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Abstract

We show how Cooper-pair-assisted transport, which describes the stimulated transport of electrons
in the presence of Cooper-pairs, can be engineered and controlled with cold atoms, in regimes that are
difficult to access for condensed matter systems. Our model is a channel connecting two cold atomic
gases, and the mechanism to generate such a transport relies on the coupling of the channel to a
molecular BEC, with diatomic molecules of fermionic atoms. Our results are obtained using a
Floquet-Redfield master equation that accounts for an exact treatment of the interaction between
atoms in the channel. We explore, in particular, the impact of the coupling to the BEC and the
interaction between atoms in the junction on its transport properties, revealing non-trivial
dependence of the produced particle current. We also study the effects of finite temperatures of the
reservoirs and the robustness of the current against additional dissipation acting on the junction. Our
work is experimentally relevant and has potential applications to dissipation engineering of transport
with cold atoms, studies of thermoelectric effects, quantum heat engines, or Floquet Majorana
fermions.

1. Introduction

Transport measurements between reservoirs connected by a channel are well-known tools to understand and
study the static and dynamical properties of condensed matter systems. In this context, the development of cold
atom platforms has offered possibilities to explore phenomena with strongly-interacting particles in transport
setups. A key feature of these setups is that they can be described by microscopic models derived from first
principles under well-controlled approximations [1]. Such setups allow for the simulation of novel phenomena
and exploration of the fundamental mechanisms since they allow for tuning of the microscopic parameters such
as interaction and potential. Examples include the observation of quantised transport of neutral atoms in a
junction connecting cold gas reservoirs [2], or the investigation of the role of interaction and temperature on
transport in quantum point contacts [3] or lattices [4].

In addition to connecting to well-known phenomena of solid state physics, cold atom platforms offer the
possibility to investigate new paradigms of transport, via continuous measurements [5] or dissipation
engineering. Indeed, the atomic motion occurs on sufficiently long timescales that the transient dynamics can be
measured and controlled in real time. These tools have been long applied in few-body systems in quantum optics
[6, 7], and in that context form the basis for standard techniques such aslaser cooling and trapping [8]. The
coupling to reservoirs is well-understood microscopically under well-controlled approximations, and can be
engineered experimentally. In the transport channel, particle losses, which naturally occur via collisions with a
background gas, can be engineered via the use of an electron beam [9] or light scattering through a quantum gas
microscope with single-site resolution [10—12]. Dephasing can also be realized via light scattering or noise
sources [13—-17].
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Figure 1. (A) Two ultracold fermionic gases connected together by a junction immersed into a molecular BEC. (B) Energy diagram of
the bare junction and occupation #(E) of the reservoirs as a function of chemical potential bias A . (C) Atom-molecular conversions
in the junction induced by two fields of radiofrequencies wy and wg and detunings §;, = w; — € > 0and 6g = wr — € < 0, where eis
the frequency of the transition |[BEC) < | 1 |) = cTT cf|0), inspired from [21].

Taking advantage of the level of microscopic control offered by cold atoms, we study here transport of
fermionic atoms between reservoirs weakly connected by a single site junction, a system that resembles a
quantum dot junction connecting leads. In particular, we explore the possibility to control transport based on
Andreevreflection, i.e. transport of electrons assisted by exchange of Cooper-pairs [18—20], via reservoir
engineering. In contrast with [3], the junction we consider is a weakly-connected single site—not a quantum
point contact—and our reservoirs are non-interacting. Such a system naturally produces sequential tunnelling
of atoms, yielding a quantised particle current. We show here how to engineer the transport between the
reservoirs by coupling the junction to a molecular BEC [21], mimicking Cooper-pair assisted transport of
electrons in the solid-state, and yielding a rich peak structure in the current-bias characteristics. We then study
the effects of finite temperature of the reservoirs and interaction between atoms in the junction on the produced
current, and also determine its robustness against the effects of particle losses acting on the channel.

Our results are obtained using a Floquet-Born—-Markov (or Floquet—Redfield) master equation [22-25],
which goes beyond standard Gorini—Kossakowski—Sudarshan—Lindblad (GKSL) master equations [26—28].
Such amethod, in addition to treat the interaction in the junction exactly, makes it possible to capture the
complex interplay between driving and dissipation mechanisms, and has been applied in the context of photon-
assisted transport or Landau—Zener tunnelling [29]. In [30], we adapted the Floquet master equation formalism
to Cooper-pair driving, which appears in quantum dot systems coupled to superconductors, and demonstrated
control of Cooper-pair-assisted transport of electrons. Here, we use this framework in a cold atom context,
where the driving comes from the molecular BEC and the dissipation processes correspond to coupling of atoms
into and out off large (thermal) reservoirs.

The results we present here demonstrate the possibility to engineer transport based on Andreev reflection in
cold atoms in an unconventional setup—without the need for interactions in the source and drain reservoirs—
and in regimes that are hard to access with other methods. Our work also provides a framework to diagnose the
impact on transport of many effects that could be engineer experimentally, such as controlled interaction and
dissipation. We also analyse realistic experimental conditions, including finite temperatures in the reservoirs.

The paper is organised as follow. In section 2, we detail our model and summarise the main steps of the
derivation of the master equation used to calculate the transport properties of the junction. In section 3, we
present our results for the particle current, with and without coupling with the molecular BEC. We study the
effects of finite temperature of reservoirs, interaction between atoms and particle losses acting on the junction.
In section 4, we summarise and provide an outlook. We use in the remainder of this paper natural units in which
h=ks=1.

