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Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution
is numerically investigated. The enclosure has a square channel-like geometry with alternatively
heated closed ends and lateral walls with a linear temperature distribution. A recently proposed
implicit discrete velocity method with a memory reduction technique is used to numerically simulate
the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of
the vortexes pattern, slip velocity at the planar walls and edges, and heat transfer are investigated.
The influences of the temperature ratio imposed at the ends of the enclosure and the geometric
aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in
two-dimensional configurations in literature. However, new features due to the three-dimensionality
are observed with new types of vortexes that are not identified in previous studies on similar two-
dimensional enclosures at high Knudsen and small aspect ratios.

I. INTRODUCTION

Thermal transpiration (also known as thermal creep flow) is a rarefied gas flow phenomenon occurs near a non-
isothermal solid boundary and is solely driven the tangential heat flux along the wall surface [1]. This non-equilibrium
flow phenomenon has inspired numerous studies ever since its discovery [2] and the first theoretical investigation [3] in
the late 1800s. Partially due to its application as a Knudsen pump [4–6], the thermal transpiration in channel- or pipe-
like geometries has been studied extensively both by experiments [7–9] and numerical simulations [10–14] in the past
few decades. In addition to the scientific importance and popularity in evaluating novel numerical tools, the thermal
creep flow in an enclosure has a strong application background in vacuum packaged and micro electro-mechanical
systems (MEMS) industries [15, 16] and crystal growth experiments [17].

The thermal transpiration in enclosures, however, receives growing interest only recently. Unlike the cases in
simple channels with long aspect ratios and small temperature differences, as assumed in the above works, the
thermal transpiration in an enclosure has much more complex features and is computationally more challenging to
simulate. The extra geometrical confinements introduce inhomogeneous temperature variation in the bulk region and
accordingly, other types of thermally induced flow such as thermal stress flow [1] are triggered and interplay with
the thermal transpiration near the boundary. Such complex features have led to a variety of investigations. For
example, in Refs. [18] and [19], for the rarefied flow in a two-dimensional cavity with nonuniform wall temperatures,
it is observed that gas near the non-isothermal wall is not necessarily driven from cold to hot, which is contradictory
to the predictions by the thermal transpiration theory [1, 3]. The odds inverted thermal creep flow can be explained
by the relative contribution of the shear stress and tangential heat flux along the wall according to Refs. [18, 20]. In
Ref. [20], an approach that decomposes the solutions into ballistic and collision parts is introduced to interpret the
thermal creep flow patterns in a two-dimensional cavity. In Ref. [21], the full Boltzmann equation solver reveals that
the velocity field of thermally induced flow is clearly affected by the molecular interaction model.

Due to its non-equilibrium nature, the mathematical description of thermally induced rarefied flow is mainly based
upon the Boltzmann or the kinetic model equations, as the classical continuum models such as the Euler and Navier-
Stokes equations are only applicable in the slip flow regime, i.e., slightly rarefied flows [22]. However, the kinetic
equations are computationally much more expensive to solve. The extremely low-speed character of such flows makes
it even more difficult for applying direct simulation Monte Carlo (DSMC) method [23] which is a common tool for
rarefied gas flows. An early attempt for such flow in an enclosure has been reported in Ref. [17], where the thermally
induced flow in a two-dimensional microcavity has been simulated with the DSMC method which took 5 days of
CPU time for a single simulation [17]. The enormous computational cost partially explains why most early numerical
investigations of thermal creep flows are focused on one-dimensional, semi-infinite or pseudo two-dimensional cases
and used the linearized form of the kinetic equations. The thermal creep flows in an enclosure has also been served as a
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benchmark problem for evaluating more efficient novel numerical methods such as the octant flux splitting information
preservation (IP) DSMC method [24], the low-variance Monte Carlo simulation method [25], the regularized-13 (R13)
equations method [18, 26], the (discrete) unified gas kinetic scheme (UGKS, DUGKS) [19, 27] and the fast spectral
method for full Boltzmann equation [21, 28].

Based on the above literature review, it can be seen that previous studies on thermal creep flow in enclosures
are all based on the two-dimensional cavity. To the best of the authors’ knowledge, there is no numerical study
on thermal creep flow in a three-dimensional enclosure due to the high computational cost using either the DSMC
approach or the discrete velocity based deterministic methods. For rarefied flow in many realistic three-dimensional
applications, as the gas-wall interaction becomes more significant, the extra confinement introduced by the walls in
the third dimension has to be considered explicitly. Therefore, there is an urgent need to investigate the thermal
creep flow in three-dimensional geometries.

In the present study, the thermal creep flow in a three-dimensional square channel with alternatively heated closed
ends and linear temperature distribution along the lateral walls will be numerically investigated in a wide range
of Knudsen numbers (Kn). Various temperature differences between the two enclosure ends and different aspect
ratios are considered. The numerical method employed is a discrete velocity method (DVM) for the Shakhov kinetic
equation [29]. A detailed grid independence study has been conducted in both spatial and velocity spaces. A
recently proposed iterative scheme with the memory reduction technique [30] enables us to accurately describe the
highly nonequilibrium velocity distribution function in very fine discrete velocity grids with moderate computational
expense and small memory capacity requirement. Thus macroscopic variables such as the velocity field can be
accurately obtained. The influences of the Knudsen number, temperature ratio and geometric aspect ratio on the
flow field will then be analyzed.

