Enhanced localization and protection of topological edge states due to geometric frustration

Madail, L. and Flannigan, S. and Marques, A. M. and Daley, A. J. and Dias, R. G. (2019) Enhanced localization and protection of topological edge states due to geometric frustration. Physical Review B, 100 (12). 125123. ISSN 2469-9950

[img]
Preview
Text (Madail-etal-PRB2019-Enhanced-localization-and-protection-of-topological-edge-states)
Madail_etal_PRB2019_Enhanced_localization_and_protection_of_topological_edge_states.pdf
Accepted Author Manuscript

Download (4MB)| Preview

    Abstract

    Topologically nontrivial phases are linked to the appearance of localized modes in the boundaries of an open insulator. On the other hand, the existence of geometric frustration gives rise to degenerate localized bulk states. The interplay of these two phenomena may, in principle, result in an enhanced protection/localization of edge states. In this paper, we study a two-dimensional Lieb-based topological insulator with staggered hopping parameters and diagonal open boundary conditions. This system belongs to the