2.Model

In this section, we summarise our model for a tunnel junction connecting two cold atom reservoirs. Figure 1(A)
shows a setup where two ultracold fermionic gases are connected together by a small junction. We consider two
different spin states, labelled with s € {|,T}. Transport of atoms through the junction is generated by preparing
an initial chemical potential imbalance between the two reservoirs. We propose here to control the transport
properties of the junction by immersing it into a molecular BEC and coupling them via radiofrequency fields, as
explained below.




10P Publishing

NewJ. Phys. 21(2019) 115001 F Damanet et al

2.1. Hamiltonian
We consider a ‘system-bath’ decomposition where the ‘system’ corresponds to the junction and the ‘bath’ to the
cold atom reservoirs. This is described by the total Hamiltonian Hyyy = Hseff (t) + Hg + H;with

HE (1) = Hg + Hppe(t) = w S ocleo+ UCTTCTCEQ + > (g% e + hoc), (1)
s=L1 ‘
Hy= > Y wibibas @)
£=LR ks=1,1
H= Y ke Y. (bl +he), 3)

¢=L,R ks=1,1

where Hg(#) is the effective Hamiltonian of the junction including the influence of the molecular BEC, Hg the
sum of the Hamiltonian of the left (L) and right (R) reservoirs, and Hj the tunnelling Hamiltonian between the
junction and both reservoirs, where x, is the tunnelling amplitude of atoms between the reservoir £(£ = L, R)
and the junction.

In equation (1), Hs = w)_, e+ Uc{f a cf q corresponds to a single-site Hubbard model (Anderson
impurity model) for fermionic atoms of energy w, spin s € {|,7}, and interaction U. We consider for the sake of
simplicity the same energy w for both spin s € {|,T}, even though such assumption can be relaxed without any
difficulty. Hence, the bare junction is an effective system of dimension ds = 4 spanned by the non-occupied,
single occupied, and double-occupied states {|0), | 1), |T), |1 1)}. The corresponding potential geometry could
be achieved as proposed in [31] by using two laser beams with adjusted detunings, beam waists, and positions,
but also more generally with acousto-optical deflectors [32] or holographic mask techniques [33]. The
interaction U between atoms in the junction can for its part be tuned locally via optically-induced Feshbach
resonances [34].

Thelast term of equation (1), Hpec () = > ,(g, eldr ‘qq + h.c.), describes the effects of the coupling of the
fermions of the junction to the background molecular BEC [35-38]. Such coupling could be realized using one
[21] or multiple fields Zof radio-frequencies w,and detunings y = wy — ¢, where €is the frequency related to
the transition between the molecular BEC and the pair states, i.e. |BEC) « | T |)illustrated in figure 1(C). Note
that we work in the rotating-frame associated to €, absorbed in the definition of w to not burden the notations.
The coupling strength g, = (S) 2, of each field is determined by the macroscopic ground state occupation (S)
of the BEC and the Rabi frequency 2, which can be tuned independently through different field amplitudes. It
turns out that the Hamiltonian Hgpc(f) well-represents the so-called proximity effects induced by s-wave
superconductors of chemical potentials /2 and Cooper-pair tunnelling amplitudes g, when their
superconducting gap is larger than the junction frequency scales [20, 30]. For this reason, we consider in the
following only two driving fields whose detunings are adjusted to the chemical potential of the fermionic
reservoirs, i.e.,

b¢=2n, ¢€=L,R, 4)

even though, in principle, any frequencies could be chosen. This choice is motivated to resemble the case of a
quantum dot tunnelling junction connecting two superconducting leads, where the Cooper-pair condensates
have energies related to an applied bias voltage.

In equation (2), bgys is the annihilation operator of a fermion of energy wy, spin sand momentum k in the
Zreservoir (¢ = L, R). We consider both reservoirs initially prepared in thermal states p, defined as

e BrHz—p,Ny)

- Tr [e B¢ Hs—1eNO|’

Py (5)

with chemical potential j1,, temperature T, = 1/ (kg 3¢), and where Ny = >, b}ks bsys. Various techniques have
been realised to implement initial imbalance between atomic reservoirs, as summarised in [1].

2.2. Master equation for the driven junction

We treat the coupling of the driven junction with the left and right reservoirs in the weak-coupling regime. This
justifies our ‘system-+bath’ decomposition and motivates the use of an open system approach. As in [30], we
derive a Floquet—Redfield master equation, i.e. a Redfield master equation for the periodic time-dependent
system [22—25]—which corresponds to the driven junction in our case. In contrast with [30] where the
reservoirs were in a gapped phase, we consider them in a normal, non-interacting phase. This allows us to show
that Cooper-pair-assisted transport can be achieved between the drain and source reservoirs even if these latter
do not contain any pairs. We present below the key assumptions of the derivation of the master equation (all
details can be found in appendix A).
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2.2.1. Born and Markov approximations
The first key approximation is the Born approximation, which supposes that the total system-bath density
matrix p{ot (t) ininteraction picture with respect to Hy(t) = Hseff (t) + Hp can be written in the separable form

Proe(D) & pl (1) © pp @ pr, (©)

where p’is density matrix of the driven junction in interaction picture and where p, are the thermal states given
by equation (5). This approximation amounts in considering that the initial states of the bath are sufficient to
determine the whole evolution of the system during a timescale 7z o< 1/x2, the typical time scale needed for the
junction to reach a non-equilibrium steady state. Note that this present model cannot describe the complete
relaxation of the whole junction+reservoir’ system towards a common equilibrium, which occurs on a time
scale larger than 75",

