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Abstract 6 

Remote photogrammetric inspection is a Non-Destructive Testing method used to quantify surface integrity and detect 7 

external discontinuities. The mobility and size of an unmanned aerial vehicle (UAV) offer the flexibility to quickly 8 

deploy remote photogrammetric inspections for large-scale assets. In this paper, the results of a photogrammetric 9 

inspection are presented as a 3D profile, reconstructed from UAV captured images. Experiments were conducted 10 

indoors using a wind turbine blade section obtained from a recently decommissioned asset. The naturally occurring 11 

surface features representative of environmental wear were augmented with a small number of artificial features to aid 12 

in the visualisation of inspection quality. An autonomous UAV system for photogrammetric inspections is demonstrated 13 

and the influence of image parameters such as environmental light levels, motion blur and focal blur quantified in terms 14 

of their impact on the inspection accuracy. Over the range of parameter values studied, the poorest scenario was 15 

observed to cause a degradation in reconstruction error by a factor of 13 versus the optimal. Reconstruction quality 16 

when employing a laser range scanner to maintain standoff distance relative to the object during flight was also 17 

investigated. In this schema, the controller automatically generated a real-time adaptive flight path to follow the outer 18 

profile of the wind turbine blade and, consequently, demonstrated improved image quality during close-range inspection 19 

of an object with complex geometry.  Inspection accuracy was quantified using the error of the photogrammetric 20 

reconstruction as compared to a model acquired using independent metrology equipment. While utilising the laser-based 21 

adaptive path, error in the reconstructed geometry was reduced by a factor of 2.7 versus a precomputed circular path. In 22 

the best case, the mean deviation was below 0.25 mm. Instances of wind turbine blade damage such as edge crushing, 23 

surface imperfections, early stage leading edge erosion were clearly observed in the textured 3D reconstruction profiles, 24 

indicating the utility of the successful inspection process. The results of this paper evaluate the impact of optical 25 

environmental effects on photogrammetric inspection accuracy, offering practical insight towards mitigation of negative 26 

effects.  27 
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1. Introduction 1 

Photogrammetric inspection, a form of visual inspection, is a non-destructive testing method that uses a camera 2 

to evaluate the surface condition of industrial assets. The technique and its related algorithms are moving forward, 3 

and range of research interests for its Non-Destructive Testing (NDT) applications are growing [1]. The 4 

progression can be attributed to the benefits of photogrammetry, such as low cost, fast speed and no requirement 5 

for physical contact. Compared with some conventional NDT sensors which measure at discrete points, 6 

photogrammetry provides an opportunity to perform a full-field measurement, wherein an informative overview 7 

is produced at a relatively high speed albeit with no internal structural detail. Moreover, photogrammetry can 8 

achieve more frequent measurement, reducing workload and health risk to inspectors [2]. 9 

The application of the photogrammetric technique to wind turbine blade monitoring  has been growing since the 10 

1996 work by J.C. Sabel [3]. This deployed two cameras, affixing reflective stickers to the turbine tower and its 11 

10 m diameter blades to measure vibration whilst the system was operating. A projector-based system has 12 

similarly been applied for turbine blade fatigue testing [4]. Additionally, the photogrammetric technique has been 13 

utilised to measure the dynamic characteristics of a wind turbine blade [5]. Therein, authors demonstrated a system 14 

equipped with two high-speed cameras to capture blade movement.  15 

An Unmanned Aerial Vehicle (UAV) is a pilotless flying vehicle and provides flexibility to undertake many 16 

challenging access problems. A UAV with photogrammetric payload enables technicians to inspect the surface of 17 

the large-scale assets [1]. In existing literature, UAVs have been utilised in various inspection tasks, such as 18 

building surveys [6], detecting discontinuous on power cables [7], inspections of a nuclear waste storage container  19 

[8] and evaluating structural conditions of bridges [9]. J. Seo et al presented a UAV-based approach for the 20 

inspection of a timber bridge [10]. In this work, the authors concluded that the image quality, and thus the accuracy 21 

of the resulting inspection, is constrained by factors such as UAV platform positioning instability and camera 22 

exposure parameters. Similar researches on UAV-based photogrammetric inspections for bridges [11]–[13] and 23 

other infrastructure [14] have been conducted in the United States. These articles describe a methodology for the 24 

assessment of image quality prior to the inspection stage to improve the accuracy of the inspection. S. S. Mansouri 25 

et al. described a UAV swarm approach to inspect an outdoor sculpture where the UAVs were navigated by stereo 26 

camera-based system [15]. The current state-of-art of the UAV inspection of wind turbine blades focuses on 27 

improving inspection accuracies, such as developing algorithms to detect defects from offline pictures [16] and 28 

investigating mechanical approaches for contact measurements [17] [18]. These conventional photogrammetric 29 
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approaches typically present inspection results in multiple separate images, which struggle to convey position and 1 

location information.  2 

By contrast, 3D photogrammetric reconstruction is the process of generating a computer model of the 3D profile 3 

of an object from a set of 2D images and implicitly displays surface feature locations. This process can be 4 

classified into three main categories depending on the type of image acquisition equipment used: Single Camera-5 

based methods, RGB-Depth sensor-based methods and Multicamera network-based methods. An overview of 6 

these methods and their respective sub-categories is depicted in Figure 1, where the depth of nodes reflects an 7 

increasing accuracy. As shown in the figure, Structure from Motion (SfM) [19], Multiview Stereo [20] and Visual 8 

SLAM (Simultaneous localization and mapping)  [21] all use a single camera to reconstruct the 3D models.  The 9 

technique of SfM involves extracting the unique features from a collection of 2D images and matching these 10 

features to estimate sparse scene geometry and camera positions. The sparse point cloud and estimated camera 11 

positions generated by SfM are further processed by application of Multiview Stereo algorithms, which calculate 12 

densified point clouds to render an accurate 3D geometry. Visual SLAM reconstructs the large-scale targets and 13 

camera surroundings in real-time. However, real-time processing requires enhanced computational power and can 14 

come at the expense of reconstruction accuracy. An RGB-Depth sensor outputs a conventional RGB image 15 

alongside a depth image. Depth Fusion [22] [23] uses this information, combined with the traditional RGB image 16 

features to reconstruct a 3D model. Similar to the visual SLAM, RGBD SLAM  [24] uses the camera outputs to 17 

reconstruct the scene in real-time. Multicamera based methods [25] use the images captured by multiple cameras 18 

placed at various pre-planned positions. Compared with the single camera solutions, multiple cameras with known 19 

camera positions do not require mathematical approaches to estimate camera poses, which improves the 20 

reconstruction accuracy. Considering the physical limitations of the UAV and accuracy requirements of the 21 