The rest of the paper is organized as follows. In Sec. II, we describe in detail the problem and assumptions. In
Sec. III, the governing equation and numerical method are introduced. Numerical results are given and analyzed in
Sec. IV followed by the conclusions in Sec. V.

II. SIMULATION SETUP

The computational domain is a straight channel with a length of Ly and a square cross-section of Lx×Lz (Lx = Lz)
as illustrated in Fig. 1. Uniform temperatures, Th and Tc, are applied at two ends of the domain (y = 0 and y = Ly),
respectively. The temperature on each lateral side wall varies linearly from Th at the left end (y = 0) to Tc at the
right end (y = Ly). The gas in the enclose is assumed to be monatomic with a viscosity µ related to the temperature
T by µ = µ0(T/T0)ω, where µ0 is the reference viscosity at the reference temperature T0. The exponential index ω is
set to be 0.81, corresponding to the variable hard sphere (VHS) model of argon gas at 273.15K [23]. The reference
viscosity is defined using the VHS model [23, 31],

µ0 =
15
√
πp0λ0

(5− 2ω)(7− 2ω)
√

2RT0
, (1)

where λ0 is the referenced mean free path and R is specific gas constant, p0 is the referenced pressure and is related
to the reference density ρ0 (the average gas density in the enclosure) by p0 = ρ0RT0. The Knudsen number of the
system is defined by Kn = λ0/L0 with L0 being the reference length. The reference values are taken as T0 = Th and
L0 = Lx. Furthermore, the walls are assumed to be purely diffusive.

We consider only the steady state which depends only on three non-dimensional parameters, Ly/Lx, Tc/Th and Kn.
The Knudsen number range considered is 0.01 ≤ Kn ≤ 10. To investigate the influences of temperature ratio (Tc/Th)
and aspect ratio (Ly/Lx), three values of both Tc/Th and Ly/Lx will be considered for each selected Knudsen number
(Kn=0.1, 1 and 10). The flow field is numerically obtained by solving the steady state Shakhov model (S-model)
equation using a discrete velocity method. The Shakhov model equation is appropriate for thermally driven flow as
has been demonstrated by numerous applications in the literature, such as Refs. [19, 20, 32–34], to name a few. It
should be noted that to match the realistic gas viscosity [35, 36] in a wide temperature range, the power-law index
ω will vary significantly. However, the deviation of viscosity predicted by the VHS model with a fixed ω = 0.81
is still acceptable in the temperature range considered in this work. The recent study in Ref. [20] shows that the
overall agreement between the flow fields predicted using the Shakhov model equation and the DSMC method of for
the thermally driven flow can be quite good even the temperature field varies significantly in space. Details of the
numerical method will be explained in the following section.
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FIG. 1. Schematic of the square channel with differently heated closed ends and iso-thermal lateral walls. The left and right
end sides (denoted by OABC and PDEF ) are kept at higher and lower uniform temperatures Th and Tc, respectively. The
temperature of the lateral sides varies linearly with respect to the Y coordinate (y) from Th at the left to Tc at the right. The
dotted line GH denotes the symmetry line of the lateral side OADP , which will be referenced in numerical results section of
the body text.

III. GOVERNING EQUATION AND NUMERICAL METHOD

A. Governing equation

In this study, we use the steady state Shakhov model equation [29] as the governing equation of the velocity
distribution function f(x, ξ),

ξ ·∇f = −f − f
S

τ
, (2)

where τ is the relaxation time and is related to the local viscosity µ and pressure p by τ = µ/p to recovery the correct
viscosity [37]. fS is defined as

fS = fM
[
1 + (1− Pr)

c · q
5pRT

(
c2

RT
− 5

)]
, with fM =

ρ

(2πRT )3/2
exp

(
− c2

2RT

)
, (3)

where Pr is the Prandtl number and c = ξ−U is the peculiar velocity with U being the hydrodynamic velocity. For
a monatomic gas, Pr equals to 2/3. The macroscopic variables such as the density ρ, velocity U , temperature T , and
heat flux q can be calculated from the moments of the distribution function,

ρ =

∫
fdξ, ρU =

∫
ξfdξ, ρE =

1

2

∫
ξ2dξ, q =

1

2

∫
cc2fdξ (4)

where ρE = 1/2ρU2 + CvT is the total energy with Cv being the heat capacity [(3/2)R for monatomic gases]. The
pressure is related to the density and temperature by p = ρRT .

Equation (2) can be written in a non-dimensional form as

ξ̂ · ∇̂f̂ = −1

τ̂
[f̂ − f̂S ], (5)

with

f̂S = f̂M
[
1 +

4

5
(1− Pr)

ĉ · q̂
ρ̂T̂ 2

(
2ĉ2

T̂
− 5

)]
, f̂M =

ρ̂

(πT̂ )3/2
exp

(
− ĉ

2

T̂

)
, (6)

where the non-dimensional variables are defined as

ξ̂ = ξ/
√

2RT0, ∇̂ = L0∇, ρ̂ = ρ/ρ0, ĉ = c/
√

2RT0, Û = U/
√

2RT0,

T̂ = T/T0, q̂ = q/
[
ρ0(2RT0)3/2

]
, f̂ = f(2RT0)3/2/ρ0, f̂S = fS(2RT0)3/2/ρ0. (7)

