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Abstract

The general characteristics based off-lattice Boltzmann scheme proposed by Bardow et al., [1] (hereafter

Bardow’s scheme) and the discrete unified gas kinetic scheme (DUGKS) [2] are two methods that

successfully overcome the time step restriction by the collision time, which is commonly seen in many

other kinetic schemes. In this work, we first perform a theoretical analysis of the two schemes in the

finite volume framework by comparing their numerical flux evaluations. It is found that the effect of

collision term is considered in the evaluation of the cell interface distribution function in both schemes,

which explains why they can overcome the time step restriction and can give accurate results even

as the time step is much larger than the collision time. The difference between the two schemes lies

in the treatment of the integral of the collision term when evaluating the cell interface distribution

function, in which Bardow’s scheme uses the rectangular rule while DUGKS uses the trapezoidal rule.

The performance of the two schemes, i.e., accuracy, stability, and efficiency are then compared by

simulating several two dimensional flows, including the unsteady Taylor-Green vortex flow, the steady

lid-driven cavity flow, and the laminar boundary layer problem. It is observed that, DUGKS can

give more accurate results than Bardow’s scheme with a same mesh size. Furthermore, the numerical

stability of Bardow’s scheme decreases as the Courant-Friedrichs-Lewy (CFL) number approaches to

1, while the stability of DUGKS is not affected by the CFL number apparently as long as CFL < 1. It

is also observed that DUGKS is twice as expensive as the Bardow’s scheme with the same mesh size.

1. Introduction

The lattice Boltzmann method (LBM) has become a popular numerical tool for flow simulations.

It solves the discrete velocity Boltzmann equation (DVBE) with sophistically chosen discrete velocity

set. With the coupled discretization of velocity space and spatial space, the numerical treatment

of convection term reduces to a very simple streaming process, which provides the benefits of low
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numerical dissipation, easy implementation, and high parallel computing efficiency. Another advantage

of LBM is that, the simplified collision term is computed implicitly while implemented explicitly, which

allows for a large time step even though the collision term causes stiffness at a small relaxation time.

Although the time step in LBM is still restricted by the convection term due to the explicit nature

of the streaming process, some preconditioning techniques [3, 4] and multigrid methods [5, 6] have be

proposed to overcame this problem and have demonstrated their effectiveness for steady simulations.

Those advantages makes the LBM a potential solver for high Reynolds number flows.

However, the coupled discretization of velocity and spatial spaces limits the LBM to the use of

uniform Cartesian meshes, which prohibits its applications for practical engineering problems evolving

complex geometry. The coupling also restricts the choice of discrete velocities, namely the discrete

velocities have to be integer values and fitted to spatial lattices. But for compressible flows, micro

or rarefied flows and multicomponent flows, it is desirable to use more general and even irrational

discrete velocities that can not be fitted to spatial lattices. Actually, there have been some efforts to

extend the standard discrete velocity families to higher order velocity models [7, 8, 9, 10].

Some efforts have been made to extend the standard LBM to non-regular (non-uniform, unstruc-

tured) meshes, and a number of so called off-lattice Boltzmann (OLB) methods have been developed

by solving the DVBE using certain finite-difference, finite-volume, or finite-element schemes [11, 12, 1,

13, 14, 15, 16, 17, 18, 19, 20]. These OLB schemes differ from each other in the temporal and spatial

discretizations. However, a straightforward implementation of the CFD techniques usually leads to

the loss of the advantages of standard LBM, especially the low dissipation property and stability at

large time step. For example, in many of the schemes [14, 17, 18, 20], the time step is limited by the

relaxation time to get an accurate solution, even as the collision term is computed implicitly [17]. This

drawback makes these OLB schemes very computational expensive when simulating high Reynolds

number flows.

An alternative way to construct OLB schemes is to use the time-splitting strategy in solving the

DVBE [1, 15, 16, 19, 21, 22], in which the DVBE is decomposed into a collision sub-equation and

a followed pure advection sub-equation. The collision sub-equation is fully local and is discretized

directly, leading to a collision step the same as the standard LBM; The collisionless advection sube-

quation is then solved with certain numerical schemes on uniform or non-uniform meshes [15, 16],

leading to a general streaming step. Specifically, the scheme proposed by Bardow et al., which com-

bines the variable transformation technique for the collision term and the Lax-Wendroff scheme for the

streaming step, overcomes the time step restriction by the relaxation time. It was demonstrated that

accurate and stable solutions can be obtained even as the time step is much larger than the relaxation
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time [1, 19, 23].

Recently, a finite volume kinetic scheme named discrete unified gas kinetic scheme (DUGKS) was

proposed for all Knudsen number flows [2, 24]. In DUGKS the numerical flux is constructed based on

the governing equation i.e., the DVBE itself, instead of using interpolations. With such a treatment,

the time step is not restricted by the relaxation time, which is an indispensable property for effective

continuum flow simulations. Its superior accuracy and stability for high Reynolds flows have been

demonstrated [25]. In addition, it has been extended to arbitrary unstructured meshes recently [26].

Since both Bardow’s scheme and DUGKS overcome the time step restriction from different ap-

proaches, it is still not clear the performance difference between them, so in this work we will present

a comparative study of these two kinetic schemes for continuum flows, even though both of them are

not limited to such flows. We will also investigate the link between the two schemes by comparing

them in the same finite volume framework.

The remaining part of this paper is organized as follows. Sec. 2 will introduce DUGKS and Bardow’s

scheme and discuss their relation, Sec. 3 will present the comparison results, and a conclusion is given

in Sec. 4.

2. Numerical formulation

2.1. Discrete Velocity Boltzmann-BGK equation

The governing equation Bardow’s off-lattice Boltzmann schemes and DUGKS is the Boltzmann

equation with the Bhatnagar-Gross-Krook collision operator [27],

∂f

∂t
+ ξ ·∇f = Ω(f) ≡ feq − f

τ
, (1)

where f ≡ f(x, ξ, t) is the distribution function (DF) with particle velocity ξ at position x and time

t, τ is relaxation time due to particle collisions, and feq is the Maxwellian equilibrium distribution

function. In this article, we consider the isothermal two-dimensional-nine-velocities (D2Q9) lattice

model. The corresponding DVBE is

∂fα
∂t

+ ξα ·∇fα = Ω(fα) ≡ feqα − fα
τ

, (2)

where fα ≡ f(x, ξα, t) and feqα ≡ feq(x, ξα, t) are the DF with discrete velocity ξα and the correspond-

ing discrete equilibrium DF respectively. The D2Q9 discrete velocity set ξα is given as

ξα =


(0, 0) for α = 0,

√
3RT (cos[(α− 1)π/2], sin[(α− 1)π/2]) for α = 1, 2, 3, 4,

√
3RT (cos[(2α− 9)π/4], sin[(2α− 9)π/4])

√
2 for α = 5, 6, 7, 8,

(3)
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where R is the gas constant and T is the constant temperature. Under the low Mach number condition,

the discrete equilibrium DF can be approximated by its Taylor expansion around zero particle velocity

up to second order, i.e.,

feqα = wαρ

[
1 +

ξα · u
c2
s

+
(ξα · u)2

2c4
s

− | u |
2

2c2
s

]
, (4)

where cs =
√
RT is the lattice sound speed and the weights wα are

wα =


4/9 for α = 0,

1/9 for α = 1, 2, 3, 4,

1/36 for α = 5, 6, 7, 8.