inspections, SfM and Multiview Stereo are utilised in this paper.  22 

 23 

Figure 1 Approaches for 3D Reconstructions 24 
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Implementations of these 3D reconstruction algorithms are seeing utilisation for digitising archaeological art [26] 1 

but also for UAV indoor navigation [27].  During NDT inspections, a textured 3D model can be built up from 2 

multiple images and so provide a more contextual assessment of the target object. By estimating the approximate 3 

location of each image, the reconstruction progress represents a feasible approach to quickly localise the defects, 4 

especially on assets with complex or very self-similar geometry. Compared with inspections composed of isolated 5 

images viewed offline, 3D photogrammetric inspection provides results with intrinsic position and location 6 

information that are of great utility in the production of meaningful surface condition evaluations.  The inspection 7 

process when using this technique requires a UAV equipped with a photogrammetric payload to manoeuvre 8 

around the target object and take images in different positions and orientations to ensure the entire object surface 9 

has been observed sufficiently for reconstruction. Such an approach has been utilised on the inspections for 10 

bridges, structures and buildings [1]. As documented in [28] and [29], the accuracy of the 3D photogrammetric 11 

inspection results is impacted by the image quality, UAV movement, environmental light levels, motion blur and 12 

distance to the object.  13 

2. Aim and Objectives 14 

This paper demonstrates and quantifies the parameters influencing the accuracy of a close-range photogrammetric 15 

inspection using an autonomously controlled UAV. A laser scanner aided inspection of a wind turbine blade with 16 

complex geometry will be presented. The 3D profile generated when flight paths are assisted by laser data is 17 

investigated regarding the accuracy and detail of reconstructed features. 18 

Section 3 provides an overview of the autonomous UAV inspection system and experimental setups utilised in 19 

this paper.  Section 4 quantifies and analyses the impacts of quality parameters affecting UAV deployed 20 

photogrammetry. Section 5 presents an inspection with a laser-based flight trajectory and describes the impacts 21 

of UAV standoff distance. Section 6 presents a discussion based on the experimental results from Section 4 and 22 

Section 5.  Finally, in Section 7, the paper is concluded with a discussion of results and the insights gained from 23 

the work.  24 

3. Overview of the Experimental Inspection System  25 

The inspection system utilised in this paper (as shown in Figure 2) is composed of: an AscTec Firefly UAV [30], 26 

a FLIR machine vision camera CM3-U3-50S5C-CS [31] with an 8 mm, F2.4, 57.8° field of view lens [32] and a 27 

Hokuyo URG-04LX laser scanner [33]. This photogrammetric payload is mounted on the UAV and captures 4 28 
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MegaPixel (MP) raw images at 2 Hz with the camera lens manually adjusted for optimum focusing at a set 1 

distance. Sensor communications and image acquisition are processed by the UAV’s onboard Intel Core2 Duo 2 

Computer (running a Linux-based Operating System). The raw images, captured during the UAV flight, are saved 3 

on this computer, then exported to an offline computer for further reconstruction processing. 4 

The UAV was autonomously stabilised and guided to follow inspection trajectories generated by a customised 5 

controller running on the off-board, ground-based workstation and updated every 50 ms. Onboard, the aircraft’s 6 

flight controller is based on a closed-loop Proportional-Integral-Derivative (PID) architecture [34] and adjusts the 7 

UAV attitude depending on the difference between the desired and actual poses.  8 

While the UAV described here is designed to be capable of outdoor inspections, the experiments demonstrated in 9 

this paper were undertaken within a laboratory environment, wherein GPS signals are unavailable to provide a 10 

reliably accurate position for UAV tracking and navigation. Consequently, a high-accuracy photogrammetry-11 

based Vicon position measurement system is used as a replacement for GPS when performing indoor navigation. 12 

This system comprises twelve optical cameras and tracks the six degree-of-freedom UAV pose at 100 Hz. The 13 

Vicon system positional accuracy error was quantified below 0.51 mm when locating a stationary target [35], but 14 

rises to 2 mm when tracking a moving object [36].  15 

The Hokuyo laser range scanner [33] mounted atop the UAV is utilised for mapping the target and other local 16 

infrastructure in front of the UAV. The scanner has a 240° field of view with 0.35° angular resolution, samples 17 

data at 10 Hz and has a mass of 160 g. It can conduct measurements within a functional range between 60 mm 18 

and 4095 mm and is accurate to ±10 mm while the distance to the object is within 1 m. The errors increase to 19 

1 % of measured value when observing targets at a distance between 1 m and 4 m. Researchers have previously 20 

demonstrated this accuracy when measuring the distance to industrial samples [37]. Here, the sensor outputs are 21 

used to maintain the UAV standoff distance and generate adaptive flight path during the inspection process.  22 

 23 
Figure 2 AscTec UAV with an onboard computer, camera and laser range scanner 24 

The inspection target utilised in this paper is a 3.1 m tall section of wind turbine blade, a decommissioned part of 25 

a Gaia–Wind turbine [38]. The blade section is mounted vertically and tapers from 619 mm wide at the bottom to 26 



6 

 

386 mm wide at its highest point. Typical wind turbine blade damage [39], [40], including edge crushing, surface 1 

imperfections, early stage leading edge erosion and other edge damage can be observed on the blade surface (as 2 

in Figure 3).   Once initiated, such damage will be extended by environmental conditions encountered during daily 3 

operations. If not adequately addressed as part of an operation and maintenance strategy, loss of the protective 4 

surface layer can allow water penetration and ultraviolet degradation that will cause secondary defects and 5 

increase the risk of structural failure [39].  Though scuffs and cracks are observable on the surface, to better 6 

quantise the performance of the 3D reconstruction and aid procedures when adjusting the camera focus, the blade 7 

surface has undergone some prior preparation. Ten 6.5 mm dots and a textured yellow 20 mm tape were affixed 8 

to the middle section of the surface (as in Figure 3), whereas the top and bottom sections of the blade remained in 9 

their original state. Since the reconstruction errors on the middle, top and bottom were found to be identical in 10 

magnitude  (as shown later in Figure 15), it can be surmised that such surface enhancements have had minimal 11 

effect and the sample is still indicative of real inspection scenarios. 12 

 13 
Figure 3 (a) Wind turbine blade for inspection (b)(c) dots and texture features added to the blade surface (d)(e)(f) Existing surface 14 