Using the ansatz (6) and tracing over the bath degrees of freedom, the equation for p!(t) in second-order in
Hi(t) reads

plt) == fo B Bas(t — ) (e(Dc (t — D p(t — 1) — ¢t — )p(t — () + hic)
t,s

+ [(Bes(H) B, (t — ))p(c] (D) es(t — thp(t — t') — ¢t — t)p(t — t')c] () + h.c]}dr, 7)

where we removed the superscript Tto simplify the notation, and where <B;§ (t)Bgs(0))p = TrB(B;S (t)Brs(t2) py)
is the bath correlation function with By (t) = k.Y, € “*byy,. The Markov approximation consists of setting
p(t — t') = p(¢) and extending the upper limit of integration to infinity. This amounts to neglect the memory
effects, in the sense that this transforms the integro-differential equation into a time-local differential equation.
Both the Born and Markov approximations are justified for 7z > 75, where 73 is the decay time of the bath
correlation function (B}'s (1) B#5(12)). Such a condition can in general be satisfied in different ways. In the present
case, this is mainly due to the large size of the bath, which yields an infinite summation over destructively-
interfering modes in the expression of the bath correlation function, making them decaying quickly (see
appendix A.2 for a detailed analysis of these approximations)” [39, 40].

2.2.2. Final form of the master equation

To obtain the final form of the master equation from (7), we need to evaluate the time-dependence of the system
operators ¢,(t) = U (t)'¢c, U (t) where U (t) = Te! Jy BT @A g the system propagator with 7 the time-
ordering operator, before performing the time-integration. We use for this purpose the Floquet theory,
assuming that the driving is periodic of period T = 27/ Ap, where Ay = 1, — pup corresponds to the chemical
potential bias between the reservoirs. We consider for simplicity p; = — g = Ap/2. All details are given in
appendix B. The resulting master equation for the density matrix elements p® (t) = (¢, (t)|p(t)| ¢, (t)) in the
basis of the periodic Floquet modes | ¢, (1)) = |¢,(t + T))labelled by indicesa = 1, ---, dsreads, in the
Schrodinger picture,

PP () = —i(Ea — Ep) p (1) + Y (LelpD®, (®)
3

where E, are the quasienergies corresponding to the Floquet modes | ¢, (¢)) and

(LelpD)®
= =50 3 STl (kTN (A + ¢ F T (— D) p® (1)
s kk'eZ c,d
_ ei(Hk/)A”t(CsMkC:dbkrl}f(anck) + C:”Ckfsdbk,I‘f+(fAuck)PCd(t)] + h.c} 9)

is the Liouvillian. This latter is written in terms of Fourier components CS“Ck = % j(; e~ ikAut (6,(D] el (1)) dt
and complex rates

Ly+(E) = fox de'f, (1) el = ~,(E) + iQ7+(E) (10)

In cold atom experiments, the initial imbalance between the reservoirs is usually not maintained during the transport measurements. This
isin contrast with the solid-state where the bias between the leads that act as reservoirs can easily be conserved through the use of bias
voltages.

> The condition Tr > T can also be fulfilled for single-mode environment that are damped by other means, as it is the case for an atomic
system trapped in a single-mode lossy cavity [39].
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evaluated at energies Ay = E, — Ep + kAp (k € Z)with
Ve+(E) = Yo [1 — ns(E £ pp)],

Opu(B) =X PV foo dy— 1@ an
0 -0  E+wxpu,
where v, = 7k} p, \ is the tunnelling rate between the junction and the reservoir #with Py, its density of states
assumed to be constant over the relevant frequency range, where 1, (E) = 1/(1 + e%F)is the Fermi
distribution, and where P.V. denotes the principal value. Hence, while for a standard Redfield master equation
(i.e. without the driving) the rates (10) are evaluated at transition between bare system energies, our Floquet—
Redfield theory captures transition between quasienergies of the driven system up to multiple of Ap. This
quantity corresponds to the energy difference obtained from the conversion of a molecule into a pair via the field
of detuning gy which is then reconverted into a molecule via the other field of detuning 2 /4y, i.e. the process (see
figure 1(C))

IBEC) —> [214,1] T 1) —> [2/154]|BEC). (12)

Hence, our theory describes the assisted transport of atoms thanks to the energy provided by molecular
conversions. In solid-state systems, such assistance would correspond to transfers of Cooper-pairs between
superconductors: currents based on multiple Andreev reflections.

3. Transport properties

Solving the master equation (8) allows us to compute the transport properties of the driven junction. We focus
here on the steady state current of atoms leaving the junction to reach the right reservoir, which is defined as

<IR> = - Z Tr [Cs-i-Cs['R[Pss]]y (13)
s=T1,]

where Lg[-]is the Liouvillian (9) for the right reservoir and pss the steady state density matrix (see appendix B
for details and expressions of other currents, such as the current of molecules in the BEC). We investigate below
the ‘current—voltage’ characteristics of the junction, where the voltage corresponds to the chemical potential bias
Ap. For the sake of simplicity, we consider in the reminder of this paper identical left and right tunnelling rates
v = Yr = 7yandreservoir temperatures Ty = Ty = T.