(5)

The fluid density ρ and velocity u are the moments of discrete DFs,

ρ =
∑
α

fα, ρu =
∑
α

ξαfα. (6)

The shear viscosity of the fluid is related to the relaxation time by

ν = τRT, (7)

which can be deduced from Chapman-Enskog analysis [28]. The conservation property of the collision

term is maintained at its discrete velocity counterpart, i.e.,∑
α

Ω(fα) = 0,
∑
α

ξαΩ(fα) = 0. (8)

2.2. Discrete unified gas kinetic scheme

The DUGKS employs a cell centered finite volume (FV) discretization of the DVBE [2]. The com-

putational domain is firstly divided into small control volumes denoted by Vk. For a clear illustration

of the formulas, we denote the volume averaged DF with discrete velocity ξα in control volume Vk at

time level tn by fnα,k, i.e.,

fnα,k =
1

|Vk|

∫
Vk

fα(x, tn)dV. (9)

It should be noted that the cell size should be fine enough to resolve the flow field and reduce the

numerical errors [29, 30]. Then integrating Eq. (2) from time tn to time tn+1 and applying the Gauss

theorem we can get

fn+1
α,k − fnα,k = − ∆t

|Vk|
Fα,k,dugks +

∆t

2

[
Ω(fnα,k) + Ω(fn+1

α,k )
]
, (10)

where Fα,k,dugks is the numerical flux that flows into the control volume from its faces, and ∆t =

tn+1 − tn is the time step size. Note that trapezoidal rule is used for the collision term. This implicit
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treatment of the collision term is crucial for its stability when the time step is much larger than the

relaxation time. This implicitness can be removed in the actual implementation using the following

variable transformation technique, which is also adopted by the standard LBM,

f̃nα ≡ fnα −∆t/2Ω(fnα ), f̃+,n
α ≡ fnα + ∆t/2Ω(fnα ). (11)

Equation (10) can be now rewritten in an explicit form,

f̃n+1
α,k = f̃n,+α,k −

∆t

|Vk|
Fα,k,dugks. (12)

In the implementation, we track the evolution of f̃α,k instead of the original DFs. At the beginning of

each time step, f̃+,n
α,k can be obtained from f̃nα,k according to Eq. (11) [2],

f̃+,n
α,k =

2τ −∆t

2τ + ∆t
f̃nα,k +

2∆t

2τ + ∆t
feq,nα,k (13)

where the macroscopic variables used to evaluate the equilibrium DF feq,n can be calculated from the

transformed DF f̃ due to the conservation property of the collision term, i.e.,

ρn =
∑
α

f̃nα , ρnun =
∑
α

ξαf̃
n
α . (14)

The key merit of DUGKS lies in its treatment of the advection term, i.e., the way to construct the

numerical flux Fα,k,dugks. In DUGKS, the middle point rule is used for the integration of the flux over

the time step,

Fα,k,dugks =

∫
∂Vk

(ξα · n)f
n+1/2
α,dugksdS. (15)

The integration over the cell faces is computed by the f
n+1/2
α at the centers of the cell faces, which

themselves are computed using the characteristic solution of the kinetic equation (2). Supposing the

center of a face is xb, then by integrating Eq. (2) along the characteristic line in a half time step

h = ∆t/2 from (tn,xb − hξα) to (tn+1/2,xb), and applying the trapezoidal rule, we can get

f
n+1/2
α,dugks(xb)− fnα (xb − hξα) =

h

2

[
Ω(fnα (xb)) + Ω

(
fn+1/2
α (xb − hξα)

)]
. (16)

Again the implicitness can be eliminated by introducing another two variable transformations,

f̄n+1/2
α (xb) ≡ fn+1/2

α (xb)−
h

2
Ω
(
fn+1/2
α (xb)

)
, f̄+,n

α (xb−hξα) ≡ fnα (xb−hξα) +
h

2
Ω (fnα (xb − hξα)) .

(17)

Then we can reformulate Eq. (16) in the following explicit form,

f̄n+1/2
α (xb) = f̄n,+α (xb − hξα). (18)
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For smooth i.e., well-resolved shock-free flows, f̄+,n
α (xb−hξ) can be interpolated linearly from f̄+,n

α at

its neighboring cell centers which themselves can be calculated from the tracked f̃nα similar to Eq. (13),

f̄+,n
α =

2τ − h
2τ + ∆t

f̃nα +
3h

2τ + ∆t
feq,nα . (19)

The details of the linear interpolation will be further given later. It should be noted that, when

discontinuities such as shock wave are involved, more sophisticated advection schemes such as upwind

schemes with slope/flux limiters [24, 26, 31], flux splitting schemes [20, 32] and even weighted essentially

non-oscillatory (WENO) schemes [33] should be employed in order to obtain stable solutions.

After getting f̄
n+1/2
α (xb), the original DF f

n+1/2
α (xb) can be transformed back with the help of

Eq. (17) as,

fn+1/2
α =

2τ

2τ + h
f̄n+1/2
α +

h

2τ + h
feq,n+1/2
α . (20)

The macroscopic fluid variable ρn+1/2(xb) and un+1/2(xb) used in feq,n+1/2 are calculated from,

ρn+1/2
∣∣∣
xb

=
∑
α

f̄n+1/2
α (xb), (ρu)n+1/2

∣∣∣
xb

=
∑
α

ξαf̄
n+1/2
α (xb). (21)

To insure the interpolation in Eq. (18) is stable, the time step is limited by the CFL condition,

∆t = η
∆x

|ξ|max
= η

∆x√
6cs

, (22)

where 0 < η < 1 is the CFL number and ∆x measures the size of the cell.

For completeness, the step-by-step algorithm of DUGKS is outlined as follows [2, 24]:

1. At the beginning (n = 0), the fluid variables (ρ0 and u0) and the transformed DFs f̃0
α at each

cell center are initialised.

2. f̃+,n
α and f̄+,n

α at each cell center are calculated using Eqs. (13) and (19), respectively.

3. f̄
n+1/2
α at each cell interface is obtained by shifting the upwind f̄+,n

α which is interpolated from

nearby cell centers.

4. At each cell interface, ρn+1/2 and un+1/2 are calculated from f̄n+1/2 using Eq. (21).

5. The original DF at each cell interface f
n+1/2
α is transformed back according to Eq. (20).

6. At each cell center, f̃n+1
α is updated from f̃+,n

α at the cell center and f
n+1/2
α at the surrounding

cell interfaces using Eq. (12) and Eq. (15).

7. ρn+1 and un+1 at each cell center are calculated from f̃n+1
α using Eq. (14).

8. Advance the time step (n← n+ 1) and repeat step 2 to 8 until the end.
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2.3. Bardow’s off-lattice Boltzmann scheme

Bardow’s off-lattice Boltzmann scheme is based on a characteristic discretization of the DVBE.