Imperfections, edge damages and transverse cracks on the blade surface 15 

The 3D reconstruction is conducted via Agisoft PhotoScan [41], a commercially available stand-alone software 16 

product which performs photogrammetric processing of digital images and generates 3D spatial data. The software 17 

assumes the images are captured from a series of cameras in various unknown positions. It calibrates the camera 18 

using Agisoft proprietary algorithms [41] before extracting and matching the features from consecutive images to 19 

estimate their relative poses. Point clouds, meshes and textured reconstructions are built in sequence to create a 20 

detailed 3D profile.  21 
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To ascertain the accuracy of the inspection results, a reference CAD model was captured using the GOM ATOS 1 

Triple Scan system. The model generated by the GOM system has been shown to be highly accurate, with nominal 2 

surface deviation below 20 µm [42]. Complete mesh data from PhotoScan was imported into GOM Inspect, 3 

software used for comparison with the reference CAD model. Note that because monocular photogrammetry is a 4 

dimensionless technique and, as such, the scale factor is unknown during the reconstruction process, the output 5 

from the software does not contain the absolute sizing of the model [43]. Therefore, prior to comparing the models, 6 

a scaling factor relating the Agisoft mesh and to the ground truth model coordinate system is required. An initial 7 

value was obtained by identifying two distinctive points from the GOM mesh in the reconstruction then setting 8 

their separation accordingly before fine-tuning by minimizing the surface deviations between reconstructions. 9 

Applying this factor and conducting the model comparison, the standard deviation, mean error, peak-to-peak error 10 

and a deviation map can be obtained from GOM Inspect. The standard deviation represents the noise level on the 11 

model surface, while mean error and peak-to-peak denote the geometric difference.  12 

 13 
Figure 4 Reconstructed 3D model for the wind turbine blade 14 

Figure 4 shows an example of a reconstructed model from the Agisoft PhotoScan software. In the best-case 15 

scenario, reconstructions achieved by this UAV system for photogrammetric inspection present with the mean 16 

error below 0.25 mm relative to the GOM reference model. Peak-to-peak error and standard deviation are below 17 

4.3 mm and 0.92 mm, respectively.  18 

3.1. Experimental Setup 19 
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The main considerations dictating camera selection for remote airborne inspection are the dimensions, mass, 1 

resolution, frame rate and communication interface of the sensor. Dimensions and mass are restricted by the UAV 2 

hardware’s payload limitations. Frame rate and communication interface constrain the software application that 3 

may be deployed and ultimate image processing speed during data acquisition. Higher resolution cameras offer 4 

the capability to capture more detailed surface features. There exists a significant repository of institutional 5 

experience with the communication interface employed by the Chameleon3 following its deployment within other 6 

previous research projects [44][45]. These works have additionally demonstrated that camera series to be an 7 

effective compromise between the above parameters. Hence, the camera with the highest specifications and 8 

resolution in the Chameleon3 series has been selected as the photogrammetric payload for the UAV inspections 9 

detailed here. The camera nominal sample rate is 35 frames per second. However, due to hardware limitations 10 

associated with the data transfer between the camera and the UAV’s onboard computer, the actual frame rate 11 

achieved is 2 Hz. Image compression is disabled during the inspections to prevent the introduction of associated 12 

image distortions and artefacts.  13 

The focal length of such a lens dictates the camera field of view and so has significant impact on the remote visual 14 

inspection process. A short focal length provides a wide field of view, reducing the number of images required to 15 

cover a given surface area but diminishing the ability of the images to accurately resolve small features. Selecting 16 

a lens with a wider aperture enables more illuminance to enter the camera, improving the image brightness. The 17 

Computar MPW2 lens series is designed for compatibility with cameras using 5 MP and 2/3" sensors. Since the 18 

UAV inspections require the imaging of a large area of the structure, M0824-MPW2, the smallest focal length in 19 

this series (8 mm), was selected for use and mounted with the Chameleon3 camera on the front of the UAV. The 20 

lens however has no capability for automatic focus adjustment. This, therefore, was set manually by placing the 21 

craft at the required standoff distance to the target object and incrementally adjusting focus to acquire the optimum 22 

surface texture sharpness. 23 

The Hokuyo laser range scanner URG-04LX has been implemented in many research platforms. Authors of 24 

existing literature have characterised the performance of this scanner [46] and demonstrated its accuracy when 25 

measuring the distance to industrial samples [37]. The results disseminated in these publications demonstrate the 26 

sensor’s aptitude for distance measurement during the NDT inspection process and justify its employment here. 27 

In this paper, three parameters impacting inspection accuracy are quantified: environmental brightness, image 28 

motion blur and focal blur. These parameters have been identified as the most common sources of the error during 29 

UAV inspections and are known to have direct impact on the image quality and ultimate inspection accuracy [28]. 30 
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The impacts of these parameters are quantified and detailed in subsequent sections. It is found that these impacts 1 

can be lessened by appropriate experimental setups and UAV flight paths, which will be demonstrated by 2 

empirical results. Multiple experiments were undertaken with different environmental lighting conditions, 3 

different standoff distances and a selection flight paths generated by the laser scanner and are quantified against 4 

the GOM reference model.   5 

4. UAV Inspection Image Quality Parameters  6 

4.1. Environmental Brightness Condition 7 

Image brightness is one of the parameters influencing image quality and reconstruction accuracy [28]. The images 8 

captured under low light intensity lost the detailed features of the target surface leading to the failure of image 9 

feature extraction algorithms and hindering the reconstruction process. Undertaking the experiments in a 10 

laboratory environment allows the ambient light levels to be fully controllable by the use of diffuse supplementary 11 

lighting. Within the laboratory and in the absence of additional illumination, the light intensity was measured by 12 

a calibrated lux meter as 65 ± 5 lx. To quantify the impact of the light intensity on reconstruction accuracy, six 13 

additional 135 W lights with a colour temperature of 5500 K were set-up at suitable locations around the wind 14 

turbine blade, as shown in Figure 5. These external lights introduce additional illumination of the blade surface 15 

and permit increase in environmental light levels by a factor of three, from 65 lx to approximately 200 lx. By 16 

comparison, the ambient environmental light measured by using the lux meter outdoors on a cloudy day is around 17 

2000 lx. This laboratory lighting environment, therefore, provides a good facility to investigate the impact of the 18 

environmental brightness parameter on reconstruction in such conditions as may be encountered in practice during 19 

markedly poor weather. 20 

 21 
Figure 5 External lights Setup 22 
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When operating within an environment with poor light intensity, increasing the camera shutter time allows more 1 

illuminance to fall onto the camera sensor and so produces brighter images. However, slower shutter speed 2 

introduces more motion blur to the images owing to small motions of the UAV platform intrinsic to the nature of 3 

such aircraft. In contrast, decreasing shutter time can reduce the blur but sacrifices image brightness. Motion blur 4 

is also a source of reduced image quality and strongly influences the inspection accuracy, obscuring visual features 5 

and hindering the functionality of algorithms for feature detection employed in the reconstruction progress. 6 

