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Abstract
We showhowCooper-pair-assisted transport, which describes the stimulated transport of electrons
in the presence of Cooper-pairs, can be engineered and controlledwith cold atoms, in regimes that are
difficult to access for condensedmatter systems.Ourmodel is a channel connecting two cold atomic
gases, and themechanism to generate such a transport relies on the coupling of the channel to a
molecular BEC,with diatomicmolecules of fermionic atoms.Our results are obtained using a
Floquet–Redfieldmaster equation that accounts for an exact treatment of the interaction between
atoms in the channel.We explore, in particular, the impact of the coupling to the BEC and the
interaction between atoms in the junction on its transport properties, revealing non-trivial
dependence of the produced particle current.We also study the effects offinite temperatures of the
reservoirs and the robustness of the current against additional dissipation acting on the junction. Our
work is experimentally relevant and has potential applications to dissipation engineering of transport
with cold atoms, studies of thermoelectric effects, quantumheat engines, or FloquetMajorana
fermions.

1. Introduction

Transportmeasurements between reservoirs connected by a channel are well-known tools to understand and
study the static and dynamical properties of condensedmatter systems. In this context, the development of cold
atomplatforms has offered possibilities to explore phenomenawith strongly-interacting particles in transport
setups. A key feature of these setups is that they can be described bymicroscopicmodels derived from first
principles under well-controlled approximations [1]. Such setups allow for the simulation of novel phenomena
and exploration of the fundamentalmechanisms since they allow for tuning of themicroscopic parameters such
as interaction and potential. Examples include the observation of quantised transport of neutral atoms in a
junction connecting cold gas reservoirs [2], or the investigation of the role of interaction and temperature on
transport in quantumpoint contacts [3] or lattices [4].

In addition to connecting towell-known phenomena of solid state physics, cold atomplatforms offer the
possibility to investigate new paradigms of transport, via continuousmeasurements [5] or dissipation
engineering. Indeed, the atomicmotion occurs on sufficiently long timescales that the transient dynamics can be
measured and controlled in real time. These tools have been long applied in few-body systems in quantumoptics
[6, 7], and in that context form the basis for standard techniques such as laser cooling and trapping [8]. The
coupling to reservoirs is well-understoodmicroscopically under well-controlled approximations, and can be
engineered experimentally. In the transport channel, particle losses, which naturally occur via collisions with a
background gas, can be engineered via the use of an electron beam [9] or light scattering through a quantum gas
microscopewith single-site resolution [10–12]. Dephasing can also be realized via light scattering or noise
sources [13–17].
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Taking advantage of the level ofmicroscopic control offered by cold atoms, we study here transport of
fermionic atoms between reservoirs weakly connected by a single site junction, a system that resembles a
quantumdot junction connecting leads. In particular, we explore the possibility to control transport based on
Andreev reflection, i.e. transport of electrons assisted by exchange of Cooper-pairs [18–20], via reservoir
engineering. In contrast with [3], the junctionwe consider is aweakly-connected single site—not a quantum
point contact—and our reservoirs are non-interacting. Such a systemnaturally produces sequential tunnelling
of atoms, yielding a quantised particle current.We showhere how to engineer the transport between the
reservoirs by coupling the junction to amolecular BEC [21], mimicking Cooper-pair assisted transport of
electrons in the solid-state, and yielding a rich peak structure in the current-bias characteristics.We then study
the effects offinite temperature of the reservoirs and interaction between atoms in the junction on the produced
current, and also determine its robustness against the effects of particle losses acting on the channel.

Our results are obtained using a Floquet–Born–Markov (or Floquet–Redfield)master equation [22–25],
which goes beyond standardGorini–Kossakowski–Sudarshan–Lindblad (GKSL)master equations [26–28].
Such amethod, in addition to treat the interaction in the junction exactly,makes it possible to capture the
complex interplay between driving and dissipationmechanisms, and has been applied in the context of photon-
assisted transport or Landau–Zener tunnelling [29]. In [30], we adapted the Floquetmaster equation formalism
toCooper-pair driving, which appears in quantumdot systems coupled to superconductors, and demonstrated
control of Cooper-pair-assisted transport of electrons. Here, we use this framework in a cold atom context,
where the driving comes from themolecular BEC and the dissipation processes correspond to coupling of atoms
into and out off large (thermal) reservoirs.

The results we present here demonstrate the possibility to engineer transport based onAndreev reflection in
cold atoms in an unconventional setup—without the need for interactions in the source and drain reservoirs—
and in regimes that are hard to access with othermethods. Ourwork also provides a framework to diagnose the
impact on transport ofmany effects that could be engineer experimentally, such as controlled interaction and
dissipation.We also analyse realistic experimental conditions, including finite temperatures in the reservoirs.

The paper is organised as follow. In section 2, we detail ourmodel and summarise themain steps of the
derivation of themaster equation used to calculate the transport properties of the junction. In section 3, we
present our results for the particle current, with andwithout couplingwith themolecular BEC.We study the
effects offinite temperature of reservoirs, interaction between atoms and particle losses acting on the junction.
In section 4, we summarise and provide an outlook.We use in the remainder of this paper natural units inwhich
ÿ=kB=1.

2.Model

In this section, we summarise ourmodel for a tunnel junction connecting two cold atom reservoirs. Figure 1(A)
shows a setupwhere two ultracold fermionic gases are connected together by a small junction.We consider two
different spin states, labelledwith s ,Î  { }. Transport of atoms through the junction is generated by preparing
an initial chemical potential imbalance between the two reservoirs.We propose here to control the transport
properties of the junction by immersing it into amolecular BEC and coupling them via radiofrequency fields, as
explained below.