τ̂ is calculated by τ̂ = βρ̂−1T̂ (ω−1)Kn where β = 15
√
π/[(5−2ω)(7−2ω)]. The hats on the non-dimensional variables

will be omitted in the following analysis for convenience.
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In the fully diffusive wall model, the gas molecules hit the wall are assumed to be fully accommodated with the
wall, and are re-emitted from the wall with an equilibrium distribution associated with the non-dimensional local wall
temperature Tw,

f = fM (ρw, 0, Tw) for ξ · nw > 0, (8)

where nw is the unit normal vector of the wall pointing to the flow domain, and fM (ρw, 0, Tw) stands for the
equilibrium distribution function of gas molecular with velocity ξ and the arguments of density ρw, temperature Tw,
and zero wall velocity. The density ρw is determined by the impermeable wall condition [37], i.e.,

ρw = −
√

2π

RTw

∫
ξ·nw<0

fξ · nwdξ (9)

The velocity space is first discretized in the particle velocity space with a chosen three-dimensional discrete velocity
grid {ξα|α = 1, 2, ...,M}. The discrete form of the Shakhov equation [Eq. (2)] is then expressed as

ξα ·∇fα = −1

τ
[fα − fSα ], (10)

where fα and fSα are the distribution function and equilibrium distribution function with discrete velocity ξα. The
macro variables are evaluated by taking numerical moments of fα as follows,

ρ =
∑
α

wαfα, ρU =
∑
α

wαξαfα, ρE =
1

2

∑
α

wα(ξ2α,x + ξ2α,y + ξ2α,z)fα, q =
1

2

∑
α

wαcα
(
c2α,x + c2α,y + c2α,z

)
fα, (11)

where ωα are the weight coefficient for the numerical quadrature. In practice, the discrete velocity set and the
corresponding numerical quadrature rules have to be carefully chosen to accurately capture the non-equilibrium
distribution function while keeping the overall computational cost manageable. A grid independence study in the
velocity space has been conducted in order to choose the optimized discrete velocity set. The detail results and
comparisons are presented in the Appendix. For Kn < 1, we use the half-range Gauss-Hermit quadrature; For higher
Knudsen number Kn ≥ 1, we use the following nonuniform discrete velocity set in each direction [21, 38],

ξi =
ξmax

(N − 1)3
(1−N + 2i)3, i = 0, 2, . . . , N − 1, (12)

and use the trapezoidal rule for the numerical quadrature. ξmax is the maximal discrete velocity component and is
set to be 5 in the current study. N is the number of discrete velocities in each axis direction and is fixed at N = 64
(see the Appendix).

B. Numerical schemes

We apply a recently developed iterative scheme [30] to solve the above discrete Shakhov equation [Eq. (10)]. The
novelty of the iterative scheme is that it permits us to store the distribution function of only one discrete velocity
instead of the whole set of discrete velocities, which can reduce the total memory requirement dramatically [30]. Thus,
sufficiently large velocity grid can be used with minimum computing resource requirement. Its efficiency for rarefied
internal gas flows has already been demonstrated previously [30]. We will only brief the algorithm here.

Equation (10) is solved using the following iterative method,

ξα ·∇fn+1
α = − 1

τn
[fn+1
α − fS,nα ]. (13)

At the beginning of the iteration, i.e., when n = 0, fS,0α is calculated from the guessed initial macro variables fields.
From Eq. (13) we can see there is a one-to-one correspondence between fS,n and fn+1. That is to say, for a given
macro field and hence the equilibrium distribution function fS,n, we can get the distribution function fn+1 that
satisfies Eq. (13). By solving for each discrete velocity, the guessed macro field can be corrected from the updated
fn+1. fS,n+1 can also be updated accordingly before the next iteration being performed.

If the advection term is discretized directly with the second order central scheme, it will result a linear system to
be solved. To avoid solving a linear system, but still attain a second order accuracy, Eq. (13) is rewritten as the
following delta form,

ξα∇∆fn+1
α +

∆fn+1
α

τn
= ξα∇fnα −

1

τn
[fnα − fS,nα ], (14)
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where ∆fn+1
α ≡ fn+1

α −fnα . The gradients on the left and right hand sides are discretized using the first order upwind
scheme and the second order central scheme respectively. Thus the second order accuracy at the ending of the iterating
process will be achieved since ∆fn+1

α , and accordingly, the left hand side of Eq. (14) will eventually approach to zero.
Due to the first order upwind discretization of the implicit part in Eq. (14), it can be solved using a space sweeping
algorithm, which is much simpler than solving a linear system resulting from applying a second-order discretization
directly on Eq. (13), especially for higher dimension cases. The iteration stops when the relative changes in the L2

norms of the density, temperature, velocity and heat flux fields between two consecutive steps are less than 10−9.