Further details of these effects will be provided in Section 4.2. It is noted that under ideal direct sunlight conditions 7 

outdoors, the shutter time can be reduced to as low as 1 ms during inspections to mitigate the motion blur issue. 8 

This, however, represents an uncontrollable environmental influence that cannot be relied upon in practice 9 

frequently necessitating the deployment of other compensatory methods such as those elucidated herein. 10 

This experiment is designed to quantify the impact of the lighting conditions and shutter speed on the reconstructed 11 

models. The UAV flight path in the experiment was a pre-planned circular path, taking the UAV a complete 12 

rotation around the wind turbine blade section before dropping down and performing the next loop until the full 13 

vertical distance of the sample has been covered, all while capturing images at regular time intervals. In this 14 

scenario, the camera shutter time was set to be 30 ms, representing the exposure time that captured the images of 15 

the best quality in the presence of the additional lighting. In this trial three image sequences were recorded. The 16 

first image sequence was captured under the environmental lighting conditions obtained with the six additional 17 

lights, the second and third were captured without these lights at the laboratory ambient light level. In the third 18 

trial, to demonstrate the impact of shutter time on reconstruction accuracy and create similar image brightness to 19 

the well-lit trial, the camera shutter speed was changed to 60 ms. Figure 6 displays raw images taken at similar 20 

locations for comparison between the three image sequences, captured under different light intensity and varying 21 

shutter speed. The deviation maps and the errors of reconstruction models under each of the three setups are 22 

illustrated in Figure 7 and Table 1. The quality of the images from the inspections with three setups are plotted in 23 

Figure 8. The image qualities from each trail are quantified by using the matching feature density metric, as 24 

explained below.  A fourth image sequence using the 60 ms exposure time and additional lighting is not conducted 25 

as this leads to overexposed images from which no meaningful results may be extracted. 26 
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 1 
Figure 6 UAV captured images under: (a) 30 ms shutter with supplementary lighting, (b) 30 ms shutter without supplementary lighting, (c) 2 

60 ms shutter without supplementary lighting. 3 

Table 1 Reconstruction errors from the inspection with different environmental brightness conditions 4 

 Mean Error 

(mm) 

Standard Deviation 

(mm) 

Peak-to-peak Error 

(mm) 

30 ms shutter with light (Light = 200 

lx) 

0.3853 1.56 13.56 

30 ms shutter without light (Light = 

65 lx) 

0.6493 2.46 68.00 

60 ms shutter without light (Light = 

65 lx) 

0.4571 1.97 22.91 

 5 
Figure 7 Deviation maps of the reconstruction model captured in different parameters: (a) 30 ms shutter with supplementary lighting, (b) 30 6 

ms shutter without supplementary lighting, (c) 60 ms shutter without supplementary lighting. 7 
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 1 
Figure 8 Image quality and reconstruction error under different experimental setups. The reconstruction errors are plotted by using the mean 2 

errors and standard deviations. 3 

Image feature matches are the key factors in the 3D reconstruction process. Correlation between increased feature 4 

matches and a better quality of reconstructed model has been previously established [19]. Similarly, the percentage 5 

of image overlap is well recognised to influence the number of feature matches between consecutive images. 6 

Matching feature density is thus introduced as a comparative metric describing the number of the matched features 7 

in an overlapping region and quantitatively assess how this impacts the quality of the final reconstruction. It is 8 

calculated by dividing the number of the matched features between two subsequent images by the area of their 9 

overlap, with this area expressed as a percentage of the full image size. Using the matching feature density to 10 

quantify the quality of images obtained during autonomous UAV inspections, image sequences captured with 11 

different optical setups can be directly compared and evaluated. Higher density implies that an image had more 12 

matching features and is thus indicative of better image quality.  13 

The image quality distribution across all image sets (as presented in Figure 8) shows that those captured under the 14 

lowest light intensity, without supplementary external lighting had the worst quality. Correlating with the intuitive 15 

outcome, the average quality was improved with the increase of camera shutter speed and environmental light 16 

intensity. 17 

As discernible from the data presented in Table 1, the model reconstructed from the images captured under 30 ms 18 

shutter speed, in relatively dark conditions (65 lx), had 60 % worse geometry alignment and around 63 % larger 19 

standard deviations than the model from the images captured with the same shutter speed at 200 lx. Compared 20 

with the model acquired in bright conditions (Figure 7 (a)), the mesh acquired in dark conditions contained a large 21 

discontinuity in both the blade’s front and rear surfaces (Figure 7 (b)). Discontinuities and misalignment were 22 
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additionally observed at the bottom section of the mesh due to the loss of image features in the low light 1 

environment and the consequential inability of the reconstruction algorithms to accurately extract the blade 2 

structure in these regions. 3 

Under the same lighting conditions, the increased 60 ms shutter time of the third data set improved the image 4 

brightness by 40 %, leading a 30 % reduction in the mean error (from 0.65 mm to 0.46 mm) and 20 % reduction 5 

in standard deviation (from 2.46 mm to 1.97 mm) when compared to the second trial. Additionally, as presented 6 

in Figure 7(c), the PhotoScan software generated a complete mesh for the wind turbine blade. However, the model 7 

standard deviation error was still over 20 % larger than in the case using the images with shorter shutter time in a 8 

brighter environment. As described previously, the error is identified as a result of additional motion blur, caused 9 

by the UAV movements and compounded by the slower camera shutter speed. These effects coupled with feature 10 

distortions, manifest as a change in peak-to-peak error of 9.35 mm. 11 

4.2. Motion Blur 12 

Motion blur appears from the UAV movement during the camera exposure and is related to the UAV flight 13 

stability and velocities in all six degrees of freedom: rotational and translational [29]. It is intrinsic to the nature 14 

of the UAV platform owing to its subjection to disturbance by miniature air currents and orientation sensor noise. 15 

To investigate the impact of the motion blur on the reconstruction accuracy, the inspection was initially undertaken 16 

by the UAV operating with full autonomous control to eliminate any disturbances introduced by a human pilot. 17 

For comparison, a data set was acquired with the camera statically mounted and positioned at a standoff of 600 mm 18 

to the blade surface to provide “best-case” image capture conditions in the absence of the UAV movement and 19 

motion blur. These experiments were undertaken with the same enhanced illumination from the external lights as 20 

in Section 4.2 allowing the camera shutter time to be set at 30 ms throughout.  21 

