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Abstract

Conditional reliability measures provide a more detailed description of the performance of a system,
being representative of different initial configurations.
Commonly, since the failure region is characterized by a small probability of occurrence, advanced
sampling techniques are required to reduce the computational effort of a simulation based approach.
These techniques if on one hand decrease the number of samples needed to identify the failure domain,
on the other hand do not generally allow a direct estimation of the conditional failure probability for
different given inputs.
This study aims at providing an efficient and simple methodology to evaluate the conditional failure
probability in the case of a static reliability analysis. In particular, under the assumption of prob-
ability density functions (PDFs) with a finite support, the failure region mapping process is carried
out using surrogate PDFs associated with Sobol’ sequences in order to reduce as much as possible the
model evaluations. Finally, the integration of the failure region in the standard normal space employs
probabilistic weights instead of a classic indicator function to account for the uncertainty associated
with the failure region definition.
The approach is verified by comparing the results against those obtained from a Latin Hypercube
Sampling. The performance of the proposed method is evaluated in terms of computational costs
and accuracy.
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1 Introduction
Despite the constant evolution of modern computers, numerical models require significant computational
efforts to achieve the desired level of accuracy, in particular, for detailed and complex systems efficient
simulation techniques result to be often of paramount importance to reach the required solution in a
feasible time.
In the reliability analysis field , many advanced approaches [1–4] have been proposed in the last decades,
having as main purpose a reduction in the number of simulations required for the failure probability
estimation. Unfortunately, the techniques adopted by the aforementioned methodologies [5, 6] do not
allow a direct estimation of reliability measures conditioned to specific sub-domains of the probabilistic
space. Conditional failure probability represents indeed an important sensitivity indicator, since partial
derivatives ∂Pf/∂vi, that describe the effects of uncertain input variables vi on the system reliability
level, can be subsequently computed [7–9]. Moreover, an efficient approach is required especially when a
reliability-based optimization is performed [7, 10, 11] and a full reliability analysis must be carried out
for each sub-domain analyzed by the optimization algorithm.
The proposed approach aims at computing conditional failure probabilities starting from a failure region
mapping based on a multinomial logistic regression [12]. The training of the classification algorithm
employs quasi-random samples [13] that allow a further reduction in the model realizations required.
A simple case study that estimates the maximum displacement of a cantilever beam, with uncertain
material and geometrical properties, subject to a random concentrated load is analyzed. Finally, a Latin
Hypercube Sampling provides the reference results based on which a first comparison with the proposed
method is carried out. The opensource Matlab toolbox OpenCossan [14, 15] is used for the probabilistic
analysis.

2 Methodology
Given the failure event F and a general sub-domain B of the probabilistic space Ω, the conditional failure
probability can be expressed following the Kolmogorov definition as:
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P (F |B) = P (F ∩B)
P (B) (1)

where P (F ∩B) represents the joint probability of the events F and B , while the probability P (B) of the
event B can be computed through the integral of the joint probability function Φ(x) over the sub-domain
B, with x the vector of coordinates in Ω. In general, given a failure event F , the associated probability
of occurrence can be expressed as the integral of Φ(x) over F :

P (F ) = Pf =
∫
F

Φ(x)dx =
∫

Ω
Φ(x) · ĹIdx (2)

where I represents an indicator function equal to 1 when the system fails and 0 otherwise.
Unfortunately, the multi-dimensional integration over the failure domain F may be often impossible to
perform in a closed form [16], for this reason a simulation-based approach, that approximates the exact
solution, is required.
The joint probability P (F ∩ B), according to Equations 1 and 2, can be viewed as the integral of Φ(x)
in the standard normal space [17] over the sub-domain B and not Ω:

P (F ∩B) =
∫
F∩B

Φ(x)dx =
∫
B

Φ(x) · ĹIdx (3)

The mapping from the physical space to the standard normal space can be easily obtained by assuming
that the cumulative distribution functions of the random variables remain the same after the transfor-
mation in standard normal distributions [18]. Equation 1 can be now rewritten as:

P (F |B) = P (F ∩B)
P (B) =

∫
B

Φ(x) · ĹIdx∫
B

Φ(x)dx
(4)

An approximated solution of
∫
B

Φ(x)dx can be easily reached without additional computational efforts
by means of deterministic samples x̂ ∈ B in the standard normal space [17]. For instance, to compute
the failure probability P (F |V ) conditioned to the variable V , a sequence of sub-domains Bi = {xi|V =
constant} is explored by the samples x̂. More complex shapes s(x) of B may require a preliminary step
to be defined, nonetheless s(x) just represents a combination of x depending on the specific problem. An
efficient solution of Equation 4 still needs an additional step to reduce the number of model realizations
related to the indicator function I.