Since we store the distribution function of only one discrete velocity, when solving Eq. (14) for a specific discrete
velocity from n to n+ 1, fn is not known a priori. We solve this problem by using an inner iteration inside the step
from n to n+1, which is now called the outer iteration step [30]. The inner iteration step index is denoted by m. The
guessed initial value of the distribution function in the inner iteration is fn,0 = fS,n. The inner iteration updating
rule is

ξα∇∆fn,m+1
α +

∆fn,m+1
α

τn
= ξα∇fn,mα − 1

τn
[fn,mα − fS,nα ], (15)

where ∆fn,m+1
α ≡ fn,m+1

α − fn,mα . At the end of inner iteration, the distribution function is assigned to the new step
value of the outer iteration, i.e., fn+1 := fn,M , where M denotes the end step for the inner iteration and is determined
by the convergence criterion. We found the convergence criterion for the inner iteration is not as important as the
outer iteration. We set M = 10 for all of the cases if not stated otherwise. It should be noted that, introducing of the
inner iteration is merely a requirement to employ the memory reduction technique and achieve a second-order physical
space accuracy at the same time. Compared with the conventional iterative DVM schemes, such a treatment will
lead to much longer computing time (depends on M). But this memory reduction technique enables us to simulate a
large problem on a smaller number of nodes. In addition, we can initially use first-order upwind scheme on both side
of Eq. (14), then the inner iteration can converge in a single step [30]. This efficient first-order scheme can be used
to obtain a first-order solution of the macro fields quickly as an initial solution for the later run using second-order
scheme.

Equation (15) is discretized in the physical space using a cell-centered finite volume method. Linearly stretched
meshes are used with the smallest cell distributed near the walls. Due to the two-fold symmetry of the problem in the
X–Z plane, we only simulate a quarter of the full domain. For the detailed configuration of the meshes, the reader is
referred to the Appendix, where the grid independence verification in the spatial space has also been conducted. As
the gradient at the left hand side of Eq. (15) is discretized using the first order upwind scheme, the updating of the
distribution function can be executed sequentially among the cells along the direction of the discrete velocity. The
spatial space sweeping always starts from a corner, and the wall distribution function is linearly extrapolated from
the old step distribution function at interior of the flow domain. The diffusively reflected distribution function can
be then calculated as

fn,m+1
α = fMα (ρn,mw , 0, Tw) for ξα · nw > 0, (16)

where ρn,mw is calculated from [37]

ρn,mw = −
√

2π

RTw

∑
ξα·nw<0

fn,mα ξαnw. (17)

Due to the mismatch of m and m+ 1 in Eq. (16), the total mass in the flow domain is not conserved from step n to
step n+1. We fix this problem by simply scaling the density of the whole field by a constant after each outer iteration
step such the total mass is unchanged. The scale constant will converge to 1 as the outer iteration converges.

The above numerical method is implemented using C++ language and is parallelized in the velocity space with the
Message Passing Interface (MPI) library. The solver runs on Tianhe–2 supercomputing system with each compute
node equipped with two 12-core Intel Xeon E5-2695v2 (Ivy Bridge EP) CPUs and 64 GB of main memory. As
an indication of the overall computing cost, we listed the computing time and configurations of typical cases with
Kn = 0.01, 0.1, 1and10 in Table I. Note that without the memory reduction technique [30], the 4 nodes’ (96 MPI
processes in total) memory is not enough to hold the distribution function arrays for the cases with velocity grid size
of 643. It can bee seen that the current discretization scheme converges significantly slower for the low Kn cases.
This is because fS in Eq. (13) is treated explicitly. We note there have been more efficient asymptotical preserving
schemes and implicit schemes developed recently that overcome this issue, e.g. the (implicit) (D)UGKS [39–42].
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TABLE I. Computing time for typical cases.

Kn physical
grid size

velocity
grid size

num. of outer
iterations

num. of MPI
processes

computing time
(wall time)

0.01 40×40×80 163 11322 96 7.4h
0.1 40×40×80 283 673 96 1.6h
1 40×40×80 643 296 96 7.0h
10 40×40×80 643 411 96 11.4h

IV. RESULTS AND DISCUSSION

The flow fields simulated under different configurations are presented and analyzed in this section. The Knudsen
number range considered is [0.01, 10], covering from the early slip flow regime to the early free-molecular flow regime.
We also considered different temperature ratios (Tc/Th = 0.5, 0.8 and 0.9) between the hot and cold ends and
also different channel aspect ratios (Ly/Lx = 5, 2 and 1) at three typical Knudsen numbers (Kn = 0.1, 1 and 10).
When analyzing the effect of each parameter, we keep the other parameters fixed at the base configuration which is
Tc/Th = 0.5 and Ly/Lx = 5.
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FIG. 2. Streamlines and sliced contour plots of V-velocity at various Knudsen numbers. Only one quarter of the domain
(x ∈ [0, 0.5], z ∈ [0.5, 1]) is shown due to the two-fold symmetry in X and Z directions. In each sub-figure, the sliced contour
plots are at positions of y=0.5, 2.5 and 4.5. In each contour plots, the red solid line(s) indicate(s) the contour level of V = 0.
The streamlines are only shown in the diagonal plane. All cases are based on the base temperature and geometry configuration,
i.e., Tc/Th = 0.5 and Ly/Lx = 5.

A. General flow patterns

The effect of gas rarefaction to the overall flow field features is shown in Fig. 2, where the velocity streamlines and
slices along the Y direction with V-velocity contours are presented for the cases of different Knudsen numbers. The
figures show that the flow field changes significantly as Kn increases from 0.01 to 10.
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By comparing the two extreme cases, i.e., Kn = 0.01 and Kn = 10, we can find that, in both cases, there is a vortex
ring developed in the entire space of the channel, and the slip flow develops on the lateral walls. However, the flow
directions of the vortex ring or the slip flow are different in the two cases. For the case of Kn = 0.01, the slip flow
near the wall is from the cold to hot end (right to left in the figures), which can be explained by the thermal creep
flow theory. While for Kn = 10, the slip flow is from the hot to the cold end. It is noted that such opposite results
have been observed in previous two-dimensional configurations [18–20], and is explained by the balance between the
shear stress and tangential heat flux induced driven mechanisms [18, 20, 26]. We denote the vortex ring in the case of
Kn = 0.01 as type-I and in the case of Kn = 10 as type-II for convenience in the following discussions [see the labels
in Fig. 2(a), (d) and (f)].