Figure 1. (A)Twoultracold fermionic gases connected together by a junction immersed into amolecular BEC. (B)Energy diagramof
the bare junction and occupation n(E) of the reservoirs as a function of chemical potential biasΔμ. (C)Atom-molecular conversions
in the junction induced by twofields of radiofrequenciesωL andωR and detunings δL=ωL−ò>0 and δR=ωR−ò<0, where ò is
the frequency of the transition c cBEC 0ñ «  ñ = ñ ∣ ∣ ∣† † , inspired from [21].
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2.1.Hamiltonian
Weconsider a ‘system-bath’ decompositionwhere the ‘system’ corresponds to the junction and the ‘bath’ to the
cold atom reservoirs. This is described by the totalHamiltonian H H t H Htot S

eff
B I= + +( ) with

H t H H t c c Uc c c c g c ce h.c. , 1
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s s
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whereHS(t) is the effectiveHamiltonian of the junction including the influence of themolecular BEC,HB the
sumof theHamiltonian of the left (L) and right (R) reservoirs, andHI the tunnellingHamiltonian between the
junction and both reservoirs, where kℓ is the tunnelling amplitude of atoms between the reservoirℓ(ℓ=L,R)
and the junction.

In equation (1), H c c Uc c c cs s sS w= å +    
† † † corresponds to a single-siteHubbardmodel (Anderson

impuritymodel) for fermionic atoms of energyω, spin s ,Î  { }, and interactionU.We consider for the sake of
simplicity the same energyω for both spin s ,Î  { }, even though such assumption can be relaxedwithout any
difficulty. Hence, the bare junction is an effective systemof dimension dS=4 spanned by the non-occupied,
single occupied, and double-occupied states 0 , , ,ñ ñ ñ ñ{∣ ∣ ∣ ∣ }. The corresponding potential geometry could
be achieved as proposed in [31] by using two laser beamswith adjusted detunings, beamwaists, and positions,
but alsomore generally with acousto-optical deflectors [32] or holographicmask techniques [33]. The
interactionU between atoms in the junction can for its part be tuned locally via optically-induced Feshbach
resonances [34].

The last termof equation (1), H t g c ce h.c.t
BEC

i= å +d
 ( ) ( )ℓ ℓ

ℓ , describes the effects of the coupling of the
fermions of the junction to the backgroundmolecular BEC [35–38]. Such coupling could be realized using one
[21] ormultiplefieldsℓof radio-frequenciesωℓ and detunings d w= -ℓ ℓ , where ò is the frequency related to
the transition between themolecular BEC and the pair states, i.e. BECñ «  ñ∣ ∣ illustrated infigure 1(C). Note
thatwework in the rotating-frame associated to ò, absorbed in the definition ofω to not burden the notations.
The coupling strength g S= á ñWℓ ℓ of eachfield is determined by themacroscopic ground state occupation Sá ñ
of the BEC and the Rabi frequencyΩℓ, which can be tuned independently through different field amplitudes. It
turns out that theHamiltonianHBEC(t)well-represents the so-called proximity effects induced by s-wave
superconductors of chemical potentials δℓ/2 andCooper-pair tunnelling amplitudes gℓ, when their
superconducting gap is larger than the junction frequency scales [20, 30]. For this reason, we consider in the
following only two driving fields whose detunings are adjusted to the chemical potential of the fermionic
reservoirs, i.e.,

L R2 , , 4d mº =ℓ ( )ℓ ℓ

even though, in principle, any frequencies could be chosen. This choice ismotivated to resemble the case of a
quantumdot tunnelling junction connecting two superconducting leads, where theCooper-pair condensates
have energies related to an applied bias voltage.

In equation (2), b ksℓ is the annihilation operator of a fermion of energyωk, spin s andmomentum k in the
ℓreservoir (ℓ=L,R).We consider both reservoirs initially prepared in thermal states ρℓ defined as

e

Tr e
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with chemical potentialμℓ, temperatureT k1 Bb= ( )ℓ ℓ , andwhere N b bks ks ks= åℓ ℓ ℓ
† . Various techniques have

been realised to implement initial imbalance between atomic reservoirs, as summarised in [1].

2.2.Master equation for the driven junction
We treat the coupling of the driven junctionwith the left and right reservoirs in theweak-coupling regime. This
justifies our ‘system+bath’ decomposition andmotivates the use of an open system approach. As in [30], we
derive a Floquet–Redfieldmaster equation, i.e. a Redfieldmaster equation for the periodic time-dependent
system [22–25]—which corresponds to the driven junction in our case. In contrast with [30]where the
reservoirs were in a gapped phase, we consider them in a normal, non-interacting phase. This allows us to show
that Cooper-pair-assisted transport can be achieved between the drain and source reservoirs even if these latter
do not contain any pairs.We present below the key assumptions of the derivation of themaster equation (all
details can be found in appendix A).
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2.2.1. Born andMarkov approximations
Thefirst key approximation is the Born approximation, which supposes that the total system-bath density
matrix tI

totr ( ) in interaction picturewith respect to H t H t H0 S
eff

Bº +( ) ( ) can bewritten in the separable form

t t , 6I I
L Rtotr r r r» Ä Ä( ) ( ) ( )

where ρ I is densitymatrix of the driven junction in interaction picture andwhere ρℓ are the thermal states given
by equation (5). This approximation amounts in considering that the initial states of the bath are sufficient to
determine thewhole evolution of the systemduring a timescale 1R

2t kµ ℓ, the typical time scale needed for the
junction to reach a non-equilibrium steady state. Note that this presentmodel cannot describe the complete
relaxation of thewhole ‘junction+reservoir’ system towards a common equilibrium, which occurs on a time
scale larger than τR

4.
Using the ansatz(6) and tracing over the bath degrees of freedom, the equation for tIr ( ) in second-order in

HI(t) reads

t B t B t t c t c t t t t c t t t t c t

B t B t t c t c t t t t c t t t t c t t

h.c.