Integrating Eq. (1) along the characteristics from tn to tn+1 and approximated the collision term by

the Crank-Nicolson (trapezoidal) rule gives [1],

f̌n+1
α = f̌nα +

∆t

2

[
Ω̌n
α + Ω̌n+1

α

]
. (23)

The check symbol (̌ ) denotes a variable on the characteristics with a velocity of ξα. For example,

f̌nα = fα(x, tn) and f̌n+1
α = fα(x+ξα∆t, tn+1). Note that other integrating rules for the collision term

have also been discussed in Bardow’s work [1]. By introducing the following function [1],

gα(x, t) = fα(x, t)− ∆t

2
Ωα (f(x, t)) , (24)

and employing the property of geq = feq , Eq. (23) can be rewritten as [1]

ǧn+1
α = ǧnα −

∆t

λ
(ǧnα − ǧeq,nα ), (25)

where λ = τ + 1/2∆t. Applying the characteristic solution and second order Taylor expansions to the

RHS of the Eq. (25), Bardow et al. obtained the following general updating rule of their off-lattice

Boltzmann schemes [1],

gn+1
α = gnα −∆t

[
ξαi

∂gnα
∂xi

+
1

λ
(gnα − geq,nα )

]
+

∆t2

2
ξαi

∂

∂xi

[
ξαj

∂gnα
∂xj

+
2

λ
(gnα − geq,nα )

]
+

∆t3

2λ
ξαi

∂

∂xi

[
ξαj

∂(gnα − geq,nα )

∂xj

]
,

(26)

where the subscripts i, j = 1, 2 denote the spatial indices and summations are taken over repeated i

and j. Equation (26) may look complicated at first glance, but it can be simplified to the following

form if we notice the equivalence between gα and f̃α, and f̃+ = g− (∆t/λ)(gα− geqα ) (see Eq. (11) and

Eq. (24)),

f̃n+1
α = f̃+,n

α −∆tξαi
∂f̃+,n

α

∂xi
+

∆t2

2
ξαiξαj

∂2f̃+,n
α

∂xi∂xj
, (27)

which Eq. (27) share similarities with the collision-streaming algorithm in the standard LBM. At the

beginning of each time step, f̃+
α is calculated from f̃α through

f̃+
α = f̃α − (∆t/λ)(f̃α − f̃eqα ) =

2τ −∆t

2τ + ∆t
f̃n +

2∆t

2τ + ∆t
feq,n, (28)

which is the same as the DUGKS and is also the collision step in the standard LBM method. Then the

pure advection equation is solved to update f̃α. The difference is that the standard LBM solves the

pure advection equation exactly through shifts of the post-collision DF between neighboring nodes in

the streaming process, while Bardow’s scheme solves it using the Lax-Wendroff scheme [34]. It should

7



also be mentioned that if we apply the one dimensional Lax-Wendroff scheme to solve the advection

equation in each discrete velocity direction on a uniform Cartesian grid, Bardow’s scheme reduces to

the scheme developed in Ref. [21].

In the original works [1, 19], either finite element (FE) or finite difference (FD) is employed to

further discretize the spatial gradients in Eq. (27). In a two dimensional FD implementation of

Bardow’s scheme [23], the central finite difference schemes on a uniform mesh are used, i.e., the first

and second order spatial derivatives in Eq. (26) are computed as [23],

∂f̃+,n
α

∂x1

∣∣∣∣∣
l,m

=
f̃+,n
α,l+1,m − f̃

+,n
α,l−1,m

2∆x1
, (29a)

∂f̃+,n
α

∂x2

∣∣∣∣∣
l,m

=
f̃+,n
α,l,m+1 − f̃

+,n
α,l,m−1

2∆x2
, (29b)

∂2f̃+,n
α

∂x2
1

∣∣∣∣∣
l,m

=
f̃+,n
α,l+1,m + f̃+,n

α,l−1,m − 2f̃+,n
α,l,m

∆x2
1

, (29c)

∂2f̃+,n
α

∂x2
2

∣∣∣∣∣
l,m

=
f̃+,n
α,l,m+1 + f̃+,n

α,l,m−1 − 2f̃+,n
α,l,m

∆x2
2

, (29d)

∂2f̃+,n
α

∂x1∂x2

∣∣∣∣∣
l,m

=
1

4∆x1∆x2
[f̃+,n
α,l+1,m+1 − f̃

+,n
α,l−1,m+1 − f̃

+,n
α,l+1,m−1 + f̃+,n

α,l−1,m−1], (29e)

where the computational stencil for each node is illustrated in Fig. 1. It should be noted that the

central schemes for the biased derivatives (both ∂ and ∂2) are not isotropic [35]. For problems with

microstructure evolution where physical anisotropy is important, such as crystal growth and multiphase

flows, isotropic finite difference schemes are preferred as they introduce less numerical anisotropy into

simulations [35]. Actually in multiphase LBM models, derivatives and Laplacian are often discretized

using isotropic finite difference schemes [28].

In the following, we will illustrate a two dimensional FV discretization of Eq. (27) similar to the

DUGKS and demonstrate its equivalence to the FD implementation using Eq. (29). Firstly, divide the

computation domain into cells by line segments (cell interfaces) that cross the centers of links between

FD nodes (see Fig.1). The index of each cell is the same as the index of the FD node it encloses. Then

rewrite Eq. (27) as,

f̃n+1
α = f̃+,n

α −∆tξαi
∂

∂xi

[
f̃+,n
α − ∆t

2
ξαj

∂f̃+,n
α

∂xj

]
. (30)

Integrating it in each cell gives

f̃n+1
α,l,m = f̃+,n

α,l,m −
∆t

|Vl,m|

∫
∂Vl,m

(ξα · n)

[
f̃+,n
α − ∆t

2
ξαj

∂f̃+,n
α

∂xj

]
dS (31)

where |Vl,m| is the volume of cell (l,m) and f̃α,l,m and f̃+
α,l,m are cell-averaged DFs, n is the unit normal

vector of the cell interface pointing outside. Note that similar to Eq. (12), we can also represent the
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l-1,m-1

cell

l,m l+1,m

l+1,m-1

l+1,m+1l,m+1l-1,m+1

l-1,m

l,m-1

:  

:  

:  Points used to interpolate at .

Figure 1: Illustration of the finite volume discretization and the interpolation scheme.

FV updating rule as

f̃n+1
α,l,m = f̃n,+α,l,m −

∆t

|Vl,m|
Fα,l,m,Bardow, (32)

where the time integration is approximated using the middle point rule, i.e.,

Fα,l,m,Bardow =

∫
∂Vl,m

(ξα · n)f
n+1/2
α,BardowdS. (33)

From Eq. (31) to (33), the following equation can be easily deduced,

f
n+1/2
α,Bardow(xb) = f̃+,n

α (xb)−
∆t

2
ξαj

∂f̃+,n
α (xb)

∂xj
, (34)

where xb is the center of cell interface and the middle point rule is employed in the integration of

Eq. (33). The RHS of Eq. (34) is a first order Taylor expansion of f̃+ around xb in the direction of

ξα, therefore it is an approximation of the following equation,

f
n+1/2
α,Bardow(xb) = f̃+,n

α (xb − hξα) = fnα (xb − hξα) + hΩ (fnα (xb − hξα)) . (35)

where h = ∆t/2. This equation will be further compared with Eq. (16) next.