As shown in Figure 8, the images captured during the manual inspection had better qualities than the images taken 22 

during the UAV flight with the same 600 mm standoff. The reconstruction accuracies listed in Table 2 show the 23 

motion blur from the autonomous UAV slightly increased the mean alignment error. Moreover, the addition of 24 

motion blurring leads to the increase of the standard deviation and peak-to-peak error by almost a factor of two. 25 

Motion blur causes distortions in the image and so induces error in the reconstruction results. However, due to the 26 

nature of UAV flight, these motion blur effects cannot be fully eliminated, only compensated for by the informed 27 

selection of camera settings (e.g. faster shutter speed) and a higher-performance flight controller to counteract the 28 

UAV instabilities.  29 
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Table 2 Reconstruction errors from the UAV inspection and manual inspection 1 
 

Mean Error 

(mm) 

Standard Deviation 

(mm) 

Peak-to-peak 

Error (mm) 

Manual Inspection 

(600 mm Standoff Maintained by Laser 

Scanner, Light = 200 lx) 

0.2956 0.71 2.55 

UAV Flight  

(600 mm Standoff Maintained by Laser 

Scanner, Light = 200 lx) 

0.3098 1.29 5.09 

4.3. Focal Blur 2 

The Depth of Field (DoF), or focus depth, is the distance between the nearest and furthest positions relative to the 3 

camera at which an object located will begin to exhibit an unacceptable loss of sharpness in its captured image 4 

[47]. The remainder of the scene behind and in front of these two positions is distorted and exhibits focal blurring. 5 

In the context of photogrammetric inspections, focal blur appears when the camera is positioned such that the 6 

target object is located outside the depth of field. This distorts the appearance of the image features relied upon 7 

during reconstruction and so produces a malformed 3D representation, degrading the inspection quality and 8 

increasing the possibility of asset condition misdiagnosis when examining surface discontinuities [29]. The 9 

camera utilised to conduct photogrammetric inspections presented here is adjusted to be focused on the blade 10 

surface to achieve the best sharpness at a given standoff distance. Conventional UAV-based photogrammetric 11 

inspections are performed using a high-resolution camera at a large standoff distance to avoid the risk of collision. 12 

The width of the depth of field increases with the camera standoff distance [47], therefore, cameras in conventional 13 

inspections have a broader depth of field and the ability to capture images with less focal blur. However, 14 

inspections conducted at close proximity grant opportunities to capture more detailed surface features. The 15 

applications presented in this paper were examples of such close-range inspections, wherein the UAV on which 16 

the camera was deployed was positioned at a standoff distance of 600 mm to the blade surface. This leads to a 17 

comparatively shallow depth of field.  The depth of field is around 331.8 mm with 600 mm UAV standoff distance, 18 

calculated by Equation 1 [47].  19 

𝐷𝑜𝐹 =
2𝑐𝑁(𝐷+130)2 𝑓2

𝑓4−𝑐2𝑁2(𝐷+130)2   (1) 20 

Where c is the camera circle of confusion diameter limit (0.008 mm), f represents the camera focal length (8 mm), 21 

D is the UAV standoff distance to the outer perimeter of the area swept by the aircraft’s rotors and N is the lens 22 

aperture f-number (2.4). Note that the 130 mm in this equation is the distance between the UAV outer perimeter 23 

and the camera.  24 
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Thus, the UAV is required to maintain position within a distance of 470 to 802 mm to the surface of interest in 1 

order to capture images with acceptable sharpness.  2 

To demonstrate the impact of standoff distance on image quality, photographs of an ISO 12233 Test Chart [48] 3 

were taken at various standoff distances using the Chameleon3 camera and Computar lens. The test chart has 4 

abundant textures and is designed specifically to test the camera resolution and focal point. In the experiment, the 5 

camera is focused at 600 mm UAV standoff and then displaced to a range of positions along the surface normal 6 

vector. Images are captured from a standoff of 300 mm to 1000 mm in 100 mm increments. Figure 9 depicts the 7 

test chart images, taken from 300 mm and 600 mm standoff distance. Compared with the image captured at 600 8 

mm standoff (as in Figure 9(b)), the image from 300 mm distance is much blurrier and out of focus.  9 

 10 
Figure 9 Captured Test Chart (cropped to show the area of interest), while the camera is focused on 600 mm standoff distance (a) camera, 11 

was placed at 300 mm standoff (b) camera was placed at 600 mm standoff 12 

An open source blur metric function, evaluated within the MATLAB data processing software environment, was 13 

utilised to quantify the degree of blur present in the captured images. This blur metric function described by Crété-14 

Roffet et al [49] is based on a percentage similarity comparison between the original image and image after passing 15 

through a low-pass filter and functions as a relative comparison between two images of the same subject. The 16 

quality of the images captured at different standoff distances evaluated using this metric is plotted in Figure 10. 17 

A higher value of blur index implies poorer image quality. As expected, the camera captured the best quality in 18 

the focal point and quality became worse with the standoff distance away from the focal point.  19 

 20 
Figure 10 Image qualities at various standoff distances (camera is fixed focused at 600 mm) 21 

5. UAV Flight Path Parameters 22 
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5.1. Laser-based Flight Path 1 

The results presented in Section 4.3 illustrate the relationship between the standoff distance and image quality. To 2 

acquire precise photogrammetric inspection results, the target object in the images is required to be resolved with 3 

sufficient sharpness to extract features and infer 3D structure. Therefore, the UAV standoff distance needs to be 4 

maintained at a level that places the inspection target within the camera lens’ depth of field. The flight trajectory 5 

is thus required to track the asset’s geometry so as to maintain appropriate standoff distance and ensure the camera 6 

focal point lies as close as possible to the asset surface. 7 

There are two methods to maintain the standoff distance and guide the UAV to follow the target geometry. Firstly, 8 

a pre-planned path can be programmed and assigned by utilising an existing 3D mesh of the inspection scene. 9 

However, this method is less robust because the flight trajectory is hardcoded and so relies on both an accurate 10 

3D model and strong disturbance rejection in the UAV controller. In a laboratory environment, the target object 11 

can be moved to a known place for inspection, typically the centre of the measurement flight volume, and a flight 12 

trajectory generated accordingly. Difficulties associated with locating the planned flight trajectory relative to the 13 

physical structure and an increased likelihood for environmental disturbances mean that this method is not suitable 14 

for inspection of in-service assets. It is insufficiently robust to provide safe and reliable inspections when flying 15 

under autonomous control and in close proximity to industrial plant items. 16 

A more adaptive second method entails applying a miniature laser scanner to provide real-time feedback control. 17 