h.c. d , 7

s

t

s s B s s s s

s s B s s s s

, 0
òår r r

r r

= - á - ¢ ñ - ¢ - ¢ - - ¢ - ¢ +

+ á - ¢ ñ - ¢ - ¢ - - ¢ - ¢ + ¢

 ( ) {[ ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( )) ]

[ ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( )) ]} ( )
ℓ

ℓ ℓ

ℓ ℓ

† † †

† † †

wherewe removed the superscript I to simplify thenotation, andwhere B t B t B t B tTrs s B B s s1 2 1 2 rá ñ º( ) ( ) ( ( ) ( ) )ℓ ℓ ℓ ℓ ℓ
† †

is the bath correlation functionwith B t bes k
t

ks
i kk= å w-( )ℓ ℓ ℓ . TheMarkov approximation consists of setting

t t tr r- ¢ »( ) ( ) and extending theupper limit of integration to infinity. This amounts toneglect thememory
effects, in the sense that this transforms the integro-differential equation into a time-local differential equation.

Both the Born andMarkov approximations are justified for τR? τB, where τB is the decay time of the bath
correlation function B t B ts s1 2á ñ( ) ( )ℓ ℓ

† . Such a condition can in general be satisfied in different ways. In the present
case, this ismainly due to the large size of the bath, which yields an infinite summation over destructively-
interferingmodes in the expression of the bath correlation function,making themdecaying quickly (see
appendix A.2 for a detailed analysis of these approximations)5 [39, 40].

2.2.2. Final form of themaster equation
To obtain thefinal formof themaster equation from(7), we need to evaluate the time-dependence of the system

operators c t U t c U ts s=( ) ( ) ( )† whereU t e H t ti d
t

0 S
eff

= ò- ¢ ¢( ) ( ) is the systempropagator with  the time-
ordering operator, before performing the time-integration.We use for this purpose the Floquet theory,
assuming that the driving is periodic of periodT=2π/Δμ, where L Rm m mD = - corresponds to the chemical
potential bias between the reservoirs.We consider for simplicity 2L Rm m m= - = D . All details are given in
appendix B. The resultingmaster equation for the densitymatrix elements t t t tab

a br f r f= á ñ( ) ( )∣ ( )∣ ( ) in the
basis of the periodic Floquetmodes t t Ta af fñ = + ñ∣ ( ) ∣ ( ) labelled by indices a=1,L, dS reads, in the
Schrödinger picture,
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4
In cold atom experiments, the initial imbalance between the reservoirs is usually notmaintained during the transportmeasurements. This

is in contrast with the solid-state where the bias between the leads that act as reservoirs can easily be conserved through the use of bias
voltages.
5
The condition τR? τB can also be fulfilled for single-mode environment that are damped by othermeans, as it is the case for an atomic

system trapped in a single-mode lossy cavity [39].
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evaluated at energies E E kabk a b mD = - + D (k Î )with
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where N
2

,g pk r=ℓ ℓ ℓ is the tunnelling rate between the junction and the reservoirℓwith N,rℓ its density of states

assumed to be constant over the relevant frequency range, where n E 1 1 e E= + b( ) ( )ℓ ℓ is the Fermi
distribution, andwhere P.V. denotes the principal value. Hence, while for a standard Redfieldmaster equation
(i.e. without the driving) the rates(10) are evaluated at transition between bare system energies, our Floquet–
Redfield theory captures transition between quasienergies of the driven systemup tomultiple ofΔμ. This
quantity corresponds to the energy difference obtained from the conversion of amolecule into a pair via thefield
of detuningμLwhich is then reconverted into amolecule via the otherfield of detuning 2μR, i.e. the process (see
figure 1(C))

BEC 2 2 BEC . 12L Rm mñ  ñ ñ∣ ⟶ [ ]∣ ⟶ [ ]∣ ( )

Hence, our theory describes the assisted transport of atoms thanks to the energy provided bymolecular
conversions. In solid-state systems, such assistancewould correspond to transfers of Cooper-pairs between
superconductors: currents based onmultiple Andreev reflections.

3. Transport properties

Solving themaster equation (8) allows us to compute the transport properties of the driven junction.We focus
here on the steady state current of atoms leaving the junction to reach the right reservoir, which is defined as

I c cTr , 13
s

s s RR
,

SSå rá ñ = -
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[ [ ]] ( )†

where R [·] is the Liouvillian(9) for the right reservoir and ρSS the steady state densitymatrix (see appendix B
for details and expressions of other currents, such as the current ofmolecules in the BEC).We investigate below
the ‘current–voltage’ characteristics of the junction, where the voltage corresponds to the chemical potential bias
Δμ. For the sake of simplicity, we consider in the reminder of this paper identical left and right tunnelling rates
γL=γR=γ and reservoir temperaturesTL=TR=T.

3.1.Without coupling to themolecular BEC
When the junction is not coupled to themolecular BEC (gℓ=0 L R," =ℓ ), the systemHamiltonian is time-
independent and the Floquet–Redfieldmaster equation reduces to a standard Redfieldmaster equation that can
be solved analytically. The steady state current in the right reservoir reads

I
n n U n n U

n n U n n U
4

1 1
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. 14R
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We focus in the following on the particle–hole symmetric case, for which the double occupied state ñ∣ of the
junction has the same energy than the non-occupied state 0ñ∣ , i.e. whenU+2ω=0. This simplifies the analysis
—giving rise to a single parameterU to characterise the bare junction energy—and corresponds to the situation
where the driving of the transition 0ñ « ñ∣ ∣ givesmaximal effects. In that case, the current (15) becomes

I 2
sinh

cosh cosh
, 15R

T
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T T

2

2 2
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+

m

m

D

D

( )
( )( )

( )

which corresponds to a smooth step function. For 2T=Δμ, the quantization of the current becomesmore
obvious, sincewe have

I 2
1

e 1
, 16R U

T2

gá ñ »
+

m-D ( )∣ ∣

wherewe see that for U T2m-D ∣(∣ ∣ )∣ , the current goes to 0 at small bias UmD < ∣ ∣and to 2γ at large
bias UmD > ∣ ∣.

