance signi�cantly [12]. In this light,
a new feature extraction method is proposed by improved
the ForeCA, and then combine it with SVM to diagnose the
fault of WWTPs. ForeCA is a novel dimension reduction
technique able to take full use of temporally dependent sig-
nals [13]. This method �rstly transforms the time domain
signal into frequency domain signal, and then uses Shannon
entropy to reformulate the optimization problem. Finally,
the optimization problem is solved by EM-like (Expectation
Maximization-like) algorithm. Due to this property, both of
time and frequency domains can be taken into account to
make the feature extraction sensitively. Also, ForeCA is able
to exploit the unpredictability of white noise which is usually
hided by other disturbances. By proper recognition of these
underlying noises, noises and disturbances can be removed
more ef�ciently. Traditionally, PCA is used to measure the
information according to the size of variance with the phi-
losophy that the larger the variance, the more information.
However, the variance is mainly to describe the degree of
discreteness, and cannot be directly used to capture the uncer-
tainty of information. Unlike the previous methods, ForeCA
is capable of measuring the information uncertainty by infor-
mation entropy and is not premised on the assumption that the
data follows Gaussian distribution [14], thus making feature
extraction more ef�ciently.

Typically, the free parameters (penalize parameter C and
kernel parameter g) are set up manually, which makes it
converge into sub-optimal performance. Recently, to fur-
ther improve the performance of a diagnosis model, genetic
algorithm (GA) and particle swarm optimization (PSO) are
widely used to optimize the model parameters [10], [15], [16].
However, PSO and GA usually locate the optimal value
through iterative search procedure. This procedure could
not only lead to unacceptable uncertainty, but also easily
come to a pseudo-global optimal solution. In this light,
this paper introduces the quadratic GS algorithm to address
this issue, which can generate the corresponding ‘‘grid’’ by
arrangement and combination of parameters. And use the
cross-validation method to select free parameters. Unlike
previous GS, Quadratic GS sets the initial parameter interval
twice by trading off the running time and diagnosis accu-
racy. By setting the parameters by interval rather than point
sampling according to the speci�c data prior knowledge,
the consumed time of optimal Quadratic GS will be greatly
reduced and achieve better performance.

Based on the above discussion, ForeCA algorithm and
quadratic GS algorithm can effectively improve the SVM

performance. So we proposed a new method of OFC-SVM
by combining the above two algorithm.

Industrial processes often evaluate the performance by
rating missed alarm rate (MAR) and false alarm rate
(FAR) [1], [17]�[20]. Although these indicators can assess
the monitoring methods from bi-direction, the costs of false
alarm and missed alarm are different. Therefore, a novel com-
prehensive evaluation index of pre-alarm rate (PAR) is pro-
posed by merging false alarm and missed alarm. The weight
parameter of PAR formulas can set by requirements. At the
same time, a new ROC (Receiver Operating Characteristic)
curve is further re-derived, which is aim to assist PAR method
to make decision.

The structured of this paper as follows. In section II,
the basic theory of SVM is introduced. Section III presents
the framework and the theories of the proposed method.
In section IV, OFC-SVM is strictly compared with �ve meth-
ods and validated by two experimental data sets. The experi-
mental results are analyzed and discussed in detail in section
V and the conclusions are come to Section VI.

II. SUPPORT VECTOR MACHINE
In the 1860s, Vapnik et al. explored the relationship between
the large number theorem of general function space and the
learning process. And then proposed the SVM model [21].
The essence of SVM in the �eld of fault diagnosis is the use
of its classi�cation capability. We assumed that the training
data set of QX D

�
x1 � � � xn

�T
2 Rn�k is linearly separable, n

represents the number of samples, k represents the number
of features. In the training set, yi D C1 respresents the
fault data label, whereas yi D �1 represents the normal
work condition data label. The SVM method needed to use
the training set to �nd the optimal classi�cation hyperplane,
in such a way that the test set can be accurately classi�ed
sequentially. Assuming that the classi�cation hyperplane is
( Nw; b), and the corresponding classi�cation formula is shown
as followsV (

NwT xi C b � C1 yi D C1
NwT xi C b � �1 yi D �1

(1)

where NwT is normal vector and b is a scalar. If the sample is
closest to the hyperplane, named ‘‘support vector’’, and the
‘‘margin’’ is formulated as r D 2=k Nwk. To �nd the maximum
spacing by resorting to the hyperplane, the above solution
becomes an optimization problem.

max Nw;b
2
k Nwk

s:t: yi( NwT xi C b) � 1 (2)

When there is a linear inseparable point in the sample,
we can relax the constraints and formulate the optimized
equations as (3).

min Nw;b;�
1
2
k Nwk2 C C

Xn

iD1
�i

s:t: yi

�
NwT xi C b

�
� 1� �i (�i � 0) (3)
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FIGURE 1. Process monitoring framework based on the proposed OFC-SVM method.