It can be found that the updating procedures of this FV version of the Bardow’s scheme is similar

to DUGKS and is simpler because f
n+1/2
α (xb) is directly interpolated from f̃+

α from the upwind in this

scheme. Note that the interpolation scheme needs to be specified in both DUGKS and this scheme

in order to get f̃+
α (xb − hξα) or f̄+

α (xb − hξα) ( see Eq. (18) and Eq. (35)). In the following, we only

describe the interpolation scheme used in this FV version of Bardow’s scheme and the same approach

is also adopted in the implementation of DUGKS in this work. On quadrilateral structured grids, the

FV based Bardow’s scheme can be formulated as

f̃n+1
α,l,m = f̃+,n

α,l,m −
ξα1∆t

∆x1

[
f
n+1/2
α,l+1/2,m − f

n+1/2
α,l−1/2,m

]
− ξα2∆t

∆x2

[
f
n+1/2
α,l,m+1/2 − f

n+1/2
α,l,m−1/2

]
, (36)
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where f
n+1/2
α,l±1/2,m and f

n+1/2
α,l,m±1/2 are DFs at the face centers of cell (l,m) at the half time step, which

have to be interpolated from the upwind using f̃nα at the neighboring cell centers. Taking f
n+1/2
α,l−1/2,m

for example, as illustrated in Fig. 1, it can be interpolated bilinearly from the upwind using the six

neighboring cell centers with the following formula,

f
n+1/2
α,l−1/2,m =

1

2
[f̃+,n
α,l,m + f̃+,n

α,l−1,m]− ξα1∆t

2∆x1
[f̃+,n
α,l,m − f̃

+,n
α,l−1,m]

− ξα2∆t

8∆x2
[f̃+,n
α,l−1,m+1 + f̃+,n

α,l,m+1 − f̃
+,n
α,l−1,m−1 − f̃

+,n
α,l,m−1].

(37)

The remaining f
n+1/2
α in Eq. (36) can be calculated similarly. Then one can immediately check the

equivalence between Eq. (36) and Eq. (27) subjected to the difference schemes in Eq. (29), which

means the current FV based Bardow’s scheme is equivalent to the original FD based implementation.

It should be noted that, the above presentations are based on spatial discretization using uniform

Cartesian mesh. However, for non-uniform Cartesian meshes, such equivalence can also be verified.

We also note that by discretizing Eq. (27) using the FV approach, Bardow’s scheme can also be

extended to general unstructured meshes just like DUGKS [26].

As a summary, the step-by step algorithm of the FV implementation of Bardow’s scheme is outlined

as follows:

1. At the beginning (n = 0), the fluid variables (ρ0 and u0) and the transformed distribution

functions f̃0
α at each cell center are initialised.

2. f̃+,n
α at each cell center is calculated using Eq. (28).

3. f
n+1/2
α at each cell interface is obtained by shifting the upwind f̃+,n

α which is interpolated from

nearby cell centers like the example expressed in Eq. (37).

4. At each cell center, f̃n+1
α is updated from f̃+,n

α at the cell center and f
n+1/2
α at the surrounding

cell interfaces using Eq. (32) and the definition in Eq. (33).

5. ρn+1 and un+1 at each cell center are calculated from f̃n+1
α using Eq. (14).

6. Advance the time step (n ← n + 1) and repeat steps 2 to 6 until end time or steady state is

reached.

2.4. Comparison of the numerical fluxes in DUGKS and Bardow’s scheme

We now analyses the differences between DUGKS and Bardow’s scheme in finite-volume framework.

This is achieved by analyzing accuracy of the reconstructed distribution function at the cell interface

center. Firstly, it is noted that the exact solution of the DVBE at the cell interface center at middle

time step is

f
n+1/2
α,exact(xb) = fnα (xb − hξα) +

∫ h

0
Ω (fα(xb − hξα + sξα, t

n + s)) ds. (38)
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We can immediately find that if we approximate the integration of the collision term in Eq. (38)

using the rectangular integrating rule, i.e., the integration term is approximated as hΩ(f(xb − hξα)),

we get Eq. (35), which is the flux formula in Bardow’s scheme. On the other hand, if we apply the

trapezoidal rule to the quadrature, we get Eq. (16), i.e., the flux formula in DUGKS. Thus, in both

DUGKS and Bardow’s scheme, the flux is determined from the local characteristic solution of the

DVBE. The convection and collision effects are considered simultaneously in the evaluation of the

distribution function flux.

The using of the local solution of the governing equation to compute the numerical flux in DUGKS

and Bardow’s scheme is conceptually different from the pure mathematic treatments of the advection

term in many other FV/FD off-lattice Boltzmann schemes [14, 13, 36, 17, 31, 20, 37, 32]. Often in these

schemes, special care has to be taken to stabilize the computation as well as minimize the numerical

dissipation, even though advanced CFD technique such as limiters [31] or total variation diminishing

(TDV) [20, 32] are employed.

First it is noted that the reconstructed distribution function at a cell interface in DUGKS and

Bardow’s scheme in Eqs. (16) and (35) can also be rewritten as

f
n+1/2
α,dugks(xb) = fnα (xb − hξα) +

h

2

[
Ω (fnα (xb − hξα)) + Ω(fn+1/2

α (xb))
]

= f
n+1/2
α,exact(xb) +O(∆xm) +

h3

12
D2
αΩ(fn(xb)) +O(h4), (39a)

f
n+1/2
α,Bardow(xb) = fnα (xb − hξα) + hΩ (fnα (xb − hξα))

= f
n+1/2
α,exact(xb) +O(∆xm)− h2

2
DαΩ(fnα (xb)) +O(h3), (39b)

where Dα ≡ ∂t + ξα · ∇. The error terms O(∆xm) come from the spatial interpolation. For the

currently implemented linear interpolation, m = 2. The leading errors introduced by approximating

the integration of the collision term in Eq. (38) are explicitly expressed in Eq. (39a) and Eq. (39b)

for the two schemes, i.e, Edugks = (h3/12)D2
αΩ = O(h3) and EBardow = −(h2/2)DαΩ = O(h2), which

means DUGKS is more accurate than Bardow’s scheme in general. Particularly, for flows near a wall,

the orders of magnitude of the two error terms can be estimated as

Edugks ∼ h
h2

δ2
∼ h

(
η∆x

δ

)2

(40a)

EBardow ∼ h
h

δ
∼ hη∆x

δ
, (40b)

where δ ∼ L/
√

Re is characteristic thickness of the boundary layer [50] with L being the characteristic

length and Re the typical Reynolds number. Generally, within the boundary layer several grid nodes

are required in order to capture the flow dynamics correctly, meaning that η∆x/δ < 1. Therefore, two

11



conclusions can be inferred immediately from the above estimations, namely, (i) Simulation errors near

a solid wall will increase with increasing Reynolds number for both DUGKS and Bardow’s scheme, but

DUGKS will be more accurate; (ii) DUGKS will be less sensitive to mesh size than Bardow’s scheme

for flows involving solid walls. We here also argue that, as DUGKS employs an implicit treatment of

the collision term in the evaluation of numerical flux, it is expected to be more stable than Bardow’s

scheme. These arguments are also confirmed in the later numerical simulations.

We shall remark that if the distribution functions at cell interfaces are obtained by direct linear

interpolation along the characteristic line, i.e., neglecting the integral of the collision term in Eq. (38),

the numerical flux can be represented as

f
n+1/2
α,FT (xb) = fnα (x− hξ) +O(∆x2)

= f (0),n
α (xb − hξα) + τf (1),n(xb − hξα) +O(∆x2) +O(τ2),

(41)

where the subscript FT means the free transport (without collision) and the Chapman-Enskog expan-

sion [28], i.e, fα = f
(0)
α + τf

(1)
α + O(τ2) has been used. While, the exact flux expression in Eq. (38)

can be expanded as

f
n+1/2
α,exact(xb) = f (0),n

α (xb − hξα) + τf (1),n(xb − hξα) +

∫ h

0
Ωα(xb − hξα + ξαs, s)ds+O(τ2)

= f (0),n
α (xb − hξα) + (τ − h)f (1),n(xb − hξα) +O(τh) +O(τ2)

(42)

Comparing Eq. (41) with the exact distribution function given by Eq. (42), we can see the missing term

is −hf (1),n
α (xb− hξα). As the second order moment of f (1),n in the velocity space contributes directly

to the diffusive flux, the lack of the collision term in the reconstruction of cell-interface distribution

function is equivalent to introduce a numerical viscosity proportional to ∆t [38, 39, 40, 41].