3.2.With coupling to themolecular BEC
Coupling the atoms to the BECdrastically changes the transport properties of the junction, since the sequential
tunnelling of atoms can in that case be assisted bymolecular conversions. Figure 2(A) shows the steady state
current of atoms reaching the right reservoir for different coupling gℓ≡g—taken identical for both RFfields—,
fixed value of (attractive) interactionU<0, and zero temperature. Peaks of currents appear at chemical
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potential bias

U

k
k

2 1
, , 17mD =

+
Î

∣ ∣ ( )

as can be obtained from the resonant condition

k
U

2
, 18Lm m+ D =

∣ ∣ ( )

where U 2∣ ∣ is the energy of the transitions s0ñ « ñ∣ ∣ and sñ « ñ∣ ∣ . Equation (18)means that themaximal
energy of an incoming atom (from the left reservoir) combinedwithmultiple of the energy provided by the
molecular conversion process(12)must be at least equal to the junction transition energy to generate transport.
This explains why a non-zero current appears for lower bias values compared to the uncoupled case g=0 (see
dashed black line infigure 2(A), corresponding to equation (15)). These peaks can be interpreted as transport
based onAndreev reflections of order k, where the energy of kCooper-pairs are required to generate transport.
Increasing g cranks up the amplitude of theAndreev peaks.

Finite temperature of the reservoirs smears out the peaks, as can be seen infigure 2(B). For low bias, the
current decreases as a polynomial as a function of the chemical potential bias. Formoderate temperature,
signatures of Andreev transport can still be observed. However, For large temperature, thermal effects dominate
and the effect of the driving becomes indistinct.

Figure 2.Current-bias characteristics of the junction for different driving amplitudes g at zero temperatureT = 0 (A) and for different
temperaturesT forfixed driving amplitude g=0.5 (solid lines) and g=0 (dashed lines) (B). Other parameters areω=−U/2 and
U=−2, in units chosen so that γ=10−2. (A) For g=0, the current exhibits a step at UmD = ∣ ∣ (dashed black line).When g
increases, current peaks appear at U k2 1mD = +∣ ∣ ( )with k Î . (B) Increasing the temperature smears out the peaks. In addition,
for large temperature, the differences between the cases with andwithout driving fade.

Figure 3.Current-bias characteristics of the junction for different interaction strengths in the regime U g3 1<∣ ∣ (A) and U g3 1>∣ ∣
(B). Other parameters are g=0.5, andT=0, in units chosen so that γ=10−3. (A)When the driving dominates, the currents is
characterized by fragmented oscillations. (B)By contrast, when the interaction starts to dominate, clear Andreev peaks appear.
However, for strong interactions, i.e. U g3 1∣ ∣ , Andreev transport is suppressed and the current goes to its valuewithout driving
(i.e. equation (15)).
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3.3. Effects of interactionU
In this section, we analyse the effects of the interactionU in the channel on the produced transport. Figure 3
shows the current(13) for afixed value of g, zero temperatureT=0, and differentU, still focusing on the
particle-hole symmetric case by adjustingω=−U/2 so that we always haveU+2ω=0. In order to compare
the curves appropriately, we rescaled the chemical potential biasΔμ of each curve by U∣ ∣, whichmakes the peaks
overlap.Otherwise, a smaller interaction U∣ ∣ requires a smaller chemical biasΔμ to generate transport. Such
methodology allows us to compare the shape and the size of the Andreev current peaks for different interaction
strengths.

The system exhibits two different regimes of transport. For U g3 ∣ ∣ (figure 3(A)), the current is
characterised by small oscillations, whose the period and amplitude increase for increasing U∣ ∣. These
oscillations are fragmented in sections

U

k

U

k2 1 1
,

2 1
19mD Î

+ + +

⎡
⎣⎢

⎤
⎦⎥

∣ ∣
( )

∣ ∣ ( )

separating the different order k ofmultiple Andreev reflections. Around U g3 ~∣ ∣ , the oscillations are nomore
visible and leave the place towell-resolved peaks. The amplitudes of the peaks aremaximum in this regime. For
U g3 >∣ ∣ (figure 3(B)), the amplitudes of the peaks decrease as U∣ ∣ increases.We thus recover the fact that
Andreev reflection is suppressed for large interactionU. However, while it is commonly assumed that interaction
has always a detrimental effects on current based onAndreev reflection in quantumdot junction [20], it seems
there exists an optimal value of U∣ ∣, i.e. U g3 ~∣ ∣ , for observing large andwell-resolved current peaks.We
confirmed this behaviour by considering different values of g (not shown)6.

3.4. Effects of particle losses in the channel
Wefinally investigate the effects of the presence of additional particle losses acting on the junction. A diagnostic
of such effects is important, since particle losses are inherent in experiment due to light scattering or collisions
with other atoms. This is also important to identify potential interesting consequences on transport, since
particle losses can also be engineered intentionally. Themain goal here is to determinewhether the engineered
current is robust against dissipation or not.

We incorporate these effects into ourmaster equation through an additional dissipator of the Lindblad form
L L L L2 ,I I r g r r= -( ) ( { })† † , where γI is the rate of the incoherent process and L the corresponding Lindblad

operator (see appendix C). Such dissipator corresponds to the effect of a structureless bath, but one could easily
investigate the effects of amore complex bath following the procedure we used to calculate dissipationwith the
reservoirs.We consider in the following atom losses, where L=cs (s ,Î  { }). Figure 4 shows the atomic
current in the right lead as a function of the bias potential for different loss rates γI of only one of the atomic
species (A) and of both atomic species (B), i.e. with one dissipator of the form above for each s ,Î  { }. For

UmD > ∣ ∣, we observe a decrease of the current of atoms reaching the drain reservoir, since some of the atoms
are lost in the additional decay channel. Surprisingly, the current assisted bymolecular conversions (for

UmD < ∣ ∣) seems to be only slightly affected by the losses, even for loss rate γI of the order ofmagnitude of the

Figure 4.Current-bias characteristics of the junction for different particle loss rates γI of spin down (s = ) atomonly (S) and both
spin up (s = ) and down (s = ) atoms (B). Other parameters areω=−U/2,U=−2,T=0, in units chosen so that γ=10−2. In
both cases, the current assisted bymolecular conversion is relatively robust against atom losses.