3.1. Without coupling to the molecular BEC

When the junction is not coupled to the molecular BEC (g, = 0 V¢ = L, R), the system Hamiltonian is time-
independent and the Floquet—Redfield master equation reduces to a standard Redfield master equation that can
be solved analytically. The steady state current in the right reservoir reads

np(w — pp)(m U+ w —pp) — 1) — np(w — pp)(mg(U + w — pgp) — 1)

(In) = 4y .
np(w — pp) — U+ w — pp) + mp(w — pp) — ng(U + w — pg) + 2

(14)

We focus in the following on the particle-hole symmetric case, for which the double occupied state | | 1) of the
junction has the same energy than the non-occupied state |0), i.e. when U + 2w = 0. This simplifies the analysis
—giving rise to a single parameter U to characterise the bare junction energy—and corresponds to the situation
where the driving of the transition |0) < ||T) gives maximal effects. In that case, the current (15) becomes

sinh (%)
cosh (%) + cosh (?—ﬁ) ,

which corresponds to a smooth step function. For 2T < A, the quantization of the current becomes more
obvious, since we have

1
(k) = 27 55—

> (16)
e o +1

where we see that for |(|U|—Ap)| > 2T, the current goes to 0 at small bias Ay < |U]and to 2-yatlarge
bias Ap > |U|.

3.2. With coupling to the molecular BEC

Coupling the atoms to the BEC drastically changes the transport properties of the junction, since the sequential
tunnelling of atoms can in that case be assisted by molecular conversions. Figure 2(A) shows the steady state
current of atoms reaching the right reservoir for different coupling ¢, = g—taken identical for both RF fields—,
fixed value of (attractive) interaction U < 0, and zero temperature. Peaks of currents appear at chemical
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Figure 2. Current-bias characteristics of the junction for different driving amplitudes g at zero temperature T = 0 (A) and for different
temperatures T for fixed driving amplitude g = 0.5 (solid lines) and g = 0 (dashed lines) (B). Other parameters arew = —U/2 and

U = —2,in units chosen so that y = 1072 (A) For g = 0, the current exhibits a step at Ay, = |U|(dashed blackline). When g
increases, current peaks appear at Ay = |U|/(2k + 1) with k € N. (B) Increasing the temperature smears out the peaks. In addition,
for large temperature, the differences between the cases with and without driving fade.

U|/3g < 1 U|/3g > 1

(Ir) /v

et - PR P P )
0.0 0.5 1.0 15 2.0
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Figure 3. Current-bias characteristics of the junction for different interaction strengths in the regime |U| /3¢ < 1(A)and |U|/3g > 1
(B). Other parameters are g = 0.5,and T = 0, in units chosen so thaty = 1072, (A) When the driving dominates, the currents is
characterized by fragmented oscillations. (B) By contrast, when the interaction starts to dominate, clear Andreev peaks appear.
However, for strong interactions, i.e. |U|/3g > 1, Andreev transport is suppressed and the current goes to its value without driving
(i.e. equation (15)).

potential bias

_ 2k|_[i|1 keN, 17)
as can be obtained from the resonant condition

py + kAp = %: (18)

where |U|/2 is the energy of the transitions |0) < |s)and |s) < ||1). Equation (18) means that the maximal
energy of an incoming atom (from the left reservoir) combined with multiple of the energy provided by the
molecular conversion process (12) must be at least equal to the junction transition energy to generate transport.
This explains why a non-zero current appears for lower bias values compared to the uncoupled case g = 0 (see
dashed black line in figure 2(A), corresponding to equation (15)). These peaks can be interpreted as transport
based on Andreev reflections of order k, where the energy of k Cooper-pairs are required to generate transport.
Increasing g cranks up the amplitude of the Andreev peaks.

Finite temperature of the reservoirs smears out the peaks, as can be seen in figure 2(B). For low bias, the
current decreases as a polynomial as a function of the chemical potential bias. For moderate temperature,
signatures of Andreev transport can still be observed. However, For large temperature, thermal effects dominate
and the effect of the driving becomes indistinct.

6
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Figure 4. Current-bias characteristics of the junction for different particle loss rates y; of spin down (s = |) atom only (S) and both
spinup (s = T)and down (s = |)atoms (B). Other parametersarew = —U/2,U = —2, T = 0, in units chosen so that y = 1072 1In
both cases, the current assisted by molecular conversion is relatively robust against atom losses.

3.3. Effects of interaction U
In this section, we analyse the effects of the interaction U'in the channel on the produced transport. Figure 3
shows the current (13) for a fixed value of g, zero temperature T = 0, and different U, still focusing on the
particle-hole symmetric case by adjustingw = —U/2 so that we always have U + 2w = 0. In order to compare
the curves appropriately, we rescaled the chemical potential bias Ay of each curve by |U|, which makes the peaks
overlap. Otherwise, a smaller interaction | U| requires a smaller chemical bias Ay to generate transport. Such
methodology allows us to compare the shape and the size of the Andreev current peaks for different interaction
strengths.

The system exhibits two different regimes of transport. For |U|/3 < g (figure 3(A)), the current is
characterised by small oscillations, whose the period and amplitude increase for increasing | U|. These
oscillations are fragmented in sections

Auc v _1u (19
2+ 1)+ 1 2k +1

separating the different order k of multiple Andreev reflections. Around |U|/3 ~ g, the oscillations are no more
visible and leave the place to well-resolved peaks. The amplitudes of the peaks are maximum in this regime. For
|U|/3 > g (figure 3(B)), the amplitudes of the peaks decrease as |U| increases. We thus recover the fact that
Andreev reflection is suppressed for large interaction U. However, while it is commonly assumed that interaction
has always a detrimental effects on current based on Andreev reflection in quantum dot junction [20], it seems
there exists an optimal value of |U|, i.e. [U| /3 ~ g, for observing large and well-resolved current peaks. We
confirmed this behaviour by considering different values of g (not shown)°.