2.5. No-slip boundary condition

In this subsection, we briefly mention the implementation of no-slip boundary condition for Bar-

dow’s scheme and DUGKS. The basic idea here is to mimic the half-way bounce-back rule of the

standard LBM [28] by reversing the DFs at boundary faces at middle time steps. Fig. 2 illustrates a

vertical boundary face located at a no slip wall with velocity Uw. Both of the incoming and outgoing

DFs at the boundary face at middle time steps have to be provided to update the cell-centered DFs.

We denote the incoming and outgoing DFs by φ̂
n+1/2
w,j,in and φ̂

n+1/2
w,j,out respectively, where φ̂

n+1/2
w,j stands

for f̄
n+1/2
w,j in DUGKS and f

n+1/2
w,j in Bardow’s scheme. The ghost cell method is used to facilitate the

implementation of the no-slip boundary condition. An extra layer of cells (ghost cells) are allocated

outside of the wall. The unknown DFs φn0,j in the ghost cells are extrapolated linearly from the values

on their neighboring inner cell centers, i.e., φ1,j and φ2,j . Here, φn stands for f̄+,n and f̃+,n in DUGKS

12
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Figure 2: Diagrammatic sketch of the implementation of no-slip wall boundary condition.

and Bardow’s scheme, respectively. Then we can compute the φ̂
n+1/2
w,j,out normally like the internal cell

interfaces. Finally, the incoming DFs are calculated in the same way as the half-way bounce-back rule

in the standard LBM [28],

φ̂
n+1/2
w,j,ᾱ = φ̂

n+1/2
w,j,α − 2wαρw,j

ξα ·Uw

c2
s

, (43)

where α stands for an outgoing DF direction and ᾱ is its reverse direction. ρw,j is extrapolated from

the nearest neighbour cell, i.e., ρw,j = ρ1,j .

The above implementation for the no-slip boundary condition in DUGKS has been previously

adopted in Refs. [25] and [42], and has been demonstrated to be second order accurate [42]. Here

for the Bardow’s scheme, we also use a numerical test to verify its second order accuracy subjected to

such kind of implementation for non-slip walls. The test case is the steady state force-driven general

Couette flow between parallel plates. The plates are placed horizontally between 0 < y < L, where

the bottom plate is kept fixed while the top one moves to the right with a constant velocity Uw. The

inlet and outlet of the channel are assumed to be periodical. A constant horizontal body force ρG is

exerted on the fluid. The analytical horizontal velocity profile at steady state is given by,

ua(y) =
y

L
Uw +

G

ν

L2

2
(
y

L
− y2

L2
). (44)

In simulations, we set L = 1 and Uw = 0.05, while the grid number across the channel (Ny) is varied.

The CFL number is set to be 0.5. The collision time is fixed at τ = 0.5∆t. The body force G is

adjusted to keep the maximum velocity at ua(y)|max = 0.1. The discrete body force scheme of He

et. al. [43] is applied in the same way as in the standard LBM. The relative L2 errors of the simulated

velocity un(y) defined as

Eu =

√∑
y |un(y)− ua(y)|2√∑

y |ua(y)|2
, (45)
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Figure 3: L2 error (blue circle) of the velocity profile as a function of the mesh size (Ny) for the general Couette flow
predicted by Bardow’s scheme.

are calculated under different Ny. The results are presented in Fig. 3. It can be seen that the

current implementation of the no-slip boundary condition in Bardow’s scheme achieves a second order

accuracy.

3. Numerical tests

In this section, we compare DUGKS and Bardow’s scheme in terms of accuracy, stability and

computational efficiency by simulating several two dimensional flows. The first one is the unsteady

Taylor-Green vortex flow which is free from boundary effect, and an analytical solution exists for this

problem. The second test case is the lid-driven cavity flow, which is used to evaluate the accuracy

and stability, and the last one is the laminar boundary layer flow problem, which is used to verify the

dissipation property of DUGKS and Bardow’s scheme. In all of our simulations, the CFL number is

set to be 0.5 and the criterion for reaching steady state in the simulations is√∑
l,m |unl,m − un−1000

l,m |2√∑
l,m |un−1000

l,m |2
< 10−8, (46)

unless stated otherwise.
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3.1. Taylor-Green vortex flow

This problem is a two dimensional unsteady incompressible flow in a square domain with periodical

condition in both directions. The analytical solution is given by

u(x, y, t) = −U0 cos(2πx) sin(2πy) exp(−8π2νt), (47a)

v(x, y, t) = U0 sin(2πx) cos(2πy) exp(−8π2νt), (47b)

p(x, y, t) = −U
2
0

4
[cos(4πx) + cos(4πy)] exp(−16π2νt), (47c)

where U0 is a constant indicating the velocity magnitude and hence the kinetic energy of the initial

flow field, ν is the shear viscosity, u = (u, v) is the velocity, and p is the pressure. The computation

domain is 0 < x < L and 0 < y < L with L = 1. We set U0 = 1/
√

3×10−2 and ν = 1/
√

3×10−4. The

corresponding Reynolds number and Mach number are Re = U0L/ν = 100 and Ma = U0/cs = 0.01,

respectively. The initial distribution function is computed from the Chapman-Enskog expansion at

the Navier-Stokes order [28]

fα(x, 0) = f eq
α − τ (∂tf

eq
α + ξα ·∇xf

eq
α ) , (48)

where the equilibrium distribution functions are evaluated from the initial analytical solution.

Table 1: L2-errors and orders of convergence of the velocity field for the Taylor-Green vortex flow using DUGKS and
Bardow’s scheme.

N 16 32 64 128

DUGKS
Eu(tc) 4.1E-03 1.1E-03 2.7E-04 6.1E-05
order - 1.93 2.02 2.13

Bardow’s scheme
Eu(tc) 1.7 E-02 4.4E-03 1.1E-03 2.7E-04
order - 1.95 2.00 2.03

We first evaluate the spatial accuracy of DUGKS and Bardow’s scheme by simulating the flow

with varies mesh sizes (N × N). As we are analyzing the spatial accuracy, the time step is set to a

very small value (∆t = 2τ) to suppress the errors caused by the time step size. The L2-error of the

velocity field is measured,

Eu(t) =

√∑
x,y |un(x, y, t)− ua(x, y, t)|2√∑

x,y |ua(x, y, t)|2
, (49)

where ua and un are the analytical solution and numerical solution respectively. The L2-errors at the

half-life time tc = ln(2)/(8νπ2) using the two schemes are listed in Table 1. It can be seen that both

of the schemes are of second order accuracy in space. But the errors computed from DUGKS results

are smaller than those of Bardow’s scheme on the same mesh resolutions.
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Figure 4: L2 errors of the velocity field at tc using varies ∆t/τ on a 64 × 64 mesh.