6
Note that we observed a slower numerical convergence of the transport properties of the junctionwhen decreasing the interaction strength

U∣ ∣, in the sense that a higher cutoff kmax of the Fourier series appearing in (9)was required in this regime. This can be understood by the fact
that for smaller interaction U∣ ∣ compared to afixed pair-tunnelling g, higher-ordermultiple Andreev reflectionsmust be accounted for,
requiring then higher kmax.
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tunnelling rate γwith the reservoirs. This is because the dissipation processes coming from the additional
particle losses do not account for the driving. Hence, while the standard tunnelling processes (for UmD > ∣ ∣) are
significantly altered by atom losses, the Cooper-pair assisted current seems resilient against them, even at higher
order (i.e. at lower bias).

4. Proposed experimental implementation

Herewe address the details of the proposed experimental implementation and observation of the phenomena
we discuss in thismanuscript.We give examples of parameters currently available in experiments, basing values
on 6Li atoms following [1, 4, 21, 34], and retain ÿ and kB in our expressions within this section.

The largest frequency scale of ourmodel is related to the transverse trapping frequencyω⊥of the atoms, as
required to avoid to take into account higher transversemodes. This transverse frequency is of the order of few
dozen of kHz in typical experiments, but can in principle be increased using higher laser power.

Let usfirst consider the required temperatures. Our results show that resolved current peaks appear for
k TB w . Knowing that experiments regularly reach temperaturesT∼50 nK, this would require a junction
frequency 2 10 kHzw p~ ´ or higher, whilemaking sure thatω⊥>ω. The coupling between the states of
atoms on the junction site andmolecules in themolecular BEC can be strong, i.e. we can have gℓ∼ω, as s-wave
pairing as large as 2πÿ×25 kHz is achievable for a BECdensity of n 10 cm0

14 3= - andmolecular scattering
length of 0.1 nm [21]. In addition, the locality of the coupling can be ensured by a combination of the geometry
in the Raman beams, and the tuning of the near-resonant coupling between the level of the chemical potential in
themolecular BEC reservoir and the two-particle trap state on the junction site.

Finally, the smallest parameter of ourmodel γℓ should be smaller thanω to satisfy the Born–Markov
approximation. Indeed, observing transport at the energy ÿω requires a biasΔμ, which determines the decay of
the bath correlation function (see appendix A.2). This wouldmean γℓ∼2π×1 kHz according to the other
parameters above.

All together, we thus require ideally

k T g, , 20B   g w w~ ^  ( )ℓ ℓ

and note that the transport dynamics we look at occurs on a timescale of few inverse tunnelling rates ms1g ~-
ℓ .

Hence, in order to resolve the current peaks as presented above, detrimental effects due to imperfections such as
heating or atom losses should be small on this timescale7. If this is not the case, a possible solution consists in
increasing γℓ, which implies increasing the junction and transverse frequenciesω andω⊥.Wefinally note that
tuning the interactionU locally inside the junction using optically-induced Feshbach resonances as realised in
[34] provides a good route to control over interactionswith strongly reduced spontaneous scattering of photons,
in a form thatwould be appropriate for the proposed setup.

5. Conclusion

We showed how transport of fermionic atoms through a junction connecting two cold gases can be assisted by
molecular conversionwith a BEC.We described such reservoir engineering using an open-system framework
thatwe recently derived, which is able to capture the effects offinite temperature of the reservoirs, strong
interaction and presence of additional dissipation in the junction. This allowed us to explore with cold atoms the
physics of Andreev reflection—awell-known paradigm in condensed-matter—in new parameter regimes. As a
main result, we showed that there exists an optimal range of interaction yieldingwell-resolved,maximal peaks of
assisted particle current.We showed that increasing the temperature of the reservoirs smears out the peaks,
whereas these latter are robust against additional (Lindblad) particle losses acting on the junction.

Our framework describes naturally dissipative processes and couldbe generalized to include the effects of
measurements [5] and feedback loops, to potentially engineer anduncover newphenomena inquantum transport.
In addition, it couldbeused to study spin-polarised [41]or thermoelectric [42–44] transport properties of an
engineered junction, starting from initial spin or temperature imbalances. Finally, since ourmethod is suited to
describe the interplay between driving anddissipation, it couldbe applied in the context of quantumheat engine or
FloquetMajorana fermions [21, 45, 46].

7
We emphasise again that these effects can be directlymodelledwithin the present framework, as done for the few examples presented in

section 3.4.
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AppendixA.Derivation of themaster equation

Our starting point is the usual Liouville-VonNeumann equation [28]

t H t ti , A.1I I I
tot I totr r= - ( ) [ ( ) ( )] ( )

for the total densitymatrix tI
totr ( ) in interaction picture with respect to H t H t H0 S

eff
Bº +( ) ( ) , where

H t b t c t h.c.I
I

ks ks
I

s
Ik= å å +( ) ( ( ) ( ) )ℓ ℓ ℓ

† with

c t U t c U t , A.2s
I

s=( ) ( ) ( ) ( )†

b t b be e e , A.3ks
I H t

ks
H t t

ks
i i i kB B= = w- -( ) ( )ℓ ℓ ℓ

where the propagatorU(t) is defined as

U t e , A.4H t ti d
t

0
S
eff

 ò= - ¢ ¢( ) ( )( )

with  the time-ordering operator.