From the flow fields at the intermediate Kn presented in Fig. 2, we can find how the type-I and type-II vortex rings
evolve as the gas is getting more rarefied. At Kn = 0.1, the cold-to-hot flow region expands compared with the case
of Kn = 0.01, and the overall magnitude of velocity is bigger. But the hot-to-cold slip flow can be observed on the
lateral walls near the hot end [see the sliced plots in Fig. 2(b)]. These small regions of hot-to-cold flow suggest that
four eddies have begun to develop there. As Kn increases to 0.2, the overall flow is getting weaker. The hot-to-cold
slip flow region spreads to the majority area of later walls and even appears in the vicinity of the lateral edges in the
cold part. At Kn = 0.5, the flow in the inner region gets further weaker. The hot-to-cold slip flow has developed on
almost the entire lateral walls and is getting stronger. The type-II vortex ring has developed from the four discrete
eddies and coexists with the type-I vortex ring. The type-I vortex ring is now constrained in a much smaller region.
As Kn increases to 1, the type-II vortex ring dominates the flow, while the type-I vortex ring resides only near the
cold end. The overall flow slows down but the flow near the lateral edges becomes stronger. In the limiting case, i.e.,
Kn = 10, the type-I vortex ring disappears and the type-II vortex ring is fully developed.
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FIG. 3. V-velocity (a), pressure (b) and temperature (c) profiles on the geometric center line of the channel along the Y
direction. : Kn = 0.01, : Kn = 0.1, : Kn = 0.2, : Kn = 0.5, : Kn = 1, : Kn = 10.
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FIG. 4. V-velocity profiles on the X-direction center lines of the slices shown in Fig. 2, i.e., slices at positions of y = 0.5 (a),
y = 2.5 (b) and y = 4.5 (c). : Kn = 0.01, : Kn = 0.1, : Kn = 0.2, : Kn = 0.5, : Kn = 1, : Kn = 10.
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TABLE II. Average heat flux q̄y on the hot (left) and cold (right) sides at various Knudsen numbers. All cases are based on
the base temperature and geometry configuration, i.e., Tc/Th = 0.5 and Ly/Lx = 5.

Kn Hot side Cold side
0.1 5.573× 10−3 4.729× 10−3

0.2 7.779× 10−3 7.150× 10−3

0.5 1.073× 10−2 1.060× 10−2

1 1.264× 10−2 1.280× 10−2

10 1.594× 10−2 1.607× 10−2
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FIG. 5. V-slip-velocity profiles on the Y-direction center line of the lateral walls (a) and the lateral edges (b). See the lines
GH and OP in Fig. 1 for the profiles’ location. The dashed black lines without symbols indicate the zero-velocity level. :
Kn = 0.01, : Kn = 0.1, : Kn = 0.2, : Kn = 0.5, : Kn = 1, : Kn = 10.

The V-velocity profiles in Figs. 3 and 4 provide more quantitative descriptions of the flow. Specifically, Figs. 3(a)-
(c) present the V-velocity, pressure and temperature profiles on the geometric center line of the channel along the Y
direction. Figure 3(a) shows that the maximum velocity is achieved at Kn = 0.1. It is also in accordance with the
streamline plots in Fig. 2 that the hot-to-cold flow in the center region of the channel only occurs in cases of Kn < 0.5.
For cases of Kn ≥ 0.5, the flow direction is reversed, even though Fig. 3(b) indicates the pressure ratio between the
cold and hot ends accumulates with the increase of Kn. Figure 3(c) shows that as Kn increases, both the temperature
jump and the slight non-linearity of the temperature distribution near the channel ends is more profound.

Figures 4(a)-(c) present the V-velocity profiles on the center lines in the X direction of the slices shown in Fig. 2.
We can observe that the spatial variation of the flow field on the cross-sections is more significant for the low Knudsen
number cases. Nevertheless, the variation near the wall is rapid for all of Kn considered. The results also suggest that
the maximum velocity appears at Kn = 0.1.

To examine the near wall slip flow in detail, we extract the V-component of the slip velocity profiles on the Y-
direction center line of the lateral sides and lateral edges, which are shown in Figs. 5(a) and 5(b), respectively (See
the line GH and OP in Fig. 1 for the profiles’ location). It can be seen that the slip velocity on the later edge is
larger than that on the lateral-face center lines for each Kn generally, except for the case of Kn = 0.01, where the two
profiles are very close to each other. Figure 5 also shows that the hot-to-cold flow develops quickly as Kn increases
from 0.01 to 0.2 and appears at the hot side of the lateral walls as early as Kn = 0.1.