Since Both the DUGKS and Bardow’s scheme can admit a time step larger than the relaxation

time, we now investigate their performance at large values of ∆t/τ . We fix the mesh size (N = 64)

and the relaxation time but change the time step. The L2-errors at tc are shown in Fig. 4, from which

we can see that the errors scale almost linearly with the time step size for both methods. Particularly,

the two methods still give reasonably accurate results ∆t/τ is as large as 50, as shown in Fig. 5. And

again, the errors of the DUGKS are smaller than those of Bardow’s scheme in all cases. The two

methods both blow up as ∆t/τ = 100 since the CFL number goes beyond 1 at this condition.
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Figure 5: Velocity profile along the line x = 0.5 at tc on a 64 × 64 mesh with time step ∆t = 50τ .

Here, we also discuss the computational efficiencies of DUGKS and Bardow’s scheme when imple-

menting both of them in FV framework. Their only difference is the computing of numerical flux.

But DUGKS introduces two sets of additional DFs and needs to evaluate macro variables at cell in-
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terfaces. Thus it can be expected that the DUGKS’s computing cost is higher than that of Bardow’s

scheme. Both of the codes are run on an Intel Xeon E5-2670v3@2.6GHz CPU, the computation time

for 10,000 evolution steps using Bardow’s scheme and DUGKS with the 64 × 64 mesh are 10.5s and

19.7s respectively, meaning DUGKS is twice as expensive as Bardow’s scheme.

3.2. Lid-driven cavity flow

Incompressible two dimensional lid-driven cavity flow is a popular benchmark problem for numer-

ical schemes. Here, we use it to evaluate the accuracy and stability of the two schemes at different

Reynolds numbers. The flow domain is a square cavity with side length L. The top wall moves with a

constant velocity Uw, while other walls are kept fixed. The Reynolds number is defined as Re = UwL/ν

with ν being the viscosity of the fluid. In the computation, we set L = 1, Uw = 0.1, and the viscosity

of the fluid is adjusted to achieve different Reynolds numbers. Uniform Cartesian meshes with grid

number N ×N are used in our simulations.
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Figure 6: u-velocity profiles along the vertical line passing through the center cavity at Re = 1000 and Re = 5000 using
varies mesh size.

We first simulate the flow at Re = 1000 and 5000 with different mesh sizes to compare the accuracy

DUGKS and Bardow’s scheme in detail. The horizontal (vertical) velocity profiles at steady states

along the vertical (horizontal) line passing through the center of cavity predicted by the two schemes

using different mesh resolutions are presented in Figs. 6 (7). The benchmark solutions of Ghia et al. [44]

are also included for comparison. We can observe that with sufficiently refined meshes (N = 256 for

Re = 1000, N = 512 for Re=5000), the velocity profiles predicted by Bardow’s scheme and DUGKS

are almost coincident and agree well with the benchmark solutions. When coarser meshes are used,

however, the velocity profiles obtained by Bardow’s scheme deviate from the benchmark solution

obviously. Specifically, the horizontal velocity profiles in the boundary layer near the top wall departure
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Figure 7: v-velocity profiles along the vertical line passing through the center cavity at Re = 1000 and Re = 5000 using
varies mesh size.

from the benchmark solutions severely at high Reynolds numbers with coarser meshes, which was also

observed in Ref. [23]. Contrary to Bardow’s scheme, the profiles predicted by DUGKS still match the

benchmark solutions quite well on coarser meshes. These observations are also consistent with the

theoretical analysis of the two schemes give in Section 2.4.

To get an overview of the difference in the mesh-size-dependence behaviors of the two scheme, we

show the contours of the stream function ψ(x, y) and vorticity ω(x, y) with different mesh sizes. The

stream function ψ are integrated from the velocity fields using Simpson’s rule assuming zero value at

the left wall. The vorticity ω are calculated from the derivatives of the velocity fields using isotropic

second order finite difference scheme [35]. The details of our calculating methods for ψ and ω can be

found in Ref. [48] since we followed exactly the procedures described in that work. The contour levels

of these plots are kept the same with those in Refs. [44, 45], which are two most referred benchmark-

studies. As expected, the overall flow patterns shown in the stream function and vorticity fields also

reveal that Bardow’s scheme and DUGKS give very similar results on the finest meshes but exhibit

clear differences for coarser meshes. Generally, the results obtained by DUGKS is less sensitive to

mesh sizes. For example, Fig. 11 indicates that at Re = 5000, the vorticity field obtained by DUGKS

changes only slightly when the mesh size (N) is increased from 128 to 512. On the contrary, the ω

fields given by the Bardow’s scheme on the coarser mesh (N = 128 and N = 256) clearly deviate from

the result on the N = 512 mesh.

To further compare the flow fields quantitatively, we tabulate the positions of the primary and

secondary lower vortex centers in Table 2 and Table 3 together with the intensities of the stream

function ψ and vorticity ω at the vortex centers. The corresponding benchmark results in the litera-

ture [44, 45, 46, 47, 48] are also listed in the tables. For the case of Re = 1000, Botella’s results [45] are
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Figure 8: Contours of stream function ψ at the case of Re = 1000 using different methods and varies mesh sizes. Top
panel: DUGKS. Bottom panel: Bardow’s scheme. Mesh size (N) from left to right: 64, 128 and 256. Solid and dashed
lines represent positive and negative values of ψ, respectively.

thought to be highly accurate which were obtained based on a spectral Chebyshev method with special

treatment to the singularities at the upper corners of the cavity and the results exhibit a good grid

convergence [45]. While for the case of Re = 5000, highly accurate results are rare in the literature.

From Table 2, we can see that for the case of Re = 1000, the primary vortex center position and

stream function ψ predicated by DUGKS on the N = 256 mesh agree very well (have 4 identical

significant figures) with the Botella’s solutions, while the vortex intensity |ω| is 1.2% higher than

Botella’s. This relative higher discrepancy of ω confirms the statement of Gupta et al. [49] that the

vorticity at vortex center is sensitive to the accuracy of wall boundary condition. On the other hand,

Bardow’s scheme gives quite similar but less accurate results than DUGKS’s results on the finest

meshes. However, the predicted ψ and ω on coarser meshes deviate quickly even though the vortex

center changes only slightly. The obviously larger values of ω at the primary vortex center using

coarser meshes are also reflected in Figs. 6 and 7, where the corresponding velocity profiles at the

center region are evidently steeper than the benchmark results. In contrast, the results obtained by

DUGKS is much less sensitive to mesh sizes. The positions of the lower secondary vortex centers and

the values of ψ, ω at the centers presented in Table 3 indicate similar trends.

The above observations confirm that on sufficient refined meshes, the DUGKS and Bardow’s scheme
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Table 2: Primary vortex center position (x, y) and intensities of the stream function ψ and vorticity ω at the vortex
center for the cavity flow.