�i is the relaxation parameter and C is the regularization
parameter. When the data is not linearly separable, the kernel
function K

�
xi; x j

�
D ; .xi/

T
; .xi/ is used to replace xi. So the

classi�cation decision function formula can be further get as
followsV

f .x/ D sign
�Xn

iD1
yiaiK

�
x; x j

�
C b

�
(4)

where 0 � ai � C , x represent the input vector.

III. OFC-SVM THEORY AND MONITORING FRAMEWORK
Generally, SVM is suitable to small samples issue but is very
sensitive to noise [22]. Additionally, redundant feature infor-
mation could seriously affect the SVM performance. Thus,
we proposed a novel fault monitoring framework, termed
OFC-SVM.

As shown in Fig. 1, the main steps can be summarized as
follows: (1) Data sampling; (2) Normalization; (3) Feature
extraction (As showed in algorithm 1); (4) Fault diagnosis
(Model training and testing); (5) Evaluating model by PEI
(Performance Evaluation Index) PAR.

A. FORECASTABLE COMPONENT ANALYSIS (ForeCA)
ForeCA is a new statistical signal processing method, which
mixes the advantages of Fourier transform, spectral density,
shannon entropy and EM-like theory. The core of ForeCA is
to �nd the optimal forecastable transfer matrix W. Assuming
that the collected data set is X 2Rn�m (n and m represent the
number of samples and the variables number, respectively),
and W 2 Rm�m is the optimal transfer matrix of forecast
components.

Y DWXT (5)

where YT
2 Rn�m is the corresponding score matrix, and the

ForeCA algorithm needs to estimate the optimal W and Y by
the data set X. Goerg pointed out in his paper that the �rst
step is to transform the time domain signal into the frequency

Algorithm 1 Forecastable Component Analysis

Input: Training dataset Xtrain D
�

x1 � � � xn
	
.

m process variables, n sampling.
Control limit threshold D 90%

Process:
S1:Normalize the raw data set Xtrain
S2: The time domain signal is transformed into frequency
domain signal by the formula (7).
S3:The spectral density �z .�/ is derived by the formula (8).
S4: Compute the Information entropy of xi by �z .�/ and the
formula (9).
S5:The predictability values8i (i D 1 � � � m ) and eigenvec-
tors w D fwig

m
1 2 Rm are obtained by the EM- like algorithm

and formula (10)-(12).
S6:the number of forecast principal components is computed
by the formula (14). The principal forecast components score
matrix can be further obtained.
Output: The forecast principal components number K, the

forecast components transfer matrix W . The
principal forecast components score matrix
QX D (W T

k XT )
T
2 Rn�k

domain signals [13], so we take the univariate stationary time
series zt as an example. Assuming that the corresponding
mean and variance are uz and � 2

z , respectively. The auto-
covariance function (ACVF) can be obtained as follows.

rz .l/ D E(zt � uz)(zt�l � uz) (6)

Since the stationary time series is independent of the initial
point, rz .l/ D rz .�l/. The frequency spectrum of the univari-
ate time series can be obtained by the following formulaV

Pz .�/ D
1

2�

X1

jD�1
rz .j/ e2� ij� � 2 [��; �] (7)
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Pz .�/ represents the nonnegative real function, i is the imagi-
nary unit. Particularly, when j D 0; rz .0/ D � 2

z . According to
the inverse Fourier transform, rz .l/ D

R �
��

Pz .�/ e�2� il�d�,
so rz .0/ D

R �
��

Pz .�/ e0d� D � 2
z . The standard spectral

density function can be derived as followsV

�z .�/ D
Pz .�/

� 2
z

(8)

�z .�/ is a special spectral density function, which is used
to analogize the probability density function of random vari-
ables in a unit circle, so

R �
��
�z .�/ d� D 1. Shannon entropy

can be used to estimate the uncertainty level of �z .�/, so the
information entropy formula can be organized as followsV

SP;a .zt/ VD

Z �

��

�z .�/ loga�z .�/d� (9)

Remark 1: Assuming that "t is white noise with zero mean
and �nite variance, when 6D 0, r" .l/ D 0 and P" .�/ D
(� 2
" )=2� can be obtained by the formula (6) - (8). Generally,

the �at spectrum represents the sequence is most unpre-
dictable [13], white noise is a special �at spectrum. The time
series has the larger information entropy. so the information
entropy of "t is maximum.