3.4. Effects of particle losses in the channel

We finally investigate the effects of the presence of additional particle losses acting on the junction. A diagnostic
of such effects is important, since particle losses are inherent in experiment due to light scattering or collisions
with other atoms. This is also important to identify potential interesting consequences on transport, since
particle losses can also be engineered intentionally. The main goal here is to determine whether the engineered
current is robust against dissipation or not.

We incorporate these effects into our master equation through an additional dissipator of the Lindblad form
Di(p) = %(2LpL" — {L'L, p}), where ;is the rate of the incoherent process and L the corresponding Lindblad
operator (see appendix C). Such dissipator corresponds to the effect of a structureless bath, but one could easily
investigate the effects of a more complex bath following the procedure we used to calculate dissipation with the
reservoirs. We consider in the following atom losses, where L = ¢, (s € {[,T}). Figure 4 shows the atomic
current in the right lead as a function of the bias potential for different loss rates - of only one of the atomic
species (A) and of both atomic species (B), i.e. with one dissipator of the form above for each s € {|,T}. For
Ap > |U|, we observe a decrease of the current of atoms reaching the drain reservoir, since some of the atoms
are lost in the additional decay channel. Surprisingly, the current assisted by molecular conversions (for
Ap < |UJ) seems to be only slightly affected by the losses, even for loss rate 1 of the order of magnitude of the

6 Note that we observed a slower numerical convergence of the transport properties of the junction when decreasing the interaction strength
|U], in the sense that a higher cutoff k,,,,,, of the Fourier series appearing in (9) was required in this regime. This can be understood by the fact
that for smaller interaction | U| compared to a fixed pair-tunnelling g, higher-order multiple Andreev reflections must be accounted for,
requiring then higher k..
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tunnelling rate y with the reservoirs. This is because the dissipation processes coming from the additional
particle losses do not account for the driving. Hence, while the standard tunnelling processes (for Ay > |U]) are
significantly altered by atom losses, the Cooper-pair assisted current seems resilient against them, even at higher
order (i.e. atlower bias).

4. Proposed experimental implementation

Here we address the details of the proposed experimental implementation and observation of the phenomena
we discuss in this manuscript. We give examples of parameters currently available in experiments, basing values
on °Liatoms following[1,4, 21, 34], and retain /iand kp in our expressions within this section.

The largest frequency scale of our model is related to the transverse trapping frequency w, of the atoms, as
required to avoid to take into account higher transverse modes. This transverse frequency is of the order of few
dozen of kHz in typical experiments, but can in principle be increased using higher laser power.

Let us first consider the required temperatures. Our results show that resolved current peaks appear for
kg T < /ww.Knowing that experiments regularly reach temperatures T ~ 50 nK, this would require a junction
frequency w ~ 27 x 10 kHz or higher, while making sure that w, > w. The coupling between the states of
atoms on the junction site and molecules in the molecular BEC can be strong, i.e. we can have g, ~ w, as s-wave
pairing aslarge as 271 x 25 kHz is achievable for a BEC density of ny = 10'* cm™~2 and molecular scattering
length of 0.1 nm [21]. In addition, the locality of the coupling can be ensured by a combination of the geometry
in the Raman beams, and the tuning of the near-resonant coupling between the level of the chemical potential in
the molecular BEC reservoir and the two-particle trap state on the junction site.

Finally, the smallest parameter of our model vy, should be smaller than w to satisfy the Born—-Markov
approximation. Indeed, observing transport at the energy Aiw requires a bias Ay, which determines the decay of
the bath correlation function (see appendix A.2). This would mean v, ~ 27 x 1 kHz according to the other
parameters above.

All together, we thus require ideally

Fives ks T < T ~ Iig, < Ji, (20)

and note that the transport dynamics we look at occurs on a timescale of few inverse tunnelling rates ’y;l ~ ms.
Hence, in order to resolve the current peaks as presented above, detrimental effects due to imperfections such as
heating or atom losses should be small on this timescale’. If this is not the case, a possible solution consists in
increasing v,, which implies increasing the junction and transverse frequencies w and w, . We finally note that
tuning the interaction Ulocally inside the junction using optically-induced Feshbach resonances as realised in
[34] provides a good route to control over interactions with strongly reduced spontaneous scattering of photons,
in a form that would be appropriate for the proposed setup.

5. Conclusion

We showed how transport of fermionic atoms through a junction connecting two cold gases can be assisted by
molecular conversion with a BEC. We described such reservoir engineering using an open-system framework
that we recently derived, which is able to capture the effects of finite temperature of the reservoirs, strong
interaction and presence of additional dissipation in the junction. This allowed us to explore with cold atoms the
physics of Andreev reflection—a well-known paradigm in condensed-matter—in new parameter regimes. As a
main result, we showed that there exists an optimal range of interaction yielding well-resolved, maximal peaks of
assisted particle current. We showed that increasing the temperature of the reservoirs smears out the peaks,
whereas these latter are robust against additional (Lindblad) particle losses acting on the junction.

Our framework describes naturally dissipative processes and could be generalized to include the effects of
measurements [5] and feedback loops, to potentially engineer and uncover new phenomena in quantum transport.
In addition, it could be used to study spin-polarised [41] or thermoelectric [42—44] transport properties of an
engineered junction, starting from initial spin or temperature imbalances. Finally, since our method is suited to
describe the interplay between driving and dissipation, it could be applied in the context of quantum heat engine or
Floquet Majorana fermions [21, 45, 46].