2.1 Failure region mapping
A multinomial logistic regression (MLR) [12] is adopted to predict the probability that an initial system
configuration reaches the failure region or not. The chosen classification algorithm allows the definition
of intermediate classes in case conditional failure probabilities with respect other final performance levels
are required (multiple failure regions). The indicator function in Equation 2 is therefore replaced by the
probabilistic score wi associated with each prevision Yi. In general, the probability that an observation
i has K as predicted value is equal to:

wi = P (Yi = K) = eβK ·xi

1 +
K∑
k=1

eβk·xi

(5)

where xi is the vector of attributes describing each observation i, while βK represents the vector of re-
gression coefficients associated with the class K.
The initial dataset for the MLR training is obtained by means of Sobol’ sequences from surrogate prob-
ability density functions in order to easily reach the failure region and getting at the same time a higher
grade of coverage of the probabilistic space. Samples are generated from uniform distributions z(x) with
upper and lower boundaries (U , L) chosen according to the real distributions. In particular , given the
original PDF f(x) and the associated cumulative function F (x), than F (L) and 1 − F (U) result to be
lower than 10−7. An approximate solution of Equation 3 can now be obtained by sampling from the
surrogate PDFs only in the sub-domain B and by evaluating the probabilistic score wi associated with
each realization:

P (F ∩B) =
∫
B

Φ(x) · Ĺwidx (6)
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Figure 1: Flowchart representing the developed algorithm

Despite the MLR algorithm is a linear classifier based on a separating hyperplane, more complex and
general failure region shapes can be still mapped by adopting alternative kernels [19]. In Figure 1 a
flowchart describes step-by-step the algorithm employed to estimate the failure probability corresponding
to different Bi.

3 Case study
A simple cantilever beam (Figure 2) subject to a random concentrated load, with uncertain material
and geometric characteristics, has been analyzed as case study. The random variables are described in
Table 1, with the associated uniform distributions employed for the failure region mapping.
The maximum displacement R can be easily computed as:

R = Q · L4

8 · E · I + P · L3

3 · E · I (7)

Figure 2: Cantilever beam
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Table 1: Random variables (R.V.), parameters and surrogate PDFs employed in the failure region mapping

Quantity Type µ σ z(x) L U Value
Load - P [N ] R.V.-Lognormal 5000 400 R.V.-Uniform 3900 6000 -
Elastic M.-E [MPa] R.V.-Lognormal 10000 1600 R.V.-Uniform 1600 19000 -
Density - ρ [Kg/m3] R.V.-Lognormal 600 140 R.V.-Uniform 50 1350 -
Height - H [m] R.V.-Normal 0.24 0.01 R.V.-Uniform 0.18 0.30 -
Length - L [m] Parameter - - - - - 1.8
Width - B [m] Parameter - - - - - 0.12

where Q = f(ρ) represents the uniformly distributed beam’s weight and I the moment of inertia.

4 Results
The system reliability has been analyzed assuming a maximum allowed displacement t equal to 8 mm
and the conditional failure probability P (R|E > t) has been evaluated for different given E values.
To asses the goodness of the result g(x) provided by the proposed method, a reference fragility curve
fr(x), obtained through a Latin Hypercube Sampling, has been adopted. In particular, the comparison
is carried out considering a different number of initial samples needed for the classification algorithm
training.

0

0.3

0.5

8000

0.25 6000

1

4000

0.2 2000

Safe

Intermediate

Failure

0

0.3

0.5

8000

0.25 6000

1

4000

0.2 2000

Safe

Intermediate

Failure

0

0.3

0.5

8000

0.25 6000

1

4000

0.2 2000

Safe

Intermediate

Failure

0

0.3

0.5

8000

0.25 6000

1

4000

0.2 2000

Safe

Intermediate

Failure

Figure 3: MLR probabilistic score associated with each prediction for different values of the elastic modulus

Figure 3 shows the probabilistic score of each sample involved in the solution of Equation 4 for different
fixed values of the elastic modulus E. For illustrative purpose two only random variables have been
considered.
Figure 4 reports the comparison with the reference curve obtained with a total of 7000 model realiza-
tions. The accuracy of the final match results to be dependent on the number of samples employed in
the failure region mapping. In particular, by increasing the initial dataset the match improves reaching
a good accuracy after only 250-350 samples.
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Figure 4: Comparison for different datasets between the result g(x) provided by the method and the target
solution fr(x)

Figure 5 describes the evolution of the mean absolute error D for different sizes of the dataset employed
in the MLR training stage, where DN =

∑
|g(xN )− fr(xN )| / L, with N and L equal to the number of

initial samples and elements in g(xN ) respectively. The variation of D for different initial datasets shows
a quick decrease of the error after only 300 samples, even if the results seem to not fully converge to
the target solution, even increasing the training dataset, due to the limits in the MLR mapping capability.
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Figure 5: Evolution of the mean absolute error D for different training datasets
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5 Conclusions
A simplified approach to estimate conditional failure probabilities has been proposed. The reduction in the
computational expense is reached by adopting a multinomial logistic regression trained over a predefined
dataset generated with surrogate PDFs. The use of a quasi-random sampling technique allows obtaining a
further improvement in the failure region mapping efficiency, even if the goodness of the final comparison
with the target solution depends on the dimension of the dataset used for the training stage. Thanks to
the MLR algorithm, the proposed approach provides even the possibility to define multiple thresholds in
order to evaluate after one single training stage the system conditional reliability with respect different
performance levels. According to the analyzed case study, the results show a good match starting from
only 250 model realizations and a further reduction in the confidence bounds is obtained by increasing the
initial samples. Additional analyses are required to check how the dimensionality affects the efficiency of
the method and additional applications needed to be tested to generalize the effectiveness of the failure
region mapping.
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