The laser scanner is equipped aboard the UAV to measure the displacement to its surroundings and the target 18 

object. A curve fitting algorithm is utilised to process the raw data output and compute the standoff and orientation 19 

errors in real-time by fitting a plane to the closest part of the structure. Compared with the pre-planned path, this 20 

method does not require knowledge of the target model and represents a much more feasible approach to avoid 21 

collisions during close-range inspections. In this method, measured distances are fed into the UAV controller to 22 

maintain the standoff distance. Alignment errors between the UAV yaw angle and surface normal vector are 23 

calculated to adjust the UAV orientation in real-time. This can guide the UAV to follow the object geometry and 24 

readily maintain position where the target object lies within the camera’s depth of field. To demonstrate the ability 25 

of this strategy to minimise the negative impact of focal blurring, empirical trials are conducted where the 26 

inspection path was compensated to follow the adaptive trajectory, computed in real-time using data from the 27 

laser scanner. 28 

An inspection with pre-planned circular path was utilised for comparison with the adaptive path. The circular path 29 

comprises nine circumferences with fixed distances to the blade centre varying in accordance with altitude, owing 30 
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to the tapering of the blade profile along its length and its vertical mounting. The UAV starts circular manoeuvring 1 

around the top of the blade and finishes at 0.7 metres above the ground to ensure complete coverage the whole 2 

blade’s surface area while avoiding collisions. Upon completing each circumference, the altitude is decreased by 3 

300 mm and the UAV commences travel around the next layer’s circumference. This layer altitude separation 4 

distance is selected to ensure sufficient vertical image overlap in accordance with the camera field of view. 5 

Because of the geometry of the blade, the radius of the top circular path is 1100 mm and increases in 50 mm steps 6 

as the path progresses to lower altitudes.  7 

Using this circular path planning method, the standoff distances vary between 522 mm and 1045 mm, owing to 8 

the aerofoil cross-section of the blade. Comparatively, the camera focal range is between 470 mm and 790 mm. 9 

Therefore, some focal blur is unavoidable in the images captured using this path when deploying a fixed focus 10 

camera. Both the inspections with a pre-planned path and laser-based path were undertaken with the additional 11 

external lighting used previously, permitting the camera shutter time to be set at 30 ms. 12 

When comparing the circular and laser-based paths, as in Figure 11, the most prominent difference is the standoff 13 

distance between the UAV and the targeted inspection asset (i.e. the wind turbine). The circular path entails a 14 

varying standoff distance (between 600 and 826 mm) owing to its nature as a pre-planned heuristic path, generated 15 

with minimal a priori knowledge. Inspections relying on such algorithms will experience focal blurring in the 16 

images taken at points where the flight path diverges most from the inspection surface geometry, granting a 17 

significant degradation in cases of complex asset geometry. In contrast, given the same level of a priori knowledge, 18 

the laser-based adaptive control strategy can, in real-time, ensure that the camera remains at the correct standoff 19 

distance to retain the asset surface within the well-focused depth of field. Thus, regions of increased focal blur are 20 

avoided, and the inspection accuracy is improved.  21 

 22 
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Figure 11 Comparative diagram of the circular and laser-based paths when executed about the aerofoil cross-section of a wind turbine blade. 1 

To demonstrate the accuracy of the laser scanner maintained distance, an idealised flight path is generated in 2 

MATLAB based on the highly accurate reference model obtained using the GOM ATOS Triple Scan system. The 3 

path is generated by slicing the mesh of the turbine blade at regular height intervals, forming a perimeter at each 4 

interval, then expending these perimeters to the correct standoff distance. This defines the ideal flight trajectory 5 

with 600 mm standoff distance to the blade surface. The UAV flight path as executed in both cases is recorded 6 

utilising the Vicon tracking system (as indicated in Section 3.1) and is plotted in Figure 12. Path standoff errors 7 

are calculated between the desired path and executed path and plotted in Figure 13, illustrating the performance 8 

of each strategy. The distribution of error magnitudes demonstrates that when utilising the adaptive path, the UAV 9 

equipped with a laser scanner successfully placed the sample surface within the camera’s depth of field and was 10 

able to maintain this positioning while encircling the component under examination. 11 

 12 
Figure 12 This figure includes slices of the blade mesh (blue), a MATLAB generated path with 600 mm standoff distance (red) and executed 13 

path (orange). (a)(b) pre-planned circular trajectory (c)(d) laser-based adaptive trajectory 14 

 15 
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Figure 13 Histogram of the error between MATLAB generated path and UAV executed path (a) pre-planner Trajectory (b) laser-based 1 
Trajectory 2 

The raw images shown in Figure 14 were captured when UAV was inspecting similar areas of the blade with pre-3 

planned trajectory and laser-based trajectory. The differences between these images visually demonstrate how the 4 

inspection with laser-based path was able to better maintain focus on the blade surface. More focal blurring is 5 

found on the images captured on the pre-planned circular path, the source of which is identified as the varying 6 

standoff distance during the inspection. Compared with the images from the pre-planned circular path, the textures 7 

and features on images captured during the laser-based inspection are sharper and more detailed leading to better 8 

image qualities, as shown in Figure 8. Additionally, it may be observed that the circular paths presented with a 9 

larger variation in image matching feature density, relative to adaptive paths generating images with comparable 10 

average quality.  11 

 12 
Figure 14 Raw images captured during inspection of similar blade sections. (a)(b) are captured during the inspection with the circular path. 13 

(c)(d) are captured during the inspection with the laser-based path 14 

Deviation maps of the model reconstructed from images gathered with the pre-planned path and laser-based paths 15 

are shown in Figure 15. The reconstruction errors from each of the two trajectories are listed in Table 3. 16 
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 1 
Figure 15 Deviation maps of the model reconstructed based on the images captured from (a) circular path (b) laser-based path 2 

Table 3 Reconstruction errors from the inspection with the circular flight path and laser-based path 3 

 Path Type Mean Error 

(mm) 

Standard 

Deviation (mm) 

Peak-to-peak 

Error (mm) 

Circular  

(30 ms shutter time, 600 mm closest approach, 

Light = 200 lx) 

0.3853 1.56 13.56 

Laser-based 

(30 ms shutter time, 600 mm laser-controlled 

standoff distance, Light = 200 lx) 

0.3098 1.29 5.09 

 4 

Comparison of results shows that the inspection with laser scanner had more accurate alignments and smaller 5 

measurement error in terms of both standard deviation and peak-to-peak than the pre-planned circular trajectory. 6 

The disparity between errors in different paths emphasises that the result from the laser scanner path granted a 7 

smoother surface and more precise reconstructed mesh. The standard deviation and mean error were improved by 8 

approximately 20%, while the peak-to-peak errors were reduced by a factor of 2.7. Compared with the pre-planned 9 

flight path, the laser scanner path-adaptation ensured that the UAV deployed the photogrammetric measurement 10 

at a proper standoff distance in accordance with the camera’s focal length. The path with the laser scanner 11 

therefore provides better focusing of the camera so that more detailed features are resolved within the images. 12 