N (x, y) |ψ| |ω|
Re=1000

Botella [45] 160 (0.5308, 0.5652 ) 0.1189336 2.067753
Botella [45] 128 (0.5308, 0.5652 ) 0.1189336 2.067750
Bruneau [47] 1024 (0.53125, 0.56543 ) 0.11892 2.0674
Erturk [46] 601 (0.5300, 0.5650 ) 0.118781 2.065530
Ghia [44] 129 (0.5313, 0.5625 ) 0.117929 2.04968
Luo [48] 513 (0.531189, 0.566277) 0.118919 2.067664
Luo [48] 257 (0.531128, 0.562257) 0.118843 2.067339
DUGKS 256 (0.530835, 0.565225) 0.118918 2.070272
DUGKS 128 (0.531099, 0.565133) 0.119010 2.070062
DUGKS 64 (0.532409, 0.565339) 0.119478 2.078209
Bardow 256 (0.530716, 0.565158) 0.119345 2.077665
Bardow 128 (0.530339, 0.565303) 0.121681 2.122352
Bardow 64 (0.530152, 0.571904) 0.130824 2.385955

Re=5000

Bruneau 2048 (0.51465, 0.53516 ) 0.12197 1.9327
Erturk 601 (0.5150, 0.5350 ) 0.121289 1.926601
Ghia 257 (0.5117, 0.5352 ) 0.118996 1.86016
DUGKS 512 (0.515105, 0.535245) 0.122387 1.945667
DUGKS 256 (0.515335, 0.535248) 0.122665 1.948388
DUGKS 128 (0.516536, 0.535408) 0.123462 1.958624
Bardow 512 (0.514993, 0.535204) 0.123849 1.968384
Bardow 256 (0.514735, 0.535563) 0.130236 2.075018
Bardow 128 (0.514070, 0.538940) 0.150096 2.452553
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Table 3: Positions of the lower left and lower right secondary vortex centers and intensities of the stream function ψ and
vorticity ω at the vortex centers for the cavity flow. References for the literature data are the same as Table 2.

N Lower-left secondary vortex Lower-right secondary vortex

Re=1000

(x, y) |ψ|×104 |ω| × 10 (x, y) |ψ|×103 |ω|
Botella 160 (0.0833, 0.0781 ) 2.334528 3.522861 (0.8640, 0.1118 ) 1.729717 1.109789
Botella 128 (0.0833, 0.0781 ) 2.334528 3.522832 (0.8640, 0.1118 ) 1.729717 1.109794
Bruneau 1024 (0.86328, 0.11133 ) 1.7333 1.1265
Ghia 129 (0.0859, 0.0781 ) 2.31129 3.6175 (0.85938, 0.1094 ) 1.75102 1.15465
Erturk 601 (0.0833, 0.0783 ) 2.3261 3.53473 (0.8633 0.1117 ) 1.7281 1.115505
Luo 513 (0.082846,0.078947) 2.331772 3.55657 (0.864522,0.112086) 1.729537 1.103888
Luo 257 (0.083658,0.079767) 2.320909 3.65599 (0.861868,0.110895) 1.729997 1.124101
DUGKS 256 (0.083303,0.078047) 2.324570 3.503489 (0.863983,0.111790) 1.737885 1.113440
DUGKS 128 (0.083462,0.077816) 2.288800 3.460460 (0.865040,0.111401) 1.731756 1.121638
DUGKS 64 (0.084498,0.076337) 2.037514 3.212361 (0.871912,0.110602) 1.645585 1.136373
Bardow 256 (0.083272,0.078094) 2.320766 3.511439 (0.863929,0.111679) 1.737000 1.116606
Bardow 128 (0.083055,0.077727) 2.165012 3.413867 (0.864855,0.111114) 1.694117 1.121728
Bardow 64 (0.078245,0.068497) 0.944911 1.999918 (0.871587,0.113014) 1.370149 0.998399

Re=5000

(x, y) |ψ|×103 |ω| (x, y) |ψ|×103 |ω|
Ghia 257 (0.0703, 0.1367 ) 1.36119 1.53055 (0.8086, 0.0742 ) 3.08358 2.66354
Bruneau 2048 (0.80566, 0.073242) 3.0694 2.7245
Erturk 601 (0.0733, 0.1367 ) 1.3639 1.502628 (0.8050, 0.0733 ) 3.0604 2.724481
DUGKS 512 (0.072799,0.137329) 1.378878 1.521035 (0.804243,0.072485) 3.090044 2.777576
DUGKS 256 (0.072719,0.138305) 1.391413 1.532447 (0.804000,0.071605) 3.135317 2.863107
DUGKS 128 (0.073197,0.140708) 1.468172 1.586196 (0.811187,0.071425) 3.459910 3.144925
Bardow 512 (0.072686,0.137778) 1.385247 1.537686 (0.803505,0.072074) 3.073734 2.813152
Bardow 256 (0.072965,0.139162) 1.371750 1.566141 (0.800837,0.070926) 2.959034 2.960832
Bardow 128 (0.073240,0.135075) 1.207022 1.377219 (0.805861,0.076552) 2.837303 3.015223
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Figure 9: Contours of vorticity function ω at the case of Re = 1000 using different methods and varies mesh sizes. Top
panel: DUGKS. Bottom panel: Bardow’s scheme. Mesh size (N) from left to right: 64, 128 and 256. Solid and dashed
lines represent positive and negative values of ω, respectively.

can give similar results; while with a coarser mesh, DUGKS clearly gives more accurate results than

the latter. The results obtained by DUGKS is also less sensitive to mesh resolutions. These results

are consistent with the analyses in Sec. 2.4 that evaluating the quadrature of the collision term with a

higher order rule can gives more accurate results especially for high Reynolds number flows with wall

boundaries.

As has been analyzed in Sec. 2.4, the only difference between DUGKS and Bardow’s scheme is the

treatment of the integration of the collision term in the evaluation of the cell interface distribution

function, and the difference scales with the time step, which have been confirmed in the test of Taylor-

Green vortex flow (see Fig. 4). Now we explore the effect of time step on the solution of this steady

flow for Bardow’s scheme. We simulate the flow at Re = 1000 with the N = 64 mesh and 5000 with

the N = 128 mesh using various CFL numbers. The calculated velocity profiles are shown in Fig. 12.

We can see that the errors decrease with decreasing CFL number. But even with CFL=0.1, the errors

are still much larger than those of DUGKS.

We also use the cavity flow to assess and compare the stability of the two schemes. Generally,

the stability of the numerical schemes for the BGK equation is affected by the treatments of both the

advection term and the collision term. The stability for an explicit discretization of the advection term
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Figure 10: Contours of stream function ψ at the case of Re = 5000 using different methods and varies mesh sizes. Top
panel: DUGKS. Bottom panel: Bardow’s scheme. Mesh size (N) from left to right: 128, 256 and 512. Solid and dashed
lines represent positive and negative values of ψ, respectively.

is controlled by the CFL number, while the stability due to the collision term treatment depends on the

ratio of ∆t and the collision time τ , i.e., ∆t/τ . The maximum values of ∆t/τ at varies CFL numbers

for stable computations on the 32 × 32 and 64 × 64 meshes are measured and presented in Fig. 13

with error ranges. The figure presents a clear distinction between Bardow’s scheme and DUGKS.

For Bardow’s scheme, the computation is unstable at moderately large ∆t/τ even though CFL < 1,

while for DUGKS, the stability is almost not affected by the CFL number as long as CFL < 1.1.

This observation confirms to the analysis in Sec. 2.4 that the numerical stability is also affected by

the treatment of the collision term in the evaluation of numerical flux. Computing the collision term

implicitly both in Eq. (10) and Eq. (16) makes DUGKS a rather robust scheme.