The information entropy of zt is not greater than "t , so the
following formula can be obtainedV

SP;a .zt/ � SP;a ."t/ D �

Z �

��

�" .�/ loga�" .�/d�

D �

Z �

��

1
2�

loga
1

2�
d� D loga2�

(10)

According to formula (10), the important index for solving
forecastable transfer matrix is derived-8(�).

8.zt/ D 1�
SP;a .zt/

loga2�
D 1� SP; 2� .zt/

8 V zt 7�! [0;1] (11)

8.�/ is an important index for evaluating the predictability
of zt . If Xt 2 Rm is a multivariate time series, the univariate
time series zt can be obtained by calculating zt D wT Xt . But w
may not be optimal, that is, it cannot be used to maximize the
value of8(�). Therefore, �nding W becomes an optimization
problem shown as followsV

maxw8.zt/ D 8
�
wT Xt

�
D maxw

0@1C

R �
��

wT PX .�/w
wT6X w loga

wT PX .�/w
wT6X w d�

loga2�

1A
s:t: wT6X w D 1 (12)

where PX .�/ D 1
�

2
P
1

jD�1 0X .j/ e2� ij�, 0X .j/ is ACVF
of Xt , 0X .j/ D 0X .�j/T . Because the number of data set is
�nite. Therefore, the optimization of formula (12) requires
spectral density estimation �rst. In this paper, [13], [23]

(WOSA) is used to estimate the spectral density. So the
formula can be further simpli�ed as followsV

w� D argmaxw(1
�

T )
XT�1

jD1
wT PX

�
!j
�

w logawT PX
�
!j
�

w

(13)

Let L
�
wI!j

�
D logawT PX

�
!j
�

w, w� represents that the
forecastable vector is optimal. An optimal transfer matrix W
and the corresponding predictability value8 can be obtained
by cyclically calling the EM-like algorithm. Goerg gives a
detailed derivation process of the EM- like algorithm [13].

Motivated by the cumulative variance contribution rate of
PCA [24]. The cumulative predictable contribution rate is
used to determine the number of forecast principal compo-
nents.

� .8/ D

Pk
iD18iPm
iD18i

� threshold(k � m) (14)

m represents the number of variables, and k represents the
number of forecast principal components. The threshold is
usually set by experience. The predictability values of 8i
are arranged from large to small, therefore, Wk 2 Rm�k and
QX D (W T

k XT )
T
2 Rn�k can be further derived. Wk 2 Rm�k

represents the optimal forecast principal components transfer
matrix, QX D (W T

k XT )
T
2 Rn�k represents the principal

forecast components score matrix.

B. PARAMETER OPTIMIZATION-QUADRATIC
GS ALGORITHM
The classi�cation ability of SVM is mainly affected by the
kernel parameter g and penalty parameter C [25]. So far, there
is still no generally accepted optimal algorithm. Different
from the standard GS algorithm, this paper proposed the
quadratic GS algorithm to deal with the parameters optimiza-
tion. The quadratic GS �rstly sets up a large initial parameter
interval, and then performs a second adjustment according to
the veri�cation data.

Firstly, quadratic GS divides data set into training set and
testing set. Secondly, the parameter interval are arranged
to generate the corresponding ‘‘grid’’. Thirdly, the cross-
validation method is used to select the parameter C; g. Finally,
parameters intervals are re-adjusted according to OFC-SVM
performance. In some degree, Quadratic GS algorithm can
avoid over-�tting drawback by secondary adjustment strat-
egy. However, the experiment found that more than one
group of parameters C; g can simultaneously maximize the
SVM classi�cation accuracy. For this situation, this paper
chooses the small value of C. Since the larger value of C,
the easier occurrence of over-�tting problem [26]. Mean-
while, this paper considers the computational cost problem
and chooses the most commonly used K-fold Cross Valida-
tion (K-CV) method for cross-validation. K-CV divides the
data set into K groups equally, and establishes K models
respectively (the veri�cation set is a set from the K group
data, and the remaining K-1 group are used as training set),
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Then, the average classi�cation accuracy of K models is used
as the performance index of K-CV.