A.1. Born andMarkov approximations
Under the Born approximation, the total system-bath densitymatrix tI

totr ( ) can bewritten in the separable form

t t , A.5I I
L Rtotr r r r» Ä Ä( ) ( ) ( )

where ρ I is the junction densitymatrix in interaction picture andwhere ρℓ are the thermal states given by
equation (5). Expanding equation (A.1) up to the second order inHI, using the Born approximation(A.5) and
tracing over the bath degrees of freedom yields

t t H t H t t t td Tr , , , A.6I
t

B
I I I

L R
0

I Iòr r r r= - ¢ - ¢ - ¢ Ä Ä ( ) ([ ( ) [ ( ) ( ) ]]) ( )

wherewe neglected the first order term [28]. After performing theMarkov approximation by setting
t tI Ir t r- »( ) ( ) and extending the upper limit of integration to infinity, the expansion of the double

commutator yields

t

B t B t t c t c t t t c t t t c t

B t B t t c t c t t t c t t t c t t

h.c.

h.c. d , A.7

s

t

s s B s s s s

s s B s s s s

0
òåå

r

r r

r r

=

- á - ¢ ñ - ¢ - - ¢ +

+ á - ¢ ñ - ¢ - - ¢ + ¢

 ( )

{[ ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( )) ]

[ ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( )) ]} ( )
ℓ

ℓ ℓ

ℓ ℓ

† † †

† † †

wherewe removed the superscript I tonot burden thenotation andwhere B t B t B t B tTrs s B B s s1 2 1 2 rá ñ º( ) ( ) ( ( ) ( ) )ℓ ℓ ℓ ℓ ℓ
† †

are the bath correlationswith B t b ts k ksk= å( ) ( )ℓ ℓ ℓ . Since for reservoirs in thermal stateswehave

b b n

b b n

b b b b

,

1 ,

0, A.8

ks k s B kk ss k

ks k s B kk ss k

ks k s B ks k s B

d d w m

d d w m

á ñ = -

á ñ = - -

á ñ = á ñ =

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

( )
( ( ))

( )

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

†

†

† †

where n E e1 1 E= + b( ) ( )ℓ ℓ is the Fermi occupation number, the bath correlation functions can be
rewritten as
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f t B t B t t n n

f t B t B t t n

n

e d e

e 1

d e 1 , A.9

s s B
k

t
k

t

s s B
k

t
k

t

2 i i

2 i

i

k

k

ò

ò

å

å

k w m
g
p

w w m

k w m

g
p

w w m

¢ = á - ¢ ñ = - = -

¢ = á - ¢ ñ = - -

= - -

w w

w

w

+
¢

-¥

¥
¢

-
- ¢

-¥

¥
- ¢

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) [ ( )]

[ ( )] ( )

ℓ ℓ ℓ ℓ ℓ ℓ
ℓ

ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ
ℓ ℓ

†

†

where N
2

,g pk r=ℓ ℓ ℓ is the tunnelling rate between the junction and the reservoirℓ defined below equation (11).

A.2. Justification of the Born–Markov approximation
Asmentioned in themain text, the Born–Markov approximation is usually justifiedwhen B R

1t t gµ - ℓ ,
where τB is the decay time of the correlation function f t+( )ℓ given in equation (A.9). Here, we give an estimate
of τB.

Let usfirst discuss the case of zero temperatureT T 0º =ℓ , where the Fermi distribution corresponds to
theHeaviside distribution. For infinite chemical potential m  ¥ℓ , the integration in f t+( )ℓ involves all
frequencies that interfere with each other to yield f 2t g d t=+( ) ( )ℓ ℓ , showing that the reservoir acts as a pure
Markovian reservoir with vanishing τB. For finiteμℓ, we have however

f 2
sin 2

2
e , A.10i 2t g d t

g
p

m t
t

= - m t
+( ) ( )

( )
( )ℓ ℓ

ℓ ℓ ℓ

where the last termdecays as a power law 1 t~ .We can thus define a typical decay time 1Bt mµ ℓ, as in [40], so
that the condition of the Born–Markov approximation reads g mℓ ℓ. Hence, considering a system reservoir
coupling smaller than the chemical potential should in principle be sufficient to neglect non-Markovian effects.

For finiteT andμℓ=0, we have by contour integration

f
T

T
i

sinh
, A.11t g

p t
= -+( )

( )
( )ℓ ℓ

for whichwe can define the decay time T1Bt µ . Finally, forfiniteT andμℓ, we have

f T B Te 1 i , 0 , A.12Ti
e Tt

g
p

t= - -m p t
+

-
- m( ) ( ) ( )ℓ

ℓ ( )ℓ ℓ

whereBz(a, b) is the incomplete beta function, and one can estimate τB as theminimumof 1/T and 1/μℓ. Hence,
we see that the Born–Markov should be satisfied for eitherT?γℓ orμℓ?γℓ. Note that this simple discussion
does not take into account the fact that, in practice, reservoirs have a finite bandwidth, which alsomodifies the
natural lifetime of the bath correlation function.

A.3.Quasi-energies and Floquet states
In order to perform the time-integration in equation (A.7), we now evaluate the time dependence of the system
operators c ts

I ( ) given by equation (A.2) using the Floquet theory [22–25]. For that purpose, we suppose in the
following that 2L Rm m m= - = D , so that effective systemHamiltonian H tS

eff ( ) is periodic of periodT=
2π/Δμ. If it was not the case, one could simplywork in the rotating-framewith respect to one of the driving
frequency 2μℓ, let say 2μL. This would provide a periodicHamiltonian of period 2 R Ld m m= -( ), and the same
theorywould apply.

