
dugksFoam: An open source OpenFOAM solver for the
Boltzmann model equation

Lianhua Zhua, Songze Chena,∗, Zhaoli Guoa,∗

aState Key Laboratory of Coal Combustion, Huazhong University of Science and
Technology,Wuhan, 430074, China

Abstract

A deterministic Boltzmann model equation solver called dugksFoam has been
developed in the framework of the open source CFD toolbox OpenFOAM. The
solver adopts the discrete unified gas kinetic scheme (Guo et al., Phys. Rev.
E, 91, 033313 (2015)) with the Shakhov collision model. It has been validated
by simulating several test cases covering different flow regimes including the
one dimensional shock tube problem, a two dimensional thermal induced flow
and the three dimensional lid-driven cavity flow. The solver features a parallel
computing ability based on the velocity space decomposition, which is different
from the physical space decomposition based approach provided by the Open-
FOAM framework. The two decomposition approaches have been compared in
both two and three dimensional cases. The parallel performance improves sig-
nificantly using the newly implemented approach. A speed up by two orders of
magnitudes has been observed using 256 cores on a small cluster.

Keywords: Boltzmann model equation, OpenFOAM, discrete velocity
method, parallel computing

PROGRAM SUMMARY
Program Title: dugksFoam
Journal Reference: CPC Program Library, Queen’s University, Belfast, N. Ireland
Catalogue identifier:
Licensing provisions: The MIT License
Programming language: C++
Computer: All capable of running Linux
Operating system: Linux.
RAM: Hundreds of MB to hundreds of GB depending on problem size
Number of processors used: Up to several hundred.
Supplementary material:
Keywords: Boltzmann model equation, Discrete Velocity Method, OpenFOAM, par-

∗Corresponding author
Email addresses: lhzhu@hust.edu.cn (Lianhua Zhu), jacksongze@hust.edu.cn (Songze

Chen), zlguo@hust.edu.cn (Zhaoli Guo)

Preprint submitted to Computer Physics Communication November 21, 2019

allel computing etc.
Classification:
External routines/libraries: OpenFOAM (http://www.openfoam.org)
Nature of problem: Solving the Boltzmann equation with Shakhov model explicitly.
Solution method: Discrete unified gas kinetic scheme (DUGKS)
Restrictions: Symmetric boundary condition can only be applied at walls parallel to
axis directions.
Running time: Hours to days depending on problem sizes.

1. Introduction

In rarefied gas flow or micro gas flow, the mean free path of molecules λ is
comparable to or even larger than the geometric length scale L. At such condi-
tion, the velocity distribution of the molecules deviates from the local equilib-
rium state due to insufficient inter-molecular collisions. The well-known Euler
equations or Navier-Stokes-Fourier (NSF) equations are not accurate in describ-
ing such non-equilibrium flows [1]. A common criterion for the breakdown of
the NSF equation is Kn < 0.001, where Kn = λ/L is the Knudsen number. For
0.001 < Kn < 0.1, the NSF equation can still give reasonable results provided
that the wall boundaries are treated with slip boundary condition. For even
larger Knudsen number (Kn > 0.1), the Boltzmann equation should be used as
the governing equation [1].

The Boltzmann equation is a classical kinetic equation and reads as follows,

∂f

∂t
+ v · ∇f = Ω(f, f) (1)

where f = f(v,x, t) is the velocity distribution function of particles with ve-
locity v at x and time t. The RHS of the equation is the collision term which
involves a complex integral expression. The high-dimensionality of the Boltz-
mann equation make it extremely expensive to solve directly in the discrete
phase space in a deterministic way. Early attempts to solve the Boltzmann equa-
tion are limited to two-dimensional or axisymmetric flows [2, 3, 4, 5, 6, 7, 8, 9].
Up to now, the workhorse for practical high-speed non-equilibrium flows is the
direct simulation Monte Carlo (DSMC) method [1] which is a stochastic ap-
proach for the Boltzmann equation. However, with the fast growing of compu-
tational power and the increasing demand of modeling low-speed micro flows
in emerging Microelectromechanical Systems (MEMS) industry, there is a re-
newed interest in deterministic methods for Boltzmann equation or its model
equations [10], because the deterministic approach has many advantages over
the DSMC method. For example, some asymptotic preserving schemes have
been developed for multiscale simulations [11, 12] and implicit schemes for ac-
celerating steady flows simulations [4, 13, 14]. Another advantage of the deter-
ministic approach is that the dimensionality of phase space can be reduced for
low dimensional problems [15] when adopting the relaxation time approximated
collision models [16, 17, 18].

2

http://www.openfoam.org

Even though the processing speed of single central processing unit (CPU)
core has improved significantly in the last decades, practical solving of the Boltz-
mann equation or even its model equations in three-dimensional space still needs
parallel computation, considering the computational complexity and the large
memory consumption. There have been several parallel three-dimensional deter-
ministic Boltzmann solvers reported in the literature [19, 20, 21, 22, 23, 24, 25].
But few open-source deterministic Boltzmann model equation solvers are avail-
able with unstructured mesh ability. On the other hand, many open-source
parallel DSMC codes are available, such as the dsmcFoam [26]. In this paper,
we will present an open-source deterministic Boltzmann model equation solver
entitled dugksFoam. The solver is developed in the framework of OpenFOAM,
which is a popular high-level toolbox for computational continuum mechanics
(mainly for computational fluid dynamics) [27, 28]. The kinetic model used
is the Shakhov model [18], and the numerical scheme employed is the recently
proposed discrete unified gas kinetic schemes (DUGKS) [29], which is a discrete-
velocity method with asymptotic preserving property. The DUGKS has been
extended to unstructured mesh previously in the framework of OpenFOAM as
a prototype of this solver [30].

The rest of this paper is organized as following. In Sec. 2, the Boltzmann-
Shakhov model and the DUGKS are presented. In Sec. 3, we explain the im-
plementation of dugksFoam in the framework of OpenFOAM and discuss two
different domain decomposition strategies for message-passing-interface (MPI)
communication, i.e., physical space decomposition and velocity space decom-
position. In Sec. 4, a series of benchmark tests covering both low-speed and
high-speed flows in a wide range of Knudsen numbers are simulated to validate
this solver. In Sec. 5, the parallel performance is evaluated in detail by simulat-
ing both two-dimensional and three-dimensional flows. In the last section, some
comments are made.