" We emphasise again that these effects can be directly modelled within the present framework, as done for the few examples presented in
section 3.4.
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Appendix A. Derivation of the master equation
Our starting point is the usual Liouville-Von Neumann equation [28]

pl(6) = —i[H (1), pL, ()] (A1)

for the total density matrix pfm (t) in interaction picture with respect to Hy(t) = HST (t) + Hpg, where
H(t) = Y5 ke S (K )¢l () + h.c.) with

(1) =U®eU®, (A2)
b (t) = ellithy et = emiwnipyy, (A.3)

where the propagator U(¥) is defined as
U@ = 7o), 1T (A.4)

with 7 the time-ordering operator.

A.1. Born and Markov approximations
Under the Born approximation, the total system-bath density matrix pfm (t) can be written in the separable form

pl (1) = pl(t) ® p, & ppo (A.5)

where p’is the junction density matrix in interaction picture and where p, are the thermal states given by
equation (5). Expanding equation (A.1) up to the second order in Hy, using the Born approximation (A.5) and
tracing over the bath degrees of freedom yields

Pt = — fo ' Trg([H] (), [HL (£ — 1), p'(t — ) @ p, @ pgl])s (A6)

where we neglected the first order term [28]. After performing the Markov approximation by setting
pl(t — 7) ~ p!(t) and extending the upper limit of integration to infinity, the expansion of the double
commutator yields

p(H)=
- fo UBLO Bl — () (¢ — () — it — ) p(De®) + hel
14 s

+ [(Bos()B.(t — t))p(c! (Des(t — t)p(t) — co(t — ) p(Dc] (D) + h.e]}dr, (A7)

where we removed the superscript to not burden the notation and where <B;S (1) Bes(0))p = qug(B,;f5 (t)Bes(t2) py)
are the bath correlations with By () = kY beks (). Since for reservoirs in thermal states we have

<b;ks bews)s = Ok o5t e (Wi — e

(bersb s = S 6o (1 — np(wi — 1)),

<baf’k5 bfk’s’>B = <b;k5 b;k’s’>3 =0, (A.8)

where n,(E) = 1/(1 + eF)is the Fermi occupation number, the bath correlation functions can be
rewritten as
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fri(t) = (BL()Bp(t — t)p = K7 Y e np(wi — pp) = % f ¥ dw e g (w — [r)
k — 00

fr_(t") = (Bes()BJ(t — tY)s = k7 Y e ' [1 — np(wi — p1p)]
k

~xf T dw e 1 — npw — ), (A.9)
T J—0

where v, = Tk} Py, is the tunnelling rate between the junction and the reservoir # defined below equation (11).

A.2. Justification of the Born—-Markov approximation

As mentioned in the main text, the Born—Markov approximation is usually justified when 753 < 73 'y;l,
where 75 is the decay time of the correlation function f, (7) given in equation (A.9). Here, we give an estimate
of 7.

Let us first discuss the case of zero temperature T = Ty = 0, where the Fermi distribution corresponds to
the Heaviside distribution. For infinite chemical potential 1, — oo, the integrationin f, , (7) involves all
frequencies that interfere with each other toyield f, , (7) = 27,6 (7), showing that the reservoir acts as a pure
Markovian reservoir with vanishing 7p. For finite 1., we have however

Y sin(u,7/2) e,

fri(T) = 29¢6(7) — s

(A.10)

where the last term decays as a power law ~1/7. We can thus define a typical decay time 75 o< 1/f1,,as in [40], so

that the condition of the Born—-Markov approximation reads +, < f,. Hence, considering a system reservoir

coupling smaller than the chemical potential should in principle be sufficient to neglect non-Markovian effects.
For finite T'and yt, = 0, we have by contour integration

T) = —i _, A.l 1
fer (D) i sinh(7wTT) ( )
for which we can define the decay time 73 o< 1/T. Finally, for finite T'and p,, we have
fo, () = =XLTelne=DB_ . 1(1 — iTr, 0), (A.12)
™

where B,(a, b) is the incomplete beta function, and one can estimate 73 as the minimum of 1 /T'and 1/,. Hence,
we see that the Born—Markov should be satisfied for either T'>> v, or 11, > .. Note that this simple discussion
does not take into account the fact that, in practice, reservoirs have a finite bandwidth, which also modifies the
natural lifetime of the bath correlation function.

A.3. Quasi-energies and Floquet states
In order to perform the time-integration in equation (A.7), we now evaluate the time dependence of the system
operators c! (t) given by equation (A.2) using the Floquet theory [22—25]. For that purpose, we suppose in the
following that y1; = — 1, = Ap/2, so that effective system Hamiltonian HS™ (¢) is periodic of period T =
27/ Ap. If it was not the case, one could simply work in the rotating-frame with respect to one of the driving
frequency 21, let say 247 This would provide a periodic Hamiltonian of period 6 = 2(ug — f;), and the same
theory would apply.