Since H tS
eff ( ) is periodic, the systemwavefunction ty ñ∣ ( ) satisfying the Schrödinger equation

t
t H t ti

d

d
A.13S

effy yñ = ñ∣ ( ) ( )∣ ( ) ( )

can bewritten as

t d t d te , A.14
a

a a
a

a
E t

a
i aå åy y fñ = ñ = ñ-∣ ( ) ∣ ( ) ∣ ( ) ( )

where t tea
E t

a
i ay fñ = ñ-∣ ( ) ∣ ( ) are the Floquet states with the periodic Floquetmodes t T ta af f+ ñ = ñ∣ ( ) ∣ ( ) ,

quasi-energies Ea, and d 0 0a af y= á ñ( )∣ ( ) . By definition of the propagator(A.4), we have

T U T U T0 e 0 0 , A.15a a
E T

a a
i ay y f fñ = ñ  ñ = ñ-∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣ ( ) ( )

showing that e E Ti a- are the eigenvalues ofU(T), which can be numerically computed using
U T en

N H n t t
0

i d dS
eff

»  =
-( ) ( ) with N T td 1= - . Solving the eigenvalue problem(A.15), we obtain

E E ka k a T,
2= + p with k Î , and consider the values ofEa,k lying in thefirst Brillouin zone [−π/T,π/T] to

define the quasienergies Ea. The eigenvectors correspond to the Floquetmodes at initial time 0af ñ∣ ( ) . The
Floquetmodes at all times t are obtained from these latter using
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t U te 0 . A.16a
E t

a
i af fñ = ñ∣ ( ) ( )∣ ( ) ( )

A.4.Master equation in the Floquet basis
Wenowdecompose the densitymatrix in the Floquetmode basis 0af ñ{∣ ( ) }, i.e.

t t 0 0 , A.17
a b

I ab
a b

,

,år r f f= ñá( ) ( )∣ ( ) ( )∣ ( )

and derive below the equations ofmotion for the densitymatrix element t t0 0I ab
a b

,r f r fº á ñ( ) ( )∣ ( )∣ ( ) from
equation (A.7). Note that for the sake of clarity we restored the label I denoting the interaction picture for the
densitymatrix elements.

In this basis, thematrix elements of the systemoperator cs(t) reads

c t t c t0 0 e . A.18a s b a s b
E E ti a bf f f fá ñ = á ñ -( )∣ ( )∣ ( ) ( )∣ ∣ ( ) ( )( )

Since taf ñ∣ ( ) is periodic of periodT, we can rewrite t c ta s bf fá ñ( )∣ ∣ ( ) in the Fourier space as

t c t ce , A.19a s b
k

k t
s
abki


åf fá ñ = m

Î

D( )∣ ∣ ( ) ( )

which yields

c t t c t c0 0 e e , A.20a s b a s b
E E t

k

k t
s
abki ia b abk


åf f f fá ñ = á ñ =-

Î

D( )∣ ( )∣ ( ) ( )∣ ∣ ( ) ( )( )

where E E kabk a b mD = - + D and

c
T

t c t t
1

e d . A.21s
abk

T
k t

a s b
0

iò f f= á ñm- D ( )∣ ∣ ( ) ( )

Expanding all operators of the first termof the right-hand side of themaster equation (A.7) in the the Floquet
basis yields

t f t c t c t t t

c c t t f t

0 d 0

e d e , A.22

a s s b

c d k k

t
s
ack

s
cdk I b t

0
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0
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òåå

f r f
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⎝
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( ) ( ) ( )

ℓ

ℓ

†

( ) †

and all other terms can bewritten in the sameway.Hence, we see that themaster equation involves complex
rates

E t f t E Ed e i , A.23Et

0

iò gG = ¢ ¢ = + W

¥


¢

 ( ) ( ) ( ) ( ) ( )ℓ ℓ ℓ ℓ

where E corresponds to system transition energies andwhere g ℓ and W ℓ are the real and imaginary parts of
G ℓ which explicitly read

E n E

E
n

E

1 ,

P.V. d , A.24ò
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g
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+ 


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ℓ

where P.V. denotes the principal value. Note that the integrands appearing in the expressions of the shifts W ℓ
do not converge for w  ¥, and one has to introduce a cutoff frequencyωc in the integration domain to
obtainfinite values for the shifts. In our simulations, we anyway neglected these shifts that are small compared to
system energies—since proportional to γℓ—and thus do not contribute significantly to the dynamics.

All together, themaster equation (A.7)written in the Floquet basis gives us the following set of equations for
thematrix elements t t0 0I ab

a
I

b
,r f r fº á ñ( ) ( )∣ ( )∣ ( ) , i.e. the Floquet–Redfieldmaster equation

t t

c c c c t

c c c c t
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s s
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i ack
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{[ ( ( ) ( ) ( )

( ( ) ( ) ( )] } ( )

ℓ
ℓ

ℓ
ℓ ℓ
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( ) † †

( ) † †

Themaster equation for thematrix elements in Schrödinger picture ρ ab(t) can be obtained from equation (A.25)
bymaking the replacement t teI ab E E t ab, i a br r= -( ) ( )( ) . In doing so, one can see that all terms e ti cdk ackD +D¢( )

reduces to e k k ti m+ ¢ D( ) (see equation (8)), showing that themaster equation exhibits the same periodicity than the
systemHamiltonian H tS

eff ( ). This implies that the steady state of themaster equation is also periodic with the
same periodT=2π/Δμ [47].

Note that we did not proceedwith the secular approximation, so that we have a Redfield-likemaster
equation, for which the steady state propertiesmatch the ones of the equivalent (weak-coupling)non-
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Markovianmaster equation for time-independent system.Hence, while non-Markovian effectsmight
potentially be present in the transient dynamics of our system,we do not expect significantmemory effects in its
steady state properties. The investigation of the interplay between potential non-Markovian effects and Floquet
dynamics will be investigated in a further work.