Additionally, some differences are notable in the textures of reconstructed models from the two flight paths. The 13 

reconstructed model from the pre-planned path has more distorted features on the mesh because the raw images 14 

contain degradations caused by focal blur, as shown in Figure 16 (a)-(e). By way of comparison,  Figure 16 (f)-15 

(j) display the textures of the model reconstructed from the images acquired during the inspection that used the 16 

laser-based path. The textures on the laser-based model contain sharper and more detailed features. It may thus 17 

be surmised that adaptive path correction using the laser data is an effective strategy to minimise the negative 18 

impact of the focal blur in the final inspection results. 19 

5.2. Standoff Distance 20 
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Standoff distance between the target object and UAV onboard camera impacts the details of texture, depth of field 1 

and image quality. These parameters relate to the reconstruction process and model accuracy. During an 2 

inspection, a greater standoff distance provides a larger depth of field and allows the object to remain more suitably 3 

in focus with similar UAV position variation. In turn, the greater standoff distance also offers the camera a broader 4 

field of view to capture larger areas of a structure’s surface in a single image. Thus, the UAV requires a shorter 5 

time to inspect the complete structure, reducing the need for multiple flights and increasing inspection efficiency. 6 

Additionally, the image processing time during reconstruction is reduced because fewer images are generated 7 

during the shorter inspection. However, compared with an inspection conducted with a small standoff, significant 8 

texture detail is sacrificed as the result of lower pixel density and diminished ability to spatially resolve features; 9 

aspects of critical importance to the quality of the inspection process. An optimal point between speed and 10 

accuracy must therefore be found. 11 

To directly quantify the impact of standoff on reconstruction accuracy, successive inspections were undertaken at 12 

three standoff distances (400 mm, 600 mm and 800 mm), with the camera focusing optimised according to the 13 

corresponding distance. In all cases, the standoff distance was maintained utilising measurements from the laser 14 

scanner. The experiments were undertaken with the supplementary external lighting, permitting the camera shutter 15 

time to be set at 30 ms. The resultant reconstruction accuracies from the models generated at each of the three 16 

standoff distances are listed in Table 4. The image qualities attainted at the three standoff distances are, again, 17 

plotted in Figure 8.  18 

Table 4 Reconstruction errors from the inspection with three standoff distances (Distance is maintained by the laser scanner) 19 

  Mean Error (mm) Standard Deviation(mm) Peak-to-peak Error (mm) 

400 mm standoff distance 

(Light = 200 lx) 

0.2442 0.92 4.30 

600 mm standoff distance 

(Light = 200 lx) 
0.3098 1.29 5.09 

800 mm standoff distance 

(Light = 200 lx) 

0.3962 1.30 9.13 

 20 

The reconstruction errors from different standoff distances highlight the trade-off between the reconstruction 21 

accuracy and UAV standoff distance. As shown by the peak-to-peak error, standard deviation and mean error 22 

respectively, the model using 400 mm standoff distance is more accurate, smoother and better aligned with the 23 

ground-truth model than that using the 800 mm standoff. The mean and peak-to-peak errors were reduced by a 24 

factor of two. The standard deviation shows how the reconstructed surface became smoother with the reduction 25 

of standoff distance.  26 
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Figure 8 illustrates how the image sets taken from 400 mm standoff distance exhibited large variation in image 1 

quality expressed in terms of the matching feature density metric. Additionally, it highlights a relationship 2 

between the image quality variation and UAV standoff distance. The shorter standoff distance entails that more 3 

details are taken from the surface of the inspection object, improving reconstruction quality. However, the closer 4 

proximity also causes an exponentially narrower depth of field of the camera, requiring a tighter control of UAV 5 

position and leading to additional focal blurring, as discussed in Section 4.3, manifesting in Figure 8 as increased 6 

variation in image quality. Furthermore, the UAV was observed to be unstable when flying at 400 mm standoff 7 

owing to near-structure aerodynamic effects, causing further motion-based blur to appear in the images. In 8 

progressing from 800 mm to 600 mm and 400 mm standoff distance, the standard deviation in the flight path 9 

changed from 23.96 mm to 24.55 mm and 29.87 mm. Again, this indicates an exponential degradation that 10 

imposes limits on the minimum standoff distance where at a UAV photogrammetric inspection can be safely and 11 

practically conducted.  12 

6. Discussion  13 

It has been shown that the lighting conditions, motion blur and focal blur are major parameters that negatively 14 

impact the accuracy of UAV based photogrammetric inspection. The detrimental effects of these parameters, 15 

however, can be lessened by the use of appropriate experimental setups. External lighting, or a brighter outdoor 16 

environment, and longer shutter time introduce more illuminance to the camera, which improves image brightness 17 

and quality. As presented in Figure 8, these improvements increased the reconstruction accuracies and 18 

significantly reduced the model errors. The compromise between shutter time and motion blur highlighted in 19 

Section 4.2, however, remains pertinent and must be considered when planning inspections. Increased 20 

environmental light levels should always take precedence over longer exposure times so as to minimise motion 21 

blurring effects. The comparisons between manual inspection and autonomous inspection show the motion blur 22 

increased the reconstruction error by a factor of two in the longest exposures investigated. Additional deformation 23 

is found in the Focal blur introduced due to the narrow depth of field during close-range inspection. Application 24 

of a laser ranging scanner demonstrated the ability to maintain the desired standoff distance and significantly 25 

reduce the errors observable in the reconstructed models and associated data. With the laser scanner adaptive 26 

inspection path, the UAV kept an optimal position relative to the object’s surface, holding this target within the 27 

camera’s depth of field. Here, captured images were sharper and had better quality under the matching feature 28 
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density metric, as shown in Figure 8. The reconstructed model, in this case, is more accurate than the pre-planned 1 

path and presents better-detailed textures. 2 

In terms of flight parameters, the reconstruction error was found to reduce with shorter standoff distances, which 3 

improve the spatial resolution and provide the capability for the camera to capture more detailed surface 4 

information. Although the inspection with 400 mm standoff distance had the most accurate reconstruction model 5 

in this paper, it should be noted that the UAV flight was notably less stable throughout the inspection due to the 6 

near-surface aerodynamic effects from the wind turbine blade structure. The risk of collision with the inspection 7 

target is thus greatly increased when approaching as closely outside a laboratory environment. Compared with the 8 

inspection at 800 mm, the model from 600 mm standoff was more accurate and had a smaller peak-to-peak error. 9 