Since H™ (t) is periodic, the system wavefunction | (t)) satisfying the Schrodinger equation

e ) = HET Ol 0) (A.13)
can be written as

[0(0) = > ddva(®)) =D da e 3, (1)), (A.14)

where |4, (1)) = ei!| g, (t)) are the Floquet states with the periodic Floquet modes | ¢, (t + T)) = |¢, (1)),
quasi-energies E,, and d, = (¢,(0)|1(0)). By definition of the propagator (A.4), we have

[%a(T)) = U(D)[4a(0) & e *T|¢,(0)) = U(T)|¢,(0)), (A.15)
showing that e '£«T are the eigenvalues of U(T), which can be numerically computed using
u(r) ~ 11, e 1A (ndndt yith N = T/dt — 1. Solving the eigenvalue problem (A.15), we obtain
E.x=E, + k%ﬂ with k € 7Z, and consider the values of E, x lying in the first Brillouin zone [—7/T, 7/ T] to

define the quasienergies E,. The eigenvectors correspond to the Floquet modes at initial time | ¢, (0)). The
Floquet modes at all times t are obtained from these latter using

10



10P Publishing

NewJ. Phys. 21(2019) 115001 F Damanet et al

16, (1)) = e U ()| 4,(0)). (A.16)

A.4. Master equation in the Floquet basis
We now decompose the density matrix in the Floquet mode basis {|¢,(0)) }, i.e.

p() = ph(1)14,(0)) (¢, (0], (A.17)

a,b

and derive below the equations of motion for the density matrix element p>*(¢) = (¢,(0)| p(t)|$,(0)) from
equation (A.7). Note that for the sake of clarity we restored the label ' denoting the interaction picture for the

density matrix elements.
In this basis, the matrix elements of the system operator ¢,(f) reads
(2] c()]6,(0)) = (G, ()] cilpy (1)) e BB, (A.18)
Since | ¢, (1)) is periodic of period T, we can rewrite (¢, (t)| ¢|¢,(¢)) in the Fourier space as
(D] el (D) = 3 e*snee™, (A.19)
keZ
which yields
(8.0)] c:()16;,(0)) = (B,(D] el (1)) BBt = F7 ekt b, (A.20)
keZ

where Ayx = E, — Ey + kApand

1 T
= [ e g, 01 eloy )t (a2

Expanding all operators of the first term of the right-hand side of the master equation (A.7) in the the Floquet
basis yields

<¢a<o>|( 7 a e - t'>p<t>)|¢b<o>>

. ’ 00 . ’
=5 i@t At cack ek’ b ) f de'f, , (the idart, (A22)
od kK 0
and all other terms can be written in the same way. Hence, we see that the master equation involves complex
rates

T, (E) = j; T AL, (e = qpi(E) + Q1 (E), (A.23)

where E corresponds to system transition energies and where v, and (), are the real and imaginary parts of
[z which explicitly read

Ye+(BE) = vo[1 — ng(E £ )],

QreB)=2Lpy. f TR (A24)
m —0 E+w=xp,

where P.V. denotes the principal value. Note that the integrands appearing in the expressions of the shifts Q.
do not converge for w — 400, and one has to introduce a cutoff frequency w, in the integration domain to
obtain finite values for the shifts. In our simulations, we anyway neglected these shifts that are small compared to
system energies—since proportional to y,—and thus do not contribute significantly to the dynamics.

All together, the master equation (A.7) written in the Floquet basis gives us the following set of equations for
the matrix elements p>% (t) = (¢,(0)| p'(t)|¢,(0)), i.e. the Floquet-Redfield master equation

phab(t) =3 (Lelp D™
3

iAo K tedk! tack cdk’
= =303 ST {leiartrar( 2K TN, (A + ¢ T (= D) pBP (1)
¢ s,kk' c,d

— ei@awt A2k TR, (A ) (R, (A L) pP ()] + o). (A.25)

The master equation for the matrix elements in Schrodinger picture p®(f) can be obtained from equation (A.25)
by making the replacement p» (t) = eiEa=Ent pab(¢) In doing so, one can see that all terms e!(Ae + 2kt
reduces to !k k)20t (see equation (8)), showing that the master equation exhibits the same periodicity than the
system Hamiltonian H¢™ (¢). This implies that the steady state of the master equation is also periodic with the
same period T = 27/ Ap [47].

Note that we did not proceed with the secular approximation, so that we have a Redfield-like master
equation, for which the steady state properties match the ones of the equivalent (weak-coupling) non-

11
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Markovian master equation for time-independent system. Hence, while non-Markovian effects might
potentially be present in the transient dynamics of our system, we do not expect significant memory effects in its
steady state properties. The investigation of the interplay between potential non-Markovian effects and Floquet
dynamics will be investigated in a further work.

Appendix B. Solution of the master equation and particle currents

We present here two methods to solve the master equation (A.25) that exploits its periodicity. Note that since the
steady state density matrix and any expectation value of system operators obtained from it are in principle
periodic (or constant), we always present in the main text time-averaged values of these quantities over one
period of oscillation T = 27/ Ap.

The master equation in Schrodinger picture (8) can be vectorized in the form

1p5(1) = LBO)p* @), (B.1)

where |p5(t)) = (p5'1(1), p>12(t),...,p>** (1)) is the vectorized density matrix and L(¢) is a periodic time-
dependent matrix of period T.

B.1. Solving the master equation in Fourier space
We can express the steady state density matrix pgs (t) and the matrix L(¢) as

. 1 pT .
Pgs(t) —_ Z e—1kA;1tpk; Pr = ?fo e_lkAngs(t)dt
k

. T .
L(t)y=> e L L= % fo e kAL (£)dr. (B.2)
k

Inserting these decompositions into the vectorized form (B.1), we get

Z _ ikvefikA/l,tlpk> — Z efi(k+k’)A/1th/|pk>. (B3)
k kK’

Applying then (1/T) fo . e¥"Dut on both sides yields
0= *ik”V}llpk» + Z Lklpk”7k> (B4)
k

which can be written in matrix form as

—i(k + DAu + Ly L L, | Prs1)

0
0

I, L, —i(k = DA + Lo i)

This linear system of equations for the Fourier components can be efficiently solved numerically after
truncation, i.e. by introducing a cutoff k.., in the summation over k of the Fourier series (A.19). The off-
diagonal blocks Ly in equation (B.5) describe the coupling between different Fourier components. A block Ly
corresponds to k molecular conversion process of the form (12).