To investigate the heat transfer characteristics of the problem at different flow regimes, the average heat fluxes q̄y
on the hot and cold ends of the channel are calculated and listed in Table II. The net heat flux from the two ends are
not zero as heat transfer occurs at the lateral walls. It can be seen that the heat transfer at both ends are enhanced
rapidly with the increase of Kn in the slip and early transition regimes, while they increase only slightly after Kn > 1.
It is also interesting to compare the average heat flux differences at the hot and cold ends. Table II shows the relative
difference of the average heat fluxes from the two ends drops quickly in the slip and early transition regimes. For
cases of Kn ≥ 0.5, the relative difference is only several percentages, indicating the total heat transfer from the lateral
sides is relatively small.
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FIG. 6. Streamlines and sliced contour plots of V-velocity at different Knudsen numbers and temperature ratios. Only one
quarter of the domain (x ∈ [0, 0.5], z ∈ [0.5, 1]) is shown due to the two-fold symmetry in X and Z directions. In each sub-figure,
the contour plots are on slices at positions of y=0.5, 2.5 and 4.5. In each contour plots, the red solid line(s) indicate(s) the
contour level of 0. The streamlines are only shown in the two diagonal planes. The geometric aspect ratio Ly/Lx is set as the
base configuration, i.e., Ly/Lx = 5.

B. Effect of the temperature ratio

The temperature ratio between the hot and cold ends is an important factor to the flow field since it is the
nonuniformity of the temperature field that induces the flow. We consider the effect of the temperature ratio by
simulating the problem with another two different temperature ratios, Tc/Th = 0.8 and 0.9, other than the 0.5 used
above. For each temperature ratio, the flow fields at Kn = 0.1, 1, 0.5 and 10 are obtained. It is worthwhile to mention
that, for thermally induced rarefied flows, a larger temperature ratio means stronger non-equilibrium effect, and the
DVM requires a fine discrete velocity grid to accurately predict the extremely slow velocity field. To make the full
three-dimensional computational cost manageable, only moderate temperature ratios are considered here.

The overall flow fields at Tc/Th = 0.8 and 0.9 are shown in Fig. 6. The flow fields at Tc/Th = 0.5 are not presented
in parallel since they are already shown in Fig. 2. As expected, from Figs. 6 and 2, we can observe that the overall
velocity magnitude decreases with the reducing of temperature difference. The results also show that the spatial
variation of the flow field along the Y direction becomes smaller as the temperature ratio approaches to 1. From the
case of Kn = 0.1, it can be clearly seen that the type-I vortex ring is elongated almost to the entire channel length as
the temperature increase to 0.9. However, the results at Kn = 1 also show the type-I vortex ring is further constrained
to an even smaller region near the cold end as Tc/Th increases from 0.5 to 0.8.

Figures 7 and 8 present the V-velocity profiles along the Y-direction center line of the channel and the X-direction
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FIG. 7. V-velocity profiles on the Y-direction center lines of the geometry. (a) Kn = 0.1, (b)Kn = 0.5, (c) Kn = 1, (d)
Kn = 10. In each sub-figure, different lines represent different temperature ratios ( : Tc/Th = 0.5, : Tc/Th = 0.8, :
Tc/Th = 0.9). The geometric aspect ratio Ly/Lx is set as the base configuration, i.e., Ly/Lx = 5.

center lines of the slices shown in Fig. 6, respectively for each Kn. The plots show that both the bulk and slip
velocity become smaller as the temperature difference decreases, which confirm the observation in Fig. 6 that the
spatial variation of the velocity field reduces as the temperature ratio approaches to 1. For the case of Kn = 10 and
Tc/Th = 0.5, some un-physical wrinkles appear in the center region of the channel as shown in Figs. 7(c) and 8(c),
which can be attributed to the typical ray effect caused by the numerical error as the discrete velocity grid cannot
fully resolve the highly non-equilibrium distribution function.

The average heat fluxes on the hot and cold ends at different temperature ratios are listed in Table III. For each
Kn, the average heat fluxes from the ends clearly drop as the temperature difference decreases, and drop quickly as
the temperature ratio increases from 0.8 to 0.9. It is also observed that at Kn = 0.1, the relative differences between
the average heat fluxes at the hot and cold ends reduces clearly with the decrease of the temperature difference. The
observations indicate that the heat and momentum transfer are strongly coupled for such flow.

C. Effect of the geometric aspect ratio

The effect of the geometric aspect ratio of the enclosure is also investigated. As the temperature gradient is imposed
along the Y direction, the ratio Ly/Lx has a much larger effect on the flow field than the other aspect ratio, i.e.,
Lz/Lx. Thus we only study the cases corresponding to different Ly/Lx while keeping Lx = Lz. The values of Ly/Lx
considered are 5, 2 and 1. For each aspect ratio, the flow field at Kn = 0.1, 1 and 10 are obtained. The overall flow
fields for the case of Ly/Lx = 5 have already been presented in Fig. 2, while those for the cases of Ly/Lx = 2 and 1
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FIG. 8. V-velocity profiles on the X-direction center lines of the slices shown in Fig. 6. (a) Kn = 0.1, (b)Kn = 0.5, (c) Kn = 1,
(d) Kn = 10. In each sub-figure, different lines represent different temperature ratios ( : Tc/Th = 0.5, : Tc/Th = 0.8,

: Tc/Th = 0.9). The geometric aspect ratio Ly/Lx is set as the base configuration, i.e., Ly/Lx = 5.

TABLE III. Average heat flux q̄y of the hot (left) and cold (right) ends at various Knudsen numbers and temperature ratios.
The geometric aspect ratio Ly/Lx is set as the base configuration, i.e., Ly/Lx = 5.