Appendix B. Solution of themaster equation andparticle currents

Wepresent here twomethods to solve themaster equation (A.25) that exploits its periodicity. Note that since the
steady state densitymatrix and any expectation value of systemoperators obtained from it are in principle
periodic (or constant), we always present in themain text time-averaged values of these quantities over one
period of oscillationT=2π/Δμ.

Themaster equation in Schrödinger picture(8) can be vectorized in the form

t L t t , B.1S Sr rñ = ñ∣ ( ) ( )∣ ( ) ( )

where t t t t, , ,S S S S,11 ,12 ,44r r r rñ = ¼∣ ( ) ( ( ) ( ) ( )) is the vectorized densitymatrix and L(t) is a periodic time-
dependentmatrix of periodT.

B.1. Solving themaster equation in Fourier space
Wecan express the steady state densitymatrix tSS

Sr ( ) and thematrix L(t) as

t
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Inserting these decompositions into the vectorized form(B.1), we get
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which can bewritten inmatrix form as
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This linear systemof equations for the Fourier components can be efficiently solved numerically after
truncation, i.e. by introducing a cutoff kmax in the summation over k of the Fourier series(A.19). The off-
diagonal blocks Lk in equation (B.5) describe the coupling between different Fourier components. A block Lk
corresponds to kmolecular conversion process of the form(12).

B.2. Solving themaster equation in real space
The vectorizedmaster equation (B.1) is of the same form than the time-dependent Schrodinger equation (A.13).
We can thus apply again the Floquet theory andwrite the solution as

t d te , B.6S

a
a

t S a,år rñ = ñma∣ ( ) ∣ ( ) ( )

where t t TS a S a, ,r rñ = + ñ∣ ( ) ∣ ( ) are periodic functions of periodT andwhere d 0 0S a S,r r= á ña ( )∣ ( ) . Hence,
solving the entire problem in this case consists in applying twice the Floquet theory: once towrite the Floquet–
Redfieldmaster equation (A.25) and once to solve it.

B.3. Currents
From the solution of themaster equation (A.25) for thematrix elements tI ab,r ( ), one can evaluate the
expectation values of any systemoperatorO through
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- -[ ( ) ( ) ( )] ( ) ∣ ∣ ( ) ( )∣ ( )† ( )

Wederive here the expressions of the particle currents IS, Iℓ and Imol respectively in the junction, the reservoirs
and themolecular BEC. For the sake of clarity, we introduce an annihilation operator S for the BEC that interacts
with the junctionwith anHamiltonian of the form H t Sc c e h.c.t

BEC
2i= å W +m

 ( ) ( )ℓ ℓ
† † ℓ . The currents IS, Iℓ

and Imol are then defined as

I
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mol
2i*å= = -m-

 ( ) ( )
ℓ

ℓ
† † †ℓ

wherewe replaced the operator S by themacroscopic fraction Sá ñandwherewe used the Langevin equations for
cs, b ksℓ and S. Note that the total number of particles is conserved, i.e.,

I I I2 0, B.11S molå+ + = ( )
ℓ

ℓ

where the factor 2 is front of Imol denotes the fact that amolecule ismade of two atoms.
The expectation value of the particles current in the junction is obtained from the solutions of themaster

equation and equation (B.7), that is

I
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Due to the conservation of the number of particles(B.11), it can be related to the particle current in the
reservoirs, as shownbelow. Applying the derivative and using the fact that U t t H t U td d i S

eff= -( ) ( ) ( ), we get

I U t H t c c U t t U t c c H t U t t
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The twofirst terms on the right-hand-side can be rewritten as
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where (see equation (B.10))
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Finally, replacing the derivative in equation (B.13) by the right-hand-side of themaster equation (A.25) yields

I I U t c c U t t I I2 Tr 2 , B.16
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In themain text, we always present time-averaged values of the current over one period of oscillation
T=2π/Δμ.

B.4.Numerical details
In this section, we provide the numerical details of the resolution of themaster equation (8). First, in order to
write themaster equation, we computed the quasi-energies from equation (A.15)using the procedure stated
abovewithN=1000 (figures 2 and 3) andN=10000 (figure 4), a number of time stepswhich insures a
sufficient convergence of the quasi-energies to compute the particle currents.Writing themaster equation also
requires to define a cutoff kmax of the Fourier series.We define kmax as an empirical function ofU andΔμ also so
that the computed current has converged up to a given precision. Typical values range from kmax∼4 for large
bias and interaction to kmax∼ 80 for small bias and interaction. To solve themaster equation (8), we use brute
force resolution of the differential equations, with randomor particular initial states, from a initial time ti= 0 to
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afinal time t 10f
1g= - , where 10 2g gº = -

ℓ (figures 2 and 4) or 10−3 (figure 3), in order to reach the steady
state.We then averaged the particle currents over one periodT. All together, we required that any increase of the
precision (which can be achieved via the parametersN, kmax and tf) yields only an improvement of the value of
IR gá ñ smaller than 10−2.We also checked that the alternativemethods proposed in sections B.1 andB.2 to solve
themaster equation give similar results.

AppendixC. Adding dissipation on the channel

Additional Lindblad dissipation acting on the channel can be accounted for by adding to equation (A.25) a
dissipator of the form

t L t L L L t t L L2 . C.1S S S S
I I r g r r r= - -[ ( )] ( ( ) ( ) ( ) ) ( )† † †

In the Floquet basis and in interaction picturewith respect to H tS
eff ( ), this dissipator reads

t L L t

L L t L L t

2 e

e e . C.2

I ab

cd kk

t ack dbk I cd

t ack cdk I db t cdk dbk I ac

I I
i ,

i , i ,

dbk ack

cdk ack dbk cdk

 åår g r

r r

=

- -
¢

D +D ¢

D +D ¢ D +D ¢

¢

¢ ¢

( [ ( )]) [ ( ) ( )

( ) ( ) ( ) ( )] ( )

( ) †

( ) † ( ) †

The associated particle current reads
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