Therefore, in light of a compromise between safety and reconstruction accuracy, 600 mm is identified as the 10 

optimal standoff distance for the UAV photogrammetric inspections conducted in the manner described herein. 11 

During outdoor inspections, a better environmental brightness can be leveraged to extend the camera depth of 12 

field via utilisation of a smaller camera aperture, resulting in the images with less focal blur. However, as shown 13 

in Figure 10, the image had the best quality at the camera focal point (in that case 600 mm). The reduced aperture 14 

size only serves to widen the depth of field wherein acceptable images may be captured. While it is still necessary 15 

to perform the inspection with a smaller standoff to obtain the spatial resolution required for more detailed features 16 

even with an extended depth of field, a smaller aperture will reduce the level of UAV position control required 17 

and make better allowance for environmental position disturbances commonly induced by wind outdoors. 18 

Maintaining a relatively constant standoff is, thus, still necessary for outdoor inspections but presents additional 19 

challenges. Typical outdoor navigation systems employed are  less accurate than the indoor system (e.g. the error 20 

from Differential GPS positioning systems can reach to 0.22 m [50], compared to the millimetre scale errors of 21 

the Vicon tracker). The position noise in such sensors can lead to flight instability and introduce the motion blur 22 

without proper compensation, further increasing the limit on minimum standoff distance. As described in Section 23 

4.2, such impacts can be lessened by the use of shorter camera exposure time, since daylight can introduce more 24 

illumination on the camera in certain conditions. Such camera setting adjustments require the balance between 25 

the camera shutter speed and aperture size. Hence, the findings from this paper may be applied during the outdoor 26 

inspections and used to inform inspection configuration and planning in the presence of poorer environmental 27 

conditions. In addition, the laser scanner herein offers real-time adaptive corrections of less accurate navigation 28 

systems, and thereby represents a means through which the standoff to the target object can be maintained within 29 

the camera depth of field during outdoor inspections. 30 
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Typical types of wind turbine blade damage [39], [40], including edge crushing, surface imperfections, early stage 1 

leading edge erosion and other edge damage, were clearly reconstructed in the 3D model.  These surface failures 2 

are visible to varying degrees in the circular inspection (Figure 16 (a)-(e)) and laser-based inspection (Figure 16 3 

(f)-(j)), but are far clearer in Figure 16 (f)-(j). The reconstructed image qualities of the naturally occurring (Figure 4 

16 (f)-(h)) and artificial visual features (Figure 16 (i)-(j)) were improved by 17.64% and 2.84% respectively, 5 

quantified by using the blur metric described in [49]. The differences in improvement between the naturally 6 

occurring and artificial visual features were caused by their relative contrast versus the background material. In 7 

the naturally occurring defects, coloration is similar to the undamaged material and the features are finer in 8 

structure than those of the artificial markers. Natural defects are therefore more sensitive to the effects of focal 9 

blurring arising from the change in path. Another contributing factor may be found in the position of the features 10 

around the blade perimeter. As the natural and artificial features have different locations, they experience different 11 

changes in the level of focal blurring when the flight path is altered from circular to laser based. As is shown in 12 

Figure 11, the areas furthest from the blade edges experience the greatest improvement in flightpath offset and 13 

consequently are subject to the largest changes in image quality due to focal blur. Notably, as per Figure 16 (f), 14 

the transverse crack on the blade trailing edge is clearly observable in the 3D reconstruction that used the laser-15 

based path, while it is hard to identify in the model that used the circular path (Figure 16 (a)) and may be 16 

overlooked in an inspection report. It may thus be surmised that adaptive path correction using the laser data is an 17 

effective strategy to minimise the negative impact of the focal blur in the final inspection results. 18 

 19 
Figure 16 An illustrative comparison of surface textures in the photogrammetric model reconstructed from images acquired using the 20 

circular flight path (a)-(e) and adaptive laser-based flight path (f)-(j). 21 

7. Conclusions 22 
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In summary, this paper presented an autonomously controlled UAV system utilising a machine vision camera and 1 

miniature laser scanner. The integrated system was deployed to undertake photogrammetric inspection of a wind 2 

turbine blade section within a laboratory environment. Inspection results are presented as a 3D reconstructed 3 

model generated from the images taken during the UAV flight. Using this system, the mean error of the 4 

reconstructed model under optimised conditions is below 0.25 mm, the peak-to-peak error is less than 4.3 mm and 5 

the standard deviation is below 0.92 mm when compared with a ground-truth, metrology grade reconstruction. 6 

This is intended to serve as a bounding limit on expectations of reconstruction accuracy when employing similar 7 

systems under suboptimal conditions outside the laboratory. This paper further analyses and quantifies the impacts 8 

of different parameters on the photogrammetric inspection accuracy when carried out using the UAV agent with 9 

regard to the quality of the final model and visibility of these features. Particular examination is given to the 10 

detrimental effects of lighting conditions, motion blur and focal blur. Based on the aforementioned results, the 11 

following observations were made: 12 

• Instances of wind turbine blade damage (i.e. edge crushing, surface imperfections, transverse cracking, 13 

early stage leading edge erosion and general edge damage) were clearly observed in the textured 3D 14 

reconstruction profiles, indicating the utility of the successful inspection process. 15 

• UAV motion during exposure causes blurring, increasing the reconstruction standard deviation and peak-16 

to-peak error by a factor of two when compared to the ground truth. Informed selection of camera settings 17 

and tighter flight control system may compensate for this to a limited extent. 18 

• The laser scanner maintained the standoff distance within the camera’s depth of field to reduce the focal 19 

blur, introduced due to the narrow depth of field. Consequently, significant error reductions (by a factor 20 

of 2.7) were observable in the reconstructed models and associated data.  21 

• Employing shorter standoff distances reduced the reconstruction error and provided surface textures with 22 

improved spatial resolution of defect features under consistent imaging hardware. However, the near-23 

surface aerodynamic challenges destabilise the UAV during close proximity inspections imposing a 24 

practical limit.  25 

• Over the range of parameter values studied, the poorest scenario was observed to cause a degradation in 26 

reconstruction error by a factor of 13 versus the optimal. 27 

Overall, despite the negative influences these parameters (lighting conditions, motion blur and focal blur) have 28 

on reconstruction errors, it is shown herein that a well-designed UAV flight path with an active correction 29 

mechanism and appropriate experimental setup can mitigate their impact on reconstruction accuracy and enable 30 
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the return of informative inspection reports. The findings from this paper provide a benchmark for reconstruction 1 

quality and the impact of environment effects during photogrammetric inspections, offering practical insight 2 

towards their mitigation in future airborne photogrammetric research. 3 
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