Kn Tc/Th Hot side Cold side
0.1 0.5 5.573× 10−3 4.729× 10−3

0.8 2.465× 10−3 2.345× 10−3

0.9 1.266× 10−3 1.236× 10−3

0.5 0.5 1.073× 10−2 1.060× 10−2

0.8 4.851× 10−3 4.838× 10−3

0.9 2.507× 10−3 2.504× 10−3

1 0.5 1.264× 10−2 1.280× 10−2

0.8 5.718× 10−3 5.744× 10−3

0.9 2.955× 10−3 2.961× 10−3

10 0.5 1.594× 10−2 1.607× 10−2

0.8 7.124× 10−3 7.142× 10−3

0.9 3.673× 10−3 3.669× 10−3
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FIG. 9. Streamlines and sliced contour plots of V-velocity at different Knudsen numbers and aspect ratios. Only one quarter
of the domain (x ∈ [0, 0.5], z ∈ [0.5, 1]) is shown due to the two-fold symmetry in X and Z directions. In each sub-figure, the
contour plot is on the slice at the center position along the Y direction. In each contour plots, the red solid line(s) indicate(s)
the contour level of 0. The streamlines are only shown in the two diagonal planes. The temperature ratio is set as the base
configuration, i.e., Tc/Th = 0.5.

are shown in Fig. 9. Comparing the results in Fig. 9 with those in Fig. 2, we can observe that the flow field becomes
more complex as Ly/Lx reduces. For small Ly/Lx, the type-I vortex ring near the cold end occupies a much larger
portion of the channel than the cases of Ly/Lx = 5. Moreover, for the cases of Ly/Lx = 1, the type-I vortex ring
dominates the flow field even though Kn increases to 10 [see Fig. 9(e)]. The strong type-I vortex ring in the cases of
Ly/Lx = 1 leads to an interesting contrast that, for Ly/Lx = 5 and 2, the flow direction along the Y-direction center
lines inverts as Kn increases from 0.1 to 10, while for Ly/Lx = 1, such invert never happens. This can be seen more
clearly in Fig. 10, where the V-velocity profiles along the Y-direction center lines are shown. Comparing Figs. 10(a),
(b) and (c), it can be seen that the V-velocity profiles for the cases of Ly/Lx = 1 (blue lines in the figures) are always
positive.

To analyze the flow features more clearly, we extract the flow fields on the Y–Z symmetric plane of the channel
and show the streamlines and isothermals in Fig. 11. More detailed vortex ring structures can be observed from the
two-dimensional slices. Figure 11 shows that, for Kn = 0.1, the flow is relatively simple and only type-I vortex ring
appears. As Kn increase to 1, the type-II vortex ring develops quickly in the cases of Ly/Lx = 2 and a new vortex ring
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FIG. 10. V-velocity profiles along the Y-direction center lines of the channel at different aspect ratios (( : Ly/Lx = 1, :
Ly/Lx = 2, : Ly/Lx = 5) .) and Knudsen numbers. (a) Kn = 0.1, (b) Kn = 1, (c) Kn = 10. The temperature ratio is set
as the base configuration, i.e., Tc/Th = 0.5.

is formed near the hot end [see Fig. 11(d)]. The new vortex is not observed as Kn increases further to 10, in which
case the type-II vortex ring dominates the flow field [see Fig. 11(f)]. For the cases of Ly/Lx = 1, the development
of type-II vortex ring is not so quick when Kn increases. This is because the type-II vortex ring develops from the
hot end edges to the cold end, but the development is limited soon by the type-I vortex ring due to the limited space
along the Y direction. In addition, we can observe a new vortex ring near the hot end in the cases of Ly/Lx = 1 as
Kn increases to 10, which are not identified in other cases [see Fig. 11(e)].

The average heat flux on the two ends are also measured for each of the aspect ratios and the results are listed in
Table IV. Obviously, the heat flux is enhanced due to the enlarged temperature gradient as Ly/Lx decreases.

TABLE IV. Average heat flux q̄y of the hot (left) and cold (right) ends at various Knudsen numbers and channel aspect ratios.

Kn Ly/Lx Cold side Hot side
0.1 1 2.509× 10−2 2.477× 10−2

2 1.349× 10−2 1.241× 10−2

5 5.573× 10−3 4.729× 10−3

1 1 4.966× 10−2 5.055× 10−2

2 2.939× 10−2 3.015× 10−2

5 1.264× 10−2 1.280× 10−2

10 1 5.652× 10−2 5.668× 10−2

2 3.513× 10−2 3.532× 10−2

5 1.594× 10−2 1.607× 10−2

V. CONCLUDING REMARKS

The thermally induced flow rarefied gas flow in a three-dimensional enclosure with a square cross-section is numer-
ically investigated using a discrete velocity method based on the Shakhov kinetic equation. The Knudsen number
dependencies of the vortex rings formed in the enclosure and their developments have been analyzed. Effects of the
temperature ratio between the enclosure walls and the aspect ratio have been investigated. The heat transfer behavior
has also been studied.