3.3. Laminar boundary layer over a flat plate

In the cavity flow, it is observed that Bardow’s scheme fails to capture the boundary layer accurately

near the top wall of the cavity for large Reynolds numbers. In this subsection, we use the laminar

boundary layer flow over a flat plate as a stand-alone case to check this phenomenon and therefore,

evaluate the dissipation characteristics of Bardow’s scheme and DUGKS. The flow configuration of

this problem is sketched in Fig. 14. A uniform flow with horizontal velocity U0 flows past a flat plate

with length L. This steady problem has an analytical self-similar Blasius solution. The Reynolds
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Figure 11: Contours of vorticity function ω at the case of Re = 5000 using different methods and varies mesh sizes. Top
panel: DUGKS. Bottom panel: Bardow’s scheme. Mesh size (N) from left to right: 128, 256 and 512. Solid and dashed
lines represent positive and negative values of ω, respectively.
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Figure 12: Velocity profiles predicted by Bardow’s scheme at with different CFL numbers. (a) Re = 1000 on N = 64
mesh, (b) Re = 5000 on N = 128 mesh.
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Figure 13: Maximum values of ∆t/τ for stable computations of the cavity flow.

number is defined as Re = U0L/ν, where ν is the kinematic viscosity. In the simulations, we set

U0 = 0.1, L = 94.76 and Re = 105. The boundary layer is very thin at such a high Reynolds number,

so non-uniform structured meshes stretched in the vertical direction are employed (Fig.14). The cell

size along Y direction increases with a ratio Ay = 1.1. The height of the first layer is denoted by

∆ymin. The grid number in the Y direction is adjusted according to ∆ymin to make sure the height of

the computation domain is right beyond 50. The cell size in the X direction is refined at the leading

edge of the plate, with ∆xmin = 0.1 to account for the singularity of the flow behavior there. The

increasing ratios of the cell size to the downstream and upstream from the leading edge are Ar = 1.05

and Al = 1.1, respectively. The total cell number in the X direction is 120, with 80 cells distributed on

the plate surface. Free stream condition is applied to the left and top boundaries. Outflow boundary

condition is applied to the right boundary, and symmetric boundary condition is used at the section

before the plate at the bottom boundary. No-slip boundary condition is imposed at the bottom wall

and is realized by the method described in Sec. 2.5.

We simulate the flow with different mesh resolutions by adjusting the parameter ∆ymin from 0.01

to 0.1. The CFL number is fixed at 0.5. The velocity profiles at X1 = 6.4381 and X2 = 21.5082

predicted by the two schemes together with the Blasius solutions are shown in Figs. 15 and 16. The

horizontal velocity is scaled by U0, and the vertical velocity is scaled by U0/2
√

Rex, where Rex is the

local Reynolds number defined as U0x/ν. Note that for the DUGKS, the profiles with the mesh of

∆ymin = 0.01 are not shown for a clear presentation because the profiles at varies meshes are almost

overlapped.
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Figure 14: Mesh for the laminar boundary layer.
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Figure 15: Horizontal velocity profiles in the boundary layer calculated by Bardow’s scheme and DUGKS with different
mesh resolutions, CFL=0.5. Top: Bardow’s scheme; Bottom: DUGKS; Left: results at x=6.4381; Right: results at
x=21.5082.
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Figure 16: Vertical velocity profiles in the boundary layer calculated by Bardow’s scheme and DUGKS with different
mesh resolutions, CFL=0.5. Top: Bardow’s scheme; Bottom: DUGKS; Left: results at x=6.4381; Right: results at
x=21.5082.
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From these results, we can observe that, the boundary layer can be captured accurately by DUGKS

with the all of these meshes. In particular, with the coarsest mesh (∆ymin = 0.1), there are only 4 cells

in the boundary layer at x = X1. On the other hand, Bardow’s scheme only gives satisfactory results

with the finest mesh (∆ymin = 0.01), as shown in Figs. 15 and 16. It is also observed that the results

of Bardow’s scheme are quite sensitive to the mesh employed. With the coarser meshes, the boundary

layer thickness is over predicted, which indicates Bardow’s scheme introduces excessive numerical

dissipation. While outside the boundary layer, the streamwise velocity is overprotected. This can

be explained by the blocking and accelerating effects due to the numerically enlarged boundary layer

thickness. We note that such over-predictions were also observed in Refs.[32, 36].
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Figure 17: Horizontal (left) and vertical (right) velocity profiles at x = 21.5082. for the boundary layer flow case,
calculated by Bardow’s scheme using ∆ymin = 0.1 and different CFL numbers.

Like the cavity flow case, we reduce the time step in simulation using Bardow’s scheme to examine

the effects of time step. The computation is carried out on the mesh of ∆ymin = 0.1 and the CFL

number varies from 0.5 to 0.05. The velocity profiles are presented in Fig. 17. It can be seen that

using of a small time step can improve the accuracy, but the deviations from the Blasius solution are

still obvious even with CFL=0.05.

As a reference, we have also simulated this problem using the standard LBM with the single

relaxation time approximation (LBKG) model on two uniform meshes with ∆y = 0.1 and ∆y = 0.05,

respectively. The computational domain size is 150 in width and 50 in height. Thus the uniform mesh

sizes (1500 × 500 and 3000 × 1000) are much larger compared with the meshes used in DUGKS and

Bardow’s scheme. The half-way bounce back scheme is applied to the plate surface. Fig. 18 shows the

velocity profiles near x = 21.5082 given by the LBM simulations. It can be seen that the LBM results

are quite accurate even on the mesh with ∆y = 0.1. We note that for a further coarser mesh with

∆y = 0.2, the computation with LBM becomes unstable, even though we lower the Reynolds number

to 104 at the early stage of the computation to avoid the quick divergence due to the strong oscillation
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Figure 18: Horizontal (left) and vertical (right) velocity profiles near x = 21.5082 for the boundary layer flow case,
calculated by the standard LBM.

near the plate. But the computation of DUGKS is still stable with this mesh even at Re = 105. We

here also compare the computation time using the DUGKS with the non-uniform mesh of ∆ymin = 0.1

and the standard LBM with the uniform mesh of ∆y = 0.1. The DUGKS program is a serial one and

takes 169s to get the converged solution. While the LBM program is a parallel one running with 48

MPI processes and it takes 277s to get the converged solution. Considering the similar accuracy, and

the largely reduced computation time with non-uniform meshes, the DUGKS is a well suited off-lattice

Boltzmann scheme for such flows involving boundary layer.

4. Conclusions

In this paper, the performance of two kinetic schemes, i.e., the off-lattice Boltzmann proposed

by Bardow et al. and the DUGKS is compared. Both of them can remove the time step restriction

which is commonly seen in many off-lattice Boltzmann schemes. A theoretical analysis in the finite-

volume framework demonstrates that the two methods differ only in the constructions of numerical

flux. Bardow’s scheme treats the collision integral with the one-point quadrature when integrate the

BGK equation along the characteristic line to evaluate the numerical flux, while DUGKS computes it

with the trapezoidal quadrature. Consequently, DUGKS is more accurate and stable than Bardow’s

scheme.

The numerical results of three test cases, including unsteady and steady flows, confirm that the

DUGKS is more accurate and stable than Bardow’s scheme on the same computing configurations,

especially for high Reynolds number flows. It is also observed that DUGKS is stable as long as

CFL < 1, while the stability of Bardow’s scheme degrades quickly as the CFL number goes beyond

0.5. We attribute this to the implicit treatment of the collision term of the DUGKS when evaluating

the numerical flux. Furthermore, the results show that DUGKS is less sensitive to mesh resolutions
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than Bardow’s scheme in terms of accuracy. Numerical results also demonstrate that DUGKS is twice

as computationally expensive as Bardow’s scheme on a same mesh. However, it should be noted

that DUGKS can achieve an accurate solution with a much finer mesh, suggesting that it can be

more efficient than Bardow’s scheme. In summary, the theoretical analysis and numerical results

demonstrate that DUGKS can serve as an efficient method for simulating continuum flows, although

it is not limited to such flow regime.
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