2. Theoretical background and numerical scheme

2.1. The Boltzmann-Shakhov model

The Shakhov model is a relaxation time approximation of the original Boltz-
mann collision kernel. Unlike the well-known BGK approximation, in Shakhov
model the Prandtl number can be adjusted freely [18]. The Boltzmann equation
with Shakhov model in D dimensional spatial space reads as,

∂f

∂t
+ ξ · ∇f = −1

τ

[
f − fS

]
, (2)

where f = f(ξ,η, ζ,x, t) is the velocity distribution function of particles with
velocity v = (ξ,η) = (ξ1, . . . , ξD, ηD+1, . . . , η3) in three dimensional velocity
space at position x = (x1, . . . , xD) and time t. For example, for one-dimensional
problems, D = 1, ξ = (v1) and η = (v2, v3), while for two-dimensional problems,
D = 2, ξ = (v1, v2) and η = (v3). The partitioning of v into ξ and η is a
preparation for dimension reduction. ζ is vector of length K representing the

3

internal degree of freedom. fS is the Shakhov equilibrium distribution function
given by the Maxwellian distribution function fM plus a heat flux correction
term

fS = fM
[
1 + (1− Pr)

c · q
5pRT

(
c2 + η2

RT
− 5

)]
= fM + fPr,

fM =
ρ

(2πRT)(3+K)/2
exp

(
−c

2 + η2 + ζ2

2RT

)
,

(3)

where Pr is the Prandtl number and c = ξ−U is the peculiar velocity around the
fluid velocity U ; ρ, T , q are the density, temperature and heat flux, respectively.
R is the specific gas constant. The pressure p is related to the density and
temperature by p = ρRT . The collision time τ in Eq. (2) is calculated from the
dynamic viscosity µ and the pressure p by τ = µ/p. The dynamic viscosity µ
depends on the temperature as

µ = µref

(
T

Tref

)ω
, (4)

where µref is the viscosity at the reference temperature Tref, and the exponent
ω is a constant depends on the inter-molecular interaction model.

The conservative flow variables W ≡ (ρ, ρU , ρE)T are calculated as mo-
ments of the distribution function,

W =

∫
ψfdξdηdζ, (5)

where ψ =
(
1, ξ, 12 (ξ2 + η2 + ζ2)

)T
and ρE = 1

2ρU
2 +CVT = 1

2ρU
2 +p/(γ−1),

with CV = (3 + K)ρR/2 and γ = (K + 5)/(K + 3) being the heat capacity
at constant volume and the specific heat ratio, respectively. The heat flux q is
defined by

q =
1

2

∫
c(c2 + η2 + ζ2)fdξdηdζ. (6)

The dependencies of f on ζ for rotational-equilibrium flows and on η for
lower dimensional flows (D < 3) can be reduced using the standard procedure
proposed by Chu [15]. By introducing the flowing velocity distribution functions,

Φ =

[
g
h

]
=

∫ ∞
−∞

∫ ∞
−∞

[
1

η2 + ζ2

]
f(ξ,η, ζ,x, t)dηdζ (7)

and integrating Eq. (2) over the range of [−∞,∞] with respect to η and ζ, we
have

∂Φ

∂t
+ ξ ·∇Φ = −1

τ
[Φ− ΦS], (8)

4

where the reduced equilibrium distribution functions gS and hS are

gS = gM
[
1 + (1− Pr)

c · q
5pRT

(
c2

RT
−D − 2

)]
,

hS = gM
{
K + 3−D + (1− Pr)

c · q
5pRT

[(
c2

RT
−D

)
(K + 3−D)− 2K

]}
RT,

gM =
ρ

(2πRT)D/2
exp

[
− c2

2RT

]
.

(9)

The conservative macroscopic variables can be computed from these reduced
distribution functions as

ρ =

∫
gdξ, ρU =

∫
ξgdξ, ρE =

1

2

∫
(ξ2g + h)dξ, (10)

and the heat flux can be computed as

q =
1

2

∫
c(c2g + h)dξ. (11)

2.2. Discrete unified gas kinetic scheme

The discrete unified gas kinetic scheme (DUGKS) is a finite-volume scheme
for the discrete-velocity Boltzmann model [29]. The governing equation is firstly
discretized in the velocity space with chosen discrete velocity points {ξα, α =
1, 2, ...,M},

∂Φα
∂t

+ ξα ·∇Φα = −1

τ
[Φα − ΦSα] ≡ Ωα, (12)

where Φα and ΦSα are the distribution function and equilibrium distribution
function with discrete velocity ξα. Equation (12) is then discretized in the
spatial space with the following cell-centered finite-volume scheme [29],

Φn+1
α,k − Φnα,k +

∆t

|Vk|
Fn+1/2
α,k =

∆t

2
[Ωn+1
α,k + Ωnα,k], k = 1, 2, . . . , N, (13)

where Φnα,k is the cell averaged value of Φα in cell k at time level tn, |Vk| is the

volume of the cell, N is total number of cells and ∆t = tn+1 − tn is the time

step. The flux Fn+1/2
α,k is evaluated at middle time step by [30],

Fn+1/2
α,k =

∑
l

ξα · Sk,lΦn+1/2
α,k,l , (14)

where Sk,l is the surface vector of face l belonging to cell k, and Φ
n+1/2
α,k,l is

the distribution function at the center of face l at the middle time step. In
DUGKS, the distribution functions at cell faces are constructed in a physical

5

way by solving the governing equation locally along the characteristic line that
ends at the cell face center xf from tn to tn+1/2,

Φn+1/2
α (xf)− Φnα(xf − ξαs) = ∆s/2

[
Ωn+1/2
α (xf) + Ωnα(xf − ξαs)

]
, (15)

where s = tn+1/2 − tn is the half time step. Equation (15) can be rewritten in
an explicit form by introducing Φ̄ = Φ− s/2Ω and Φ̄+ = Φ + s/2Ω,

Φ̄n+1/2
α (xf) = Φ̄+,n

α (xf − ξα∆t/2). (16)

Φ̄+,n
α (xf − ξα∆t/2) is calculated using first order Taylor expansion from the

upstream cell center [30]. The gradients of Φ̄+,n
α at cell centers are evaluated

using Gauss linear scheme or least square method [31]. The accuracy of gradient
evaluation using Gauss linear scheme and the least square method is similar for
simple regular mesh of quadrilateral or hexahedral elements [32]. Generally, the
least square approach is more tolerant to mesh distortions which are inevitable in
unstructured meshes of complex geometries [33], but for highly stretched meshes
in the presence of curvature, the Gauss linear scheme is more accurate [34]. The
calculated gradients are limited with the Venkatakrishnan limiter which is a
popular choice for unstructured meshes [31]. The strength of the limiter can be
adjusted by a factor in the range of [0, 1], where 0 means no limiting and 1 means
full limiting [28]. After getting Φ̄n+1/2(xf), the macro variables Wn+1/2(xf)
can be obtained by taking moments of Φ̄n+1/2(xf) due to the compatibility
condition. Then the original distribution function Φn+1/2(xf) can be recovered
from the definition of Φ̄.