The vortex ring structures vary significantly with the changing of Kn in the early transition regime. The previously
reported invert of thermal transpiration flow direction near the non-isothermal walls in similar but two-dimensional
configurations has also been observed in this three-dimensional enclosure. The hot-to-cold slip flow begins near the
hot-end edges in the early transition regime and quickly develops into a vortex ring as Kn increases. As a special
feature due to the three-dimensionality, the slip flow near the lateral edges is much stronger than near the lateral
sides. The temperature ratio and aspect ratio are found to influence the flow field and heat transfer as both of them
affect the degree of non-equilibrium of the distribution function. Especially, for a cubic-like enclosure, a new type of
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(a) Kn = 0.1, Ly/Lx=1 (b) Kn = 0.1, Ly/Lx=2

(c) Kn = 1, Ly/Lx=1 (d) Kn = 1, Ly/Lx=2

(e) Kn = 10, Ly/Lx=1 (f) Kn = 10, Ly/Lx=2

FIG. 11. Streamlines and contour plots of temperature on the Y–Z symmetric plane at different Knudsen numbers and aspect
ratios. The temperature ratio is set as the base configuration, i.e., Tc/Th = 0.5. Only one half of the symmetric plane
(z ∈ [0, 0.5]) is shown due to the symmetry in Z direction.

vortex ring is observed near the hot-end edges at high Knudsen number and is not previously observed in studies of
two-dimensional similar configurations.

We believed that the current three-dimensional study of thermally induced flow has scientific interest as the detailed
flow structures have been obtained. The cases studied can also serve as reference examples to benchmark novel efficient
numerical method for modeling extremely low-speed rarefied gas flow. In addition, the results and analyses are also
valuable for guiding practical designs of devices in MEMS and vacuum industries where thermally induced flows are
important.
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Appendix: Grid independence verifications in both physical and velocity spaces

For the currently adopted deterministic computation of the Shakhov equation, the grid independencies in both the
physical and velocity spaces should be verified. As the thermally induced flow is extremely slow compared with the
molecular thermal velocity and the discrete velocities, it is very sensitive to the choice of the discrete velocity set and
the numerical quadrature rule. The non-smoothness of the distribution function for high Knudsen number flow makes
the problem more challenging. On the contrary, as the shear flow near the wall is not strong, i.e., the characteristic
Reynolds number is small, the numerical results are not sensitive to the physical space grid. We show here only the
verification of results on the velocity grid for the case of Kn = 10, and on the physical space grid for the cases of
Kn = 0.01 and Kn = 0.1.

A detailed comparison has been conducted with regard to the choice of numerical quadrature rules and grid reso-
lutions in velocity space. The quadrature rules tested include the compound Newton-Cotes rule, sphere coordinate
based Gauss-Legendre rule [43] and the trapezoidal rule with nonuniform grid [see Eq. (12)]. The trapezoidal rule with
nonuniform grid gives the best results with the same computing expense when the Knudsen number is high. Thus we
adopted this rule for all high Knudsen number cases. The velocities profiles along the geometric center lines of the
channel obtained with different numbers of grid points [M in Eq. (12)] are shown in Fig. 12. The two velocity grids
used are 643 and 1283 points, respectively. The physical space grid used is the coarser mesh identified by the physical
space grid independence study (see below). Figure 12 shows that the two results agree quite well with each other,
except that the velocity profile with the 643 velocity grid is slightly non-smooth in the center region of the channel.
Given such overall acceptable agreements, we use the 643 velocity grid for all cases with Kn ≥ 1. The velocity grids
used for other Knudsen numbers are listed in Table V.

The physical space grids used for all cases are linearly stretched meshes with the cell size varies exponentially from
the walls to the channel center. We simulate the cases of Kn = 0.01 and 0.1 on two grids with sizes of 40 × 40 × 80
(the coarse grid) and 80× 80× 120 (the fine grid). The smallest cell sizes (∆xmin×∆ymin×∆zmin) near the wall are
0.023 and 0.013, respectively, as listed in Table VI. The V-velocity profiles across the center lines of the channel are
presented in Fig. 13, from which we can see the results on the fine and coarse grids match with each other quite well.
Thus, we use the coarse grid for all cases with Ly/Lx = 5. For cases with other aspect ratios, i.e., Ly/Lx = 2 and 1,
we simply change the cell number in the Y direction, i.e., NY in Table VI.
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FIG. 12. V-velocity profiles along the X-(a) and Y-(b) direction center lines obtained on different velocity space grids ( :
nonuniform 643, : nonuniform 1283) for the cases of Kn = 10.
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FIG. 13. V-velocity profiles along the X-(a) and Y-(b) direction center lines obtained on different physical space grids for the
cases of Kn = 0.01 and Kn = 0.1. : coarse grid Kn = 0.01, : fine grid Kn = 0.01, : coarse grid Kn = 0.1, : fine
grid Kn = 0.1.

TABLE V. Discrete velocity sets used in the simulations.

Kn Discrete velocity set Velocity grid size
0.01 Gauss-Hermite 16× 16× 16
0.1 Gauss-Hermite 28× 28× 28
0.2 Gauss-Hermite 28× 28× 28
0.5 Gauss-Hermite 28× 28× 28
1 Nonuniform 64× 64× 64
10 Nonuniform 64× 64× 64

TABLE VI. Physical space grids used in the simulations for different channel aspect ratios. The entry with 5* represents the
finer physical space mesh used in the grid independence study. All grids are linearly stretched grid with the cell size in each
direction grows exponentially towards the geometrical center.

Ly/Lx NX(NZ) NY ∆xmin (∆zmin) ∆ymin

5 40 80 0.02 0.02
5* 60 120 0.01 0.01
2 40 50 0.02 0.02
1 40 40 0.02 0.02
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