B.2. Solving the master equation in real space
The vectorized master equation (B.1) is of the same form than the time-dependent Schrodinger equation (A.13).
We can thus apply again the Floquet theory and write the solution as

|pS(1)) = daetal| p>(1)), (B.6)

where | p%%(t)) = |p>%(t + T))are periodic functions of period Tand where d,, = (p>%(0)|p%(0)). Hence,
solving the entire problem in this case consists in applying twice the Floquet theory: once to write the Floquet—
Redfield master equation (A.25) and once to solve it.

B.3. Currents
From the solution of the master equation (A.25) for the matrix elements p>? (¢), one can evaluate the
expectation values of any system operator O through

12
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(0) = Tr[UT(1)OU (1) p' (1)) = Z Z phab () e IEE (5| Olg, (1)) (dy, (D] J)- (B.7)
=0L1,11T ab
We derive here the expressions of the particle currents I, I-and I, respectively in the junction, the reservoirs
and the molecular BEC. For the sake of clarity, we introduce an annihilation operator S for the BEC that interacts
with the junction with an Hamiltonian of the form Hggc(t) = ZK(QKSCTT cf e2itet 4 h.c.). The currentsIg, I,
and I, are then defined as

Iy = %Z fee = —ire Y (el bas — hic) — 2iy_(gFe 2etclcf — h.c), (B.8)
s ks 4
I = LS b b = ine (b — e, (B.9)
dt ks ks
Inol = %sfs =iy (gle @icicf — he), (B.10)
3

where we replaced the operator S by the macroscopic fraction (S) and where we used the Langevin equations for
¢, bers and S. Note that the total number of particles is conserved, i.e.,

Is+ > I 4 2o = 0, (B.11)
4

where the factor 2 is front of I,,.; denotes the fact that a molecule is made of two atoms.
The expectation value of the particles current in the junction is obtained from the solutions of the master
equation and equation (B.7), that is

(Is) = %@ )=y %Trw*(t)cf U p ()] (B.12)

N S

Due to the conservation of the number of particles (B.11), it can be related to the particle current in the
reservoirs, as shown below. Applying the derivative and using the fact that dU (¢) /dt = —iHSeff B U (1), weget

(Is) =iY_ Tr[UT (O HE (1) ] ;U0 p' ()] — 1D Tr[UT(t) e . HE (1) U (1) p' (1)]

+ ZTr[UT(t)cj cSU(t)$]. (B.13)

The two first terms on the right-hand-side can be rewritten as

IS (HS (el ) — i (el e HS" (1) = 2 g et (ejq) — 20y gle et (cf o)
s s 4 4

= —2(In)) (B.14)
where (see equation (B.10))
(Inol) = iy _(gfe 2t (cfcf) — h.c). (B.15)
¢
Finally, replacing the derivative in equation (B.13) by the right-hand-side of the master equation (A.25) yields
(Is) = =2(Inot) + D Tr[UT (e c UL OD] = =2(Imat) — D (L), (B.16)
‘s 4
with
(Ir) = =Y (Lelp! DPe EEN S Sl el b, (D) (9, (1] ) | (B.17)
ab j s

In the main text, we always present time-averaged values of the current over one period of oscillation
T =2n/Ap.

B.4. Numerical details

In this section, we provide the numerical details of the resolution of the master equation (8). First, in order to
write the master equation, we computed the quasi-energies from equation (A.15) using the procedure stated
above with N = 1000 (figures 2 and 3) and N = 10000 (figure 4), a number of time steps which insures a
sufficient convergence of the quasi-energies to compute the particle currents. Writing the master equation also
requires to define a cutoff k,,,,, of the Fourier series. We define k,,,,, as an empirical function of Uand Ay also so
that the computed current has converged up to a given precision. Typical values range from k., ~ 4 for large
bias and interaction to k., ~ 80 for small bias and interaction. To solve the master equation (8), we use brute
force resolution of the differential equations, with random or particular initial states, from a initial time t; = 0 to

13
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afinal time t; = 10y, where v = ~, = 1072 (figures 2 and 4) or 1073 (figure 3), in order to reach the steady
state. We then averaged the particle currents over one period T. All together, we required that any increase of the
precision (which can be achieved via the parameters N, ko and t)) yields only an improvement of the value of
(Iy) /7y smaller than 102, We also checked that the alternative methods proposed in sections B.1 and B.2 to solve
the master equation give similar results.

Appendix C. Adding dissipation on the channel

Additional Lindblad dissipation acting on the channel can be accounted for by adding to equation (A.25) a
dissipator of the form

Dilp* ()] = m2Lp (L' — L'Lp*(t) — p*(1)L'L). (C.1)
In the Floquet basis and in interaction picture with respect to HS" (t), this dissipator reads

(Dl[pl(t)])ab = Z Z [z(ei(Adhk’JrAuuk)lLﬂCkLTdbk/)pI,Cd(t)
cd Kk’
_ (ei(Acdk'+Auck)tLTackLcdk’)pl,db(t) _ (ei(Adbk’+Acdk)tLTCddebk/)pl’ac (1. (C2)

The associated particle current reads

(L) = =3 (Dilp! (HDPe EB 575" (fle el b, (1)) (8, (D] ) | (C.3)

a,b j s
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