Equation (13) can be rewritten in the following explicit form by introducing
another two transformed distribution functions, Φ̃ = Φ − ∆t/2Ω and Φ̃+ =
Φ + ∆t/2Ω,

Φ̃n+1
α,k = Φ̃+,n

α,k −
∆t

|Vk|
Fn+1/2
α,k . (17)

In the actual implementation, Φ̃ is tracked instead of Φ. Φ̃+ and Φ̄+ are calcu-
lated from Φ̃ by [29]

Φ̄+ =
2τ − s

2τ + ∆t
Φ̃ +

3s

2τ + ∆t
ΦS , Φ̃+ =

2τ −∆t

2τ + ∆t
Φ̃ +

2∆t

2τ + ∆t
ΦS . (18)

The time step in the DUGKS is determined by the Courant-Friedrichs-Lewy
(CFL) condition,

∆t = α

(
∆x

|U |+ |ξ|

)
min

, (19)

where 0 < α < 1 is the CFL number and ∆x is the distance between the centers
of two adjacent cells that share an interface. Appropriate velocity grid is chosen
according to a prior estimation of the deviation of the distribution function from
the equilibrium distribution. The moments (macro variables) are approximated
using numerical quadrature. For low-speed near-equilibrium flows, the Gauss-
Hermit or half-range Gauss-Hermit quadrature are common choices. While for

6

high-speed or highly non-equilibrium flows, composite Newton-Cotes quadrature
is more appropriate.

The major evolving steps of Φ̃ and W in DUGKS are listed below [29],

1. Initialize Φ̃0
α using the equilibrium distribution in each cell center;

2. Calculate Φ̄+,n
α and their limited gradients at cell centers;

3. Calculate Φ̄
n+1/2
α at cell faces;

4. Calculate W n+1/2 at cell faces;

5. Calculate Φn+1/2 at cell faces;

6. Calculate Φ̃n+1 at cell centers;

7. Calculate W n+1 at cell centers;

8. If not converged, go back to Step 2.

Because DUGKS is an explicit scheme, for steady problems, the flow field will
be assumed to be steady when the average relative change of the macro fields
in two-successive steps are less than a given tolerance ε (10−8 for instance),

εn =

∑
i |Wn+1 −Wn|∑

iWn
i

< ε, for W ∈ {ρ,U , T}, (20)

where the summations are taken over all cells.

3. Implementation in OpenFOAM

The OpenFOAM is essentially a numerical solving environment for partial
differential equations (PDE) commonly seen in fluid dynamics. It is developed
using the C++ programming language and applies the object-oriented program-
ming (OOP) and generic programming techniques intensively. The variables to
be solved in the PDEs are abstracted as geometrical fields (GeometricField) [35],
which is essentially an encapsulation of the discrete field data associated with the
geometrical mesh and its boundary information. Common mathematical tensor
operators such as +,-, scalar product and vector product have been reloaded or
implemented at the field level to simplify the calculations of GeometricField.
The OpenFOAM also provides many differential operators such as the gradient
operator and the Laplacian operator to manipulate the fields. Moreover, differ-
ent discretization schemes for the differential operators can be chosen or even
be implemented by the users.

Applying the OpenFOAM field operation techniques to the relaxation time
approximated Boltzmann model equations is straightforward, because after dis-
cretizing of the governing equation in the velocity space, each of the discrete-
velocity kinetic equations is a simple linear convection equation with a source
term. The distribution functions at each discrete velocity points are defined
as scalar type GeometricField. The solving procedures are then mapped to a
series of C++ expressions of field operations and manipulations.

7

Figure 1: Main components of dugksFoam.

3.1. Structure of the solver

In dugksFoam, we organized the data fields and solving procedures into a
macroscopic level and a microscopic level. Accordingly, two main classes, i.e.,
the fvDVM and the discreteVelocity have been implemented, as illustrated in
Fig. 1. The fvDVM stores the global information with respect to the discrete
velocity space, such as macroscopic fields, physical parameters, solving control
parameters and the discrete velocity set. There is only one instance of fvDVM in
the running solver. The discreteVelocity, on the other hand, stores the data
specific only to a certain discrete velocity, i.e., the discrete velocity ξα, its weight
wα and the distribution functions fields φ̃α, φ̃+α , φ̄α, φ̄+α and ∇φ̄+α appearing in
the evolution of DUGKS. The fvDVM keeps an array of references to all of the
discreteVelocity instances, from which it can evaluate the moments and then
update the macro fields.

3.2. Implementation of boundary conditions

The distribution functions coming into the computational domain from the
boundaries have to be specified and should be consistent with the physical
boundary information which are often given in terms of macro variables. We
have implemented several commonly used boundary condition (B.C.) types for
the distribution function fields. The specifications of those B.C. types at each
boundary patch is indicated by the corresponding density field boundary con-
ditions which are provided initially in the file 0/rho of a standard OpenFOAM
run case, because only macro fields are provided in the initialization. The rule of
mapping of B.C. types from the density field to the distribution function fields
are listed in Table. 1.

In dugksFoam, walls are treated as purely diffusive boundaries, which means
the incoming distribution function from the walls are set to be Maxwellian and
no-penetration condition is satisfied. For free-stream boundaries, the incom-
ing distribution functions are also set to be Maxwellian and only depends on
the free stream macroscopic condition. For symmetric boundaries, specular re-
flective boundary for the distribution function fields is applied. Besides the
B.C. types listed in Table. 1, there are also cyclic and processor B.C. types

8

Physical B.C. Macro density Distribution functions
wall calculatedMaxwell* maxwellWall*
free streaming fixedValue mixed*
symmetric symmetryMod* DVMsymmetry*

Table 1: Map of boundary condition type between the macro density field and distribution
function field. Items without * are boundary condition types provided by OpenFOAM.

which are provided by OpenFOAM ready to be used in dugksFoam. The cyclic
B.C. type is used for periodical boundaries and processor B.C. type is assigned
to communication interfaces automatically after the physical domain decompo-
sition (see below).

3.3. MPI Parallel computation

Parallel computing is an indispensable feature for any practical kinetic equa-
tion solver due to the high computational cost in terms of both floating point op-
erations and memory consumptions. Because of the huge memory consumptions
of kinetic equation solvers, their parallelization have to adopt the distributed
memory model which is often popularly implemented using a Beowulf cluster
and the message-passing-interface (MPI) library for inter-process communica-
tion. In parallel computing, the computation task is divided and assigned to
the all of the processors evolved. This process is referred as task decomposition.
In Euler/Naiver-Stokes equation based CFD solvers, the task decomposition is
simply the partitioning of the physical space mesh. While for direct kinetic
equation solver, the high dimensionality of equation and the locality of the col-
lision term offer more flexibility in choosing the task decomposition method [3].
The computation task can be decomposed in either the spatial space or the
velocity space. There has been several investigations and comparisons of dif-
ferent decomposition strategies in the literature [3, 19, 21, 14]. For example,
Titarev et al. compared the parallel efficiency of the physical space decompo-
sition (PSD) and the velocity space decomposition (VSD) approaches for their
three dimensional implicit Boltzmann solver and demonstrated its good scala-
bility over one thousands of processors using the PSD approach [14]. Beside
the VSD and PSD approaches, a hybrid decomposition approach was also pro-
posed [25], in which the physical space is decomposed and the communication
boundary data are exchanged using MPI, and in each physical sub-domain the
discrete velocity space is decomposed and the sub-task is further parallelized us-
ing the OpenMP [25]. This approach can take advantages of modern multi-core
CPUs and large memory size.

In the current version of dugksFoam, both the PSD and the VSD strategies
are implemented. The actual decomposition method can be specified through
an option when starting dugksFoam.

3.3.1. Physical space decomposition (PSD)

By the PSD, each CPU core processes only a sub-domain of the whole phys-
ical computation domain but accounts for all discrete velocities. The ability

9

of PSD based parallel computation in the dugksFoam is provided by the offi-
cial OpenFOAM. The OpenFOAM has implemented an elegant way employing
the zero-halo-cell [36] concept to account for the communication between the
sub-domains. The communication boundaries are assigned with the processor

type B.C., which is just like normal types of B.C.. The boundary field of the
processor type boundary patch serves as the role of halo-cells data in many
other halo-cell based domain decomposition solvers. Using such a design, the
MPI communications are transparent to solver developers.

Applying the processor type B.C. at communication boundaries of the
distribution function fields means that for each of the discrete velocities, a pair of
MPI send and receive functions will be called at every communication boundary
at each time step. If the number of discrete velocities is large but the number of
cells is small, the communication network will be overwhelmed by a large number
of tiny messages. In addition, it is found that in OpenFOAM even though the
non-blocking version of MPI send/receive can be used, the computation in the
bulk internal domain is not overlapped with the communication. Considering
the above factors, the parallel efficiency of the current solver is not expected
to be high using the PSD approach, particularly for high speed or highly non-
equilibrium flows which require a large number of discrete velocities.

3.3.2. Velocity space decomposition (VSD)

By the VSD approach, each CPU core only processes a subset of the discrete
velocities but accounts for all of the physical space cells. The communication
only occurs when evaluating the moments. Before the communication, each
core will hold only a fraction of the moments which are calculated from the
discrete velocities belonging to the core. After the collective communication,
each core will get the completed moments. The communication can be easily
done by calling the MPI_Allreduce procedure. Actually, this approach is rela-
tively simpler to implement than the PSD based one. We implement the class
fieldMPIreducer to do the communication job in dugksFoam (see in Fig. 1).

The VSD, however, also comes with several disadvantages. When perform-
ing global reductions, each message contains the moments of the whole physical
domain, which means for a large cell numbers, the message sizes is very large.
This can results in deficient communications and hence declined parallel effi-
ciency for large scale 3D problems with millions of cells. In addition, global
reductions involving a large number of MPI processes also tend to be inefficient
because they are natural barriers between computations.

4. Benchmark tests

We use three benchmark tests to verify the implementation of dugksFoam.
The first one is the one-dimensional shock tube problem in all flow regimes. The
second one is a thermal creep flow problem in a square cavity in slip and tran-
sition regimes. The last one is the lid-driven cubic cavity flow in the transition
regime. For each of the tests, our results are compared with those in literature

10

or DSMC results. The setups of the three cases have been included in the source
code package.

4.1. Shock tube problem

This case is a classical benchmark problem for compressible Euler or NS
solvers. In this work, we compute it in different flow regimes. The parameters
are set to be identical with those in [29]. For this problem, the parameters are
often given in the non-dimensional form. However in OpenFOAM, all input
physical parameters and flow fields are defined with dimensions. We still use
the nondimensionalized values in the setup as if we are solving a modeled di-
mensional flow system with a virtual type of gas molecule. The computation
domain is −0.5 ≤ x ≤ 0.5 and the initial density, velocity and pressure are set
to be

(ρ, U, p) =

{
(ρ1, U1, p1) = (1.0, 0.0, 1.0) x ≤ 0;

(ρ2, U2, p2) = (0.125, 0.0, 0.1) x > 0.
(21)

The specific gas constant is R = 0.5, such that the initial temperature in the
left part of the domain is T1 = 2. The gas is modeled as hard-sphere molecules
such that the viscosity-temperature dependence is µ = µref(T/Tref)

0.5, where T0
is the reference temperature. The reference viscosity is related to the reference
mean free path λ0 by [1]

λ0 =
16

5

µ0

p0

√
RT0
2π

, (22)

where p0 is the reference pressure. The left initial state is taken as the reference
state. Using the domain length as reference length, the characteristic Knudsen
number is Kn = λ0. By adjusting µ0 from 10−5 to 10, Kn varies from 1.277 ×
10−5 to 12.77. The internal degree of freedom is K = 2, and the Prandtl number
is Pr = 2/3. The computational domain is divided into 100 uniform cells and
the time step size is fixed at ∆t = 0.04. Such a configuration is the same as
Ref. [29]. The strength of the gradient limiter is set to be ψ = 1, which means
full limiting (Sec. 2.2). The simulations stop at tend = 0.15, at which the flow
fields are compared with the results in [29].

The density, temperature and velocity distributions with µ0 = 10, 0.1 and
10−5 are shown in Figs. 2-4 together with the results from Ref. [29]. It can be
seen that the results of dugksFoam match with those in Ref. [29] accurately in
general. While at µ0 = 10−5, the overshot of the velocity profile at disconti-
nuities predicted by dugksFoam is slightly larger than that in Ref. [29]. This
difference can be explained by the fact that dugksFoam uses the Venkatakrish-
nan limiter which is different from the van Leer limiter adopted by Ref. [29].

4.2. Thermally induced flow in a square cavity

At micro or rarefied conditions, the temperature inhomogeneity of a gas
system can lead to a variety of flow phenomenon [8]. In this test, we consider
such a thermally induced flow using the configurations as illustrated in Fig. 5.
The length of the square cavity is L and center of the cavity locates at (0, 0).

11

X

ρ

0.4 0.2 0 0.2 0.4

0.2

0.4

0.6

0.8

1 dugksFoam

Guo et al, PRE15

(a)

X

T

0.4 0.2 0 0.2 0.4

1.4

1.6

1.8

2

2.2
dugksFoam

Guo et al, PRE15

(b)

X

U

0.4 0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

1.2

dugksFoam

Guo et al, PRE15

(c)

Figure 2: (a) Density, (b) temperature and (c) velocity profiles for the shock tube case at
µref = 10 (Kn = 12.77).

X

ρ

0.4 0.2 0 0.2 0.4

0.2

0.4

0.6

0.8

1 dugksFoam

Guo et al, PRE15

(a)

X

T

0.4 0.2 0 0.2 0.4

1.4

1.6

1.8

2

2.2
dugksFoam

Guo et al, PRE15

(b)

X

U

0.4 0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

1.2

dugksFoam

Guo et al, PRE15

(c)

Figure 3: (a) Density, (b) temperature and (c) velocity profiles for the shock tube case at
µref = 0.1 (Kn = 1.277 × 10−1).

X

ρ

0.4 0.2 0 0.2 0.4

0.2

0.4

0.6

0.8

1 dugksFoam

Guo et al, PRE15

(a)

X

T

0.4 0.2 0 0.2 0.4

1.4

1.6

1.8

2

2.2
dugksFoam

Guo et al, PRE15

(b)

X

U

0.4 0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

1.2

dugksFoam

Guo et al, PRE15

(c)

Figure 4: (a) Density, (b) temperature and (c) velocity profiles for the shock tube case at
µref = 1 × 10−5 (Kn = 1.277 × 10−5).

12

I I

Figure 5: Illustration of the thermally induced flow in a square cavity.

(a) (b)

(c)

Figure 6: Temperature contours and velocity streamlines at (a) Kn = 0.01, (b) Kn = 0.1 and
(c) Kn = 1. In each of the sub-figure, the left half shows the results of dugksFoam, the right
half shows the results extracted from Ref. [37].

13

X

V

0.4 0.2 0 0.2 0.4

0.01

0.005

0

0.005

dugksFoam Kn=1

Vargas et al. Kn=1

dugksFoam Kn=0.1

Vargas et al. Kn=0.1

dugksFoam Kn=0.01

Vargas et al. Kn=0.01

(a)

Y

U

0.4 0.2 0 0.2 0.4

0.006

0.004

0.002

0

0.002

0.004

dugksFoam Kn=1

Vargas et al. Kn=1

dugksFoam Kn=0.1

Vargas et al. Kn=0.1

dugksFoam Kn=0.01

Vargas et al. Kn=0.01

(b)

Figure 7: Profiles of the (a) U and (b) V components of the velocity on horizontal and vertical
lines, respectively, passing through the centers of the left primary vortex at varies Knudsen
numbers for the thermally induced flow case.

The top and bottom wall are kept isothermal with temperature Tc and Th
respectively. The lateral walls are imposed a linear temperature distribution
from Tc at the top to Th at the bottom, i.e., Tl(y) = Th−(Th−Tc)(0.5+y). All of
the boundaries are assumed to be purely diffusive walls. In such a configuration,
complex flow patterns can develop in the cavity depending on the characteristic
Knudsen number. This problem has been investigated recently by Vargas et
al. [37] using both the Shakhov kinetic equation and the DSMC method. We
use the same parameters in one of their configurations in order to compare our
results with theirs. The temperature ratio is Th/Tc = 10, and the gas is modeled
as monatomic hard-sphere molecules (K = 0, ω = 0.5). The characteristic
Knudsen number is defined as [37]

Knref =

√
π

2

µref

√
2RTh

prefL
, (23)

where µref is the reference viscosity at reference temperature Th, and pref is the
reference pressure corresponding to the initial uniform density field at Th. By
adjusting µref in the setups, different Knudsen numbers can be achieved. In this
test, we consider three cases, i.e., Kn = 0.01, 0.1 and 1.

For the physical space, we use a non-uniform mesh with 80× 80 rectangular
cells. The cell size are graded increasingly towards the cavity center. The
smallest cell size is around 0.005×0.005. The CFL number is 0.8. The gradient
scheme used is the Gauss linear scheme with full limiting. The velocity space
is discretized using 28 × 28 half-range Gauss-Hermit quadrature points in the
cases of Kn = 0.01 and 0.1, and 161 × 161 uniform points in the range of
[−4
√
RTh, 4

√
RTh] × [−4

√
RTh, 4

√
RTh] for the case of Kn = 1. It should be

noted that both the number of physical space cells and the number of discrete
velocity points are much smaller than those used in [37]. Nevertheless, our
results agree with Ref. [37] quite well, as will be shown in the following.

14

Fig. 6 shows the side-by-side comparisons of the temperature distributions
and velocity streamlines predicted by the current solver and the results extracted
from Ref.[37]. Excellent agreements between the two results can be observed.
In the dugksFoam result of Kn = 0.1, even the tiny second pair of vortexes near
the bottom corners has been captured correctly as shown in Fig. 6(b). A more
quantitative comparison has been made by plotting the vertical (horizontal) ve-
locity component profiles alone the horizontal (vertical) lines across the primary
vortex centers [37] in Fig. 7. The agreements are quite satisfactory considering
that dugksFoam used much less physical space cells and discrete velocity points.

4.3. Lid-driven cubic cavity flow

In this test, we apply the dugksFoam to a three dimensional low-speed flow
simulation in the transition regime and compare the results with the DSMC
solution. The flow geometry is illustrated in Fig. 8. The size of the cubic cavity
is L = 1m. The lid (top boundary) of the cavity moves in the positive X
direction with a constant velocity Uw = 50m/s, while the other walls are kept
fixed. All of the sides are assumed to be purely diffusive walls and are kept at a
uniform temperature Tw = 273K. The gas in the cavity is argon with molecular
mass m = 6.63× 10−26kg and diameter d = 4.17× 10−10m. The gas viscosity
depends on the temperature by µ = µref(T/Tw)ω with ω = 0.81, corresponding
to the variable hard sphere (VHS) model of the argon molecules interaction [1].
The reference viscosity µref is the calculated by [1]

µref =
15

2

(mkBTw/π)1/2

(5− 2ω)(7− 2ω)d2
, (24)

where kB is the Boltzmann constant. The Knudsen number defined as Knref =
λref/L is 0.1, where the reference mean free path λref is calculated from the
initial uniform gas density ρ0 by λref = m/(

√
2πd2ρ0) [1].

In the dugksFoam simulation, the physical space is divided non-uniformly
into 363 hexahedrons. The cell size grades increasingly towards the cavity cen-
ter with a cell-to-cell expansion ratio of 1.03. The three dimensional velocity
space is discredited using 28 half-range Gauss-Hermit quadrature points in each
direction. The CFL number is set to be 0.8. The numerical scheme for the
gradient evaluation is the unlimited Gauss linear scheme. The DSMC solution
is obtained from the open source dsmcFoam code [26]. The dsmcFoam is also
developed in the OpenFOAM framework and has be verified thoroughly in the
literature [26]. In the DSMC simulation, a uniform mesh with 403 cells is used.
Initially, 50 DSMC particles is placed in each cell. VHS model is used for the
gas molecular interaction. The time step size is fixed at 1.6426× 10−5s. The
sampling of the steady state result begins at physical time 20s and ends at 74s.

Fig. 9 shows the temperature contours predicted by dugksFoam and dsmc-
Foam. It can be seen that the two results agree well in general, even though
the DSMC solution exhibits strong fluctuation. To compare the two solutions
more precisely, we present the temperature distributions on the OXY plane
and OZY plane as well as the X and Y components of the velocity (U and

15

V) distributions on the OXY plane in Fig. 10, from which, we can observe
that the velocity field predicted by dugksFoam matches accurately with that
of dsmcFoam. Regarding the temperature distributions, the dugksFoam result
agrees with that of dsmcFoam on the whole but obvious differences can be ob-
served in the up corners. The differences can be explained as follows. Firstly,
dugksFoam uses the Shakhov model equation, while the dsmcFoam uses the full
Boltzmann collision kernel. The two different approximations of the molecular
interaction can leads to difference in the temperature field for externally driven
flows [38, 39]. Secondly, there are strong statistic noises in the DSMC solution
despite long time averaging has been done before outputting the results.

𝑋

𝑍

𝑌

𝑈𝑤

𝑂

Figure 8: Illustration of the lid-driven cubic cavity flow.

(a) (b)

Figure 9: Temperature iso-surfaces of the cubic cavity case. (a) dugksFoam. (b) dsmcFoam.

5. Parallel efficiency

We now assess the parallel performance of dugksFoam. Several factors af-
fecting the performance will be identified. The performance difference using

16

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
T

275.5

275.0

274.5

274.2

274.0

273.5

273.2

273.1

273.0

272.8

272.5

272.0

(a)

Z

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
T

274.2

274.1

274.0

273.9

273.8

273.7

273.6

273.5

273.4

273.3

273.2

273.1

(b)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

25.0

20.0

15.0

10.0

5.0

0.0

1.0

3.0

5.0

U

(c)

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

10.0

8.0

6.0

4.0

2.0

0.0

2.0

4.0

6.0

8.0

10.0

V

(d)

Figure 10: Temperature and velocity distribution in different cut-planes of the cubic cavity.
Dashed black lines: dsmcFoam. While lines with colored background: dugksFoam. (a) Tem-
perature in symmetric XY plane. (b) Temperature in symmetric ZY plane. (c) U-velocity in
symmetric XY plane. (d) V-velocity in symmetric XY plane.

17

the two different domain decomposition approaches, i.e., the PSD and the VSD
(Sec. 3.3) will be analyzed.

The test problems are the two-dimensional and three-dimensional lid-driven
cavity flows. The testing platform is a small cluster with 16 computing nodes
and 1 managing/IO node. Each computing node has two Intel E5-2680v3 Xeon
(Haswell) CPUs and 64GB DDR4 memory operating at a frequency of 2133MHz.
Each CPU has 12 cores and works at clock frequency 2.50GHz. The computing
nodes are inter-connected by a fourteen data rate (FDR) InfiniBand network.
Only 11 computing nodes and a maximum of 256 cores will be used in this test.
Both OpenFOAM and dugksFoam are compiled using Intel C/C++ compiler
of version 15.0.1 with -O3 optimization flag, and are linked to the Intel MPI
library with version 5.0. For each of the test problem, the solver runs using
different numbers of cells and discrete velocities. The maximum problem size
is limited by the total memory available. The average computing time for one
step of evolution using different MPI processes are measured. The total running
time (wall clock time) is insured to be over 100s. The IO time is not counted.
The MPI processes are spawned among as much number of nodes as possible to
alleviate the memory accessing pressure.

Parallel speedups against serial run using the PSD and VSD approaches are
calculated and shown in Fig. 11 and Fig. 12, respectively. The ideal speedup
curves corresponding to the linear speedup have been included. It is noted that
for the case with 603 cells and 243 discrete velocities, the solver is unable to run
with only 4 or less computing nodes due to the limited total memory. So the
actual running time using 1 to 4 cores are extrapolated from that of 8 cores as-
suming linear speedup there. From Fig. 11, we can see the scaling performance is
rather poor for two dimensional simulations using the PSD approach. For three
dimensional simulations the scaling performance improves significantly but only
if using larger number (603) of cells. The maximum speedup observed is 67.1
and achieves at the cases of 603 cell and 243 discrete velocities using 128 cores.
Comparing Fig. 12 and Fig. 11, we can observe that using the VSD approach,
the scaling performance increases considerably, especially for two dimensional
cases and three dimensional cases with small number of cells. The maximum
speedup observed is 109.2 achieving at the case of 303 cells and 453 discrete
velocities using 256 cores.

Fig. 12 also shows that scaling performance deteriorates at smaller numbers
of discrete velocities. The reason is that the pure computing time scales linearly
with the number of discrete velocities but the communication time is unchanged
when using the VSD approach. The performance here is obviously limited by
the global reductions of the moments which are natural global barriers for the
MPI processes. Another interesting phenomenon observed in Fig. 12 is that the
scaling performance turns out to be insensitive to the number of cells, which
means the bottleneck here is the second factor for the VSD approach analysed
in Sec. 3.3.2, i.e., the global reduction efficiency is low if using large number of
MPI processes.

Overall, the VSD is the preferred choice to run the solver in parallel, at least
for typical numbers of cells and discrete velocities. However, it should be noted

18

Number of cores

S
p

e
e

d
u

p

10
0

10
1

10
2

10
0

10
1

10
2

Ideal
D64

2
, V8

2

D64
2
, V28

2

D64
2
, V61

2

D64
2
, V101

2

D128
2
, V8

2

D128
2
, V28

2

D128
2
, V61

2

D128
2
, V101

2

(a)

Number of cores

S
p

e
e

d
u

p

10
0

10
1

10
2

10
0

10
1

10
2

Ideal

D30
3
, V8

3

D30
3
, V16

3

D30
3
, V28

3

D60
3
, V8

3

D60
3
, V16

3

D60
3
, V24

3

(b)

Figure 11: Parallel speedups using the physical space decomposition (PSD) approach. (a)
Two dimensional cases. (b) Three dimensional cases. DMd and VNd mean using Md cells
and Nd discrete velocities, respectively.

Number of cores

S
p

e
e

d
 u

p

10
0

10
1

10
2

10
0

10
1

10
2

Ideal
D64

2
, V8

2

D64
2
, V28

2

D64
2
, V61

2

D64
2
, V101

2

D128
2
, V8

2

D128
2
, V28

2

D128
2
, V61

2

D128
2
, V101

2

(a)

Number of cores

S
p

e
e

d
u

p

10
0

10
1

10
2

10
0

10
1

10
2

Ideal

D30
3
, V8

3

D30
3
, V16

3

D30
3
, V28

3

D30
3
, V45

3

D60
3
, V8

3

D60
3
, V16

3

D60
3
, V24

3

(b)

Figure 12: Parallel speedups using the velocity space decomposition (VSD) approach. (a)
Two dimensional cases. (b) Three dimensional cases. DMd and VNd mean using Md cells
and Nd discrete velocities, respectively.

19

that, the PSD based MPI communication in the current solver is inefficient
due to the calling of MPI send/receive operations for each discrete velocity,
as have been explained in Sec. 3.3.1. A more sophisticated implementation of
the PSD can improve the parallel performance, and even better than the VSD.
Such as in Ref. [14], by using the asynchronous, non-blocking and bundled MPI
send/receive MPI communications, the parallel efficiency using the PSD can be
better than the VSD approach.

6. Conclusion and further improvements

An open source deterministic solver for the Boltzmann equation with Shakhov
model has been developed in the OpenFOAM framework based on the recently
proposed DUGKS method. The solver has been validated using several non-
equilibrium flow cases including even three dimensional one. The results are in
good agreement with either DSMC results or data in literatures.

The velocity space decomposition based MPI parallel computing features
has been developed in addition to the physical space decomposition based one
that shipped with the official OpenFOAM release. The parallel performance
evaluations demonstrated that the newly implemented velocity space decom-
position approach offers a much better scaling ability than the physical space
decomposition based approach. Speedup by two orders of magnitude can be
achieved using 256 cores on a small cluster for both two and three dimensional
simulations.

The solver inherits many advantages of the OpenFOAM framework such
as the arbitrary unstructured mesh ability [30] and abundant pre- and post-
processing utilities. The deterministic nature and asymptotical preserving fea-
ture of the DUGKS method make this solver competitive in simulating low-speed
flows in transition and near continuum regimes compared with other solvers
based on the popular DSMC method.

Further optimizations or extensions can be made on this solver to make it
more efficient or general. For instance, it is expected that a hybrid physical
space and velocity space decomposition method can offer much better parallel
efficiency than the pure velocity space decomposition approach. In addition, the
current solver can be optimized for a better pure computing (serial) efficiency.

Acknowledgments

The present work is supported by the National Key Research Project (No.
2016YFB0600805), National Science Foundation of China (Grant No. 11602091),
and Foundation for Student Innovation and Venture of the Huazhong University
of Science and Technology (Grant No. 20150611).

Reference

[1] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas
Flows. Clarendon Press, 1994.

20

[2] J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity
method,” Journal of Fluid Mechanics, vol. 19, no. 03, pp. 401–414, 1964.

[3] V. V. Aristov, Direct methods for solving the Boltzmann equation and study
of nonequilibrium flows. Springer Science & Business Media, 2001, vol. 60.

[4] L. Mieussens, “Discrete-velocity models and numerical schemes for the
Boltzmann-BGK equation in plane and axisymmetric geometries,” Jour-
nal of Computational Physics, vol. 162, no. 2, pp. 429–466, 2000.

[5] T. Inamuro and B. Sturtevant, “Numerical study of discrete-velocity gases,”
Physics of Fluids A: Fluid Dynamics (1989-1993), vol. 2, no. 12, pp. 2196–
2203, 1990.

[6] T. Ohwada, Y. Sone, and K. Aoki, “Numerical analysis of the poiseuille
and thermal transpiration flows between two parallel plates on the basis of
the Boltzmann equation for hard-sphere molecules,” Physics of Fluids A,
vol. 1, no. 12, pp. 2042–2049, 1989.

[7] T. Ohwada, “Structure of normal shock waves: Direct numerical analysis
of the Boltzmann equation for hard-sphere molecules,” Physics of Fluids
A: Fluid Dynamics (1989-1993), vol. 5, no. 1, pp. 217–234, 1993.

[8] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications.
Birkhäuser Basel, 2007.

[9] J. Y. Yang and J. C. Huang, “Rarefied flow computations using nonlinear
model Boltzmann equations,” Journal of Computational Physics, vol. 120,
no. 2, pp. 323–339, 1995.

[10] L. Mieussens, “A survey of deterministic solvers for rarefied flows,” in Pro-
ceedings of the 29th International symposium on Rarefied Gas Dynamics,
vol. 1628, 2014, p. 943.

[11] K. Xu, Direct Modeling for Computational Fluid Dynamics, ser. Advances
in Computational Fluid Dynamics. World Scientific Publishing, 2015.

[12] F. Filbet and S. Jin, “A class of asymptotic-preserving schemes for kinetic
equations and related problems with stiff sources,” Journal of Computa-
tional Physics, vol. 229, no. 20, pp. 7625–7648, 2010.

[13] Y. Zhu, C. Zhong, and K. Xu, “Implicit unified gas-kinetic scheme for
steady state solutions in all flow regimes,” Journal of Computational
Physics, vol. 315, no. 15, pp. 16–38, 2016.

[14] V. Titarev, M. Dumbser, and S. Utyuzhnikov, “Construction and compari-
son of parallel implicit kinetic solvers in three spatial dimensions,” Journal
of Computational Physics, vol. 256, no. 1, pp. 17–33, 2014.

[15] C. K. Chu, “Kinetic-theoretic description of the formation of a shock wave,”
Physics of Fluids, vol. 8, no. 1, pp. 12–22, 1965.

21

[16] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision pro-
cesses in gases. I. small amplitude processes in charged and neutral one-
component systems,” Physical Review, vol. 94, no. 3, p. 511, 1954.

[17] L. H. Holway Jr, “New statistical models for kinetic theory: methods of
construction,” Physics of Fluids (1958-1988), vol. 9, no. 9, pp. 1658–1673,
1966.

[18] E. M. Shakhov, “Generalization of the Krook kinetic relaxation equation,”
Fluid Dynamics, vol. 3, no. 5, pp. 95–96, 1968.

[19] Z.-H. Li and H.-X. Zhang, “Gas-kinetic numerical studies of three-
dimensional complex flows on spacecraft re-entry,” Journal of Computa-
tional Physics, vol. 228, no. 4, pp. 1116–1138, 2009.

[20] V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, and S. A.
Zabelok, “Unified solver for rarefied and continuum flows with adaptive
mesh and algorithm refinement,” Journal of Computational Physics, vol.
223, no. 2, pp. 589–608, 2007.

[21] V. A. Titarev, “Efficient deterministic modelling of three-dimensional rar-
efied gas flows,” Communications in Computational Physics, vol. 12, no. 1,
p. 162, 2012.

[22] A. Frezzotti, G. P. Ghiroldi, and L. Gibelli, “Solving model kinetic equa-
tions on gpus,” Computers & Fluids, vol. 50, no. 1, pp. 136–146, 2011.

[23] Y. Y. Kloss, P. V. Shuvalov, and F. G. Tcheremissine, “Solving Boltzmann
equation on GPU,” Procedia Computer Science, vol. 1, no. 1, pp. 1083–
1091, 2010.

[24] S. Chigullapalli and A. Alexeenko, “Unsteady 3d rarefied flow solver based
on Boltzmann-ESBGK model kinetic equations,” in 41st AIAA Fluid Dy-
namics Conference and Exhibit. AIAA, 2011.

[25] C. Baranger, J. Claudel, N. Hérouard, and L. Mieussens, “Locally refined
discrete velocity grids for stationary rarefied flow simulations,” Journal of
Computational Physics, vol. 257, Part A, pp. 572–593, 2014.

[26] T. J. Scanlon, E. Roohi, C. White, M. Darbandi, and J. M. Reese, “An open
source, parallel dsmc code for rarefied gas flows in arbitrary geometries,”
Computers & Fluids, vol. 39, no. 10, pp. 2078–2089, 2010.

[27] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach
to computational continuum mechanics using object-oriented techniques,”
Computers in Physics, vol. 12, no. 6, pp. 620–631, 1998.

[28] OpenFOAM, OpenFOAM, The Open Source CFD Toolbox, User Guide,
2nd ed. OpenCFD Ltd., 2015.

22

[29] Z. Guo, R. Wang, and K. Xu, “Discrete unified gas kinetic scheme for all
Knudsen number flows. II. thermal compressible case,” Physical Review E,
vol. 91, no. 3, p. 033313, 2015.

[30] L. Zhu, Z. Guo, and K. Xu, “Discrete unified gas kinetic scheme on un-
structured meshes,” Computers & Fluids, vol. 127, pp. 211–225, 2016.

[31] J. Blazek, Computational fluid dynamics: principles and applications.
Butterworth-Heinemann, 2015.

[32] E. Sozer, C. Brehm, and C. C. Kiris, “Gradient calculation methods on
arbitrary polyhedral unstructured meshes for cell-centered cfd solvers,” in
52nd Aerospace Sciences Meeting, no. AIAA, vol. 1440, 2014, Conference
Proceedings.

[33] M. Aftosmis, D. Gaitonde, and T. S. Tavares, “Behavior of linear re-
construction techniques on unstructured meshes,” AIAA journal, vol. 33,
no. 11, pp. 2038–2049, 1995.

[34] D. J. Mavriplis, “Revisiting the least-squares procedure for gradient recon-
struction on unstructured meshes,” AIAA paper, vol. 3986, p. 2003, 2003.

[35] OpenFOAM, OpenFOAM, The Open Source CFD Toolbox, Programmer’s
Guide, 2nd ed. OpenCFD Ltd., 2015.

[36] A. A. AlOnazi, “Design and optimization of openfoam-based CFD appli-
cations for modern hybrid and heterogeneous hpc platforms,” Thesis, King
Abdullah University of Science and Technology, 2014.

[37] M. Vargas, G. Tatsios, D. Valougeorgis, and S. Stefanov, “Rarefied gas
flow in a rectangular enclosure induced by non-isothermal walls,” Physics
of Fluids (1994-present), vol. 26, no. 5, p. 057101, 2014.

[38] J. C. Huang, K. Xu, and P. B. Yu, “A unified gas-kinetic scheme for con-
tinuum and rarefied flows II: Multi-dimensional cases,” Communications in
Computational Physics, vol. 12, no. 3, pp. 662–690, 2012.

[39] C. Liu, K. Xu, Q. Sun, and Q. Cai, “A unified gas-kinetic scheme for
continuum and rarefied flows IV: Full Boltzmann and model equations,”
Journal of Computational Physics, vol. 314, pp. 305–340, 2016.

23

	Introduction
	Theoretical background and numerical scheme
	The Boltzmann-Shakhov model
	Discrete unified gas kinetic scheme

	Implementation in OpenFOAM
	Structure of the solver
	Implementation of boundary conditions
	MPI Parallel computation
	Physical space decomposition (PSD)
	Velocity space decomposition (VSD)

	Benchmark tests
	Shock tube problem
	Thermally induced flow in a square cavity
	Lid-driven cubic cavity flow

	Parallel efficiency
	Conclusion and further improvements