In order to strictly verify the performance of quadratic GS
algorithm, the parameter interval is not changed once it is
set by second adjustment. At the same time, PSO and GA
are compared with the quadratic GS algorithm in this paper.
Initial parameter of three optimization algorithm can refer to
Supplementary Information A(SIA).

C. PERFORMANCE EVALUATION INDEX-PAR
Performance evaluation index (PEI) is an important tool for
evaluating and selecting monitoring models. Although the
diagnosis accuracy can roughly evaluate the model, it cannot
meet the plant real-time requirements. For example, the actual
WWTP always use false alarm and missed alarm to evaluate
the performance of the monitoring system [17]. Because the
work intensity is directly affected by the false alarm and
missed alarm. When the FAR of WWTP is high, that is,
an alarm �ood occurs under normal work conditions. The
monitoring systems will continuously false alarm commands,
which will waste a lot of manpower and resources. The
missed alarm is a more serious condition than the false alarm.
If the monitoring system missed the fault, the engineer can-
not take effective measures to troubleshoot in time. So we
proposed a comprehensive PEI of Pre-alarm rate (PAR) by
mixing false alarm and missed alarm. The formula of PAR,
MAR and Accuracy are as followsV

Accuracy D
TPC TN

TPC FPC TN C FN
(15)

MAR D Fr(NormaljFault) D
FN

FN C TP
(16)

FAR D Fr(FaultjNormal) D
FP

FPC TN
(17)

Note that the ‘‘Normal’’ represents the normal work con-
ditions. Fr(j) represents the conditional frequency. TP is true
positive, this article represents the sample correctly classi�ed
as fault. TN is true negative, and it represents the sample cor-
rectly classi�ed as normal. FP (False Positive) indicates that
the sample incorrectly classi�ed as normal. MAR represents
the formula of MAR, FAR represents the formula of FAR. The
formula of PAR as followsV

PAR D 
MAR C (1� 
 )FAR (18)


 represents the weight parameter (0 � 
 � 1), the plant
can adjust 
 according to the demand signal.

De�nition 1 (PAR in Some Different Situations):
1. When 
 D 0, PAR D FAR. PAR degenerates into FAR,

so let Type I PAR D FAR.
2. When 
 D 1;PAR D MAR. PAR degenerates into MAR,

so let Type II PAR DMAR.
3. When 
 > 0:5, the missed alarm is more important for

plant.
4. When 
 < 0:5, the plant is more value its false alarm.
In the experiment, we �nd a special scenario that the

several methods have the same PAR value. To solve this

FIGURE 2. The data box-plot.

problem, Type-I PAR and Type-II PAR are used to derive the
corresponding ROC curve, and then using this index to assist
making decision. ROC is originated from the radar signal
detection, which is a powerful tool for evaluating the learner
generalization performance [27]. The x-axis and y-axis of
ROC curve are composed of false positive rate (FPR) and
true positive rate (TPR), respectively. In statistics, the FPR
is equal to the Type-I PAR. The TPR and the Type-II PAR
can be linked, TPR formula is TPR D TP

�
(FN C TP), which

indicates the proportion of predicted correctly under the fault
condition. Therefore, the MAR D 1 � TPR can be further
derived. As given above, the ROC curve can be derived by
Type-I PAR and Type-II PAR. If the ROC curve of a method
completely covers another, it can directly assert that the for-
mer is superior. But when the two curves intersect, we need
to calculate the area. So the area of ROC curve is as followsV

AUC D
1
2

Xm�1

iD1
(xPAR

iC1 � xPAR
i )(yPAR

i C yPAR
iC1 ) (19)

(xPAR
i ; yPAR

i ) represents the coordinate points of ROC
curve. Generally, the larger area under ROC curve indicates
the stronger generalization performance

Remark 2: In this paper, ROC curve is derived by Type-I
PAR and Type-II PAR. A special point needed to be stress,
ROC curve in this paper is not a global evaluate index, but an
auxiliary PAR to evaluate the performance of the monitoring
model.

IV. CASE STUDY
A. CASE 1: MONTE CARLO SIMULATION
1) BACKGROUNDS AND SCENARIO DEFINITION
Monte Carlo model is a numerical simulation widely used
in the �eld of processes monitoring. More information about
this model can referred to [28], [29]. In this paper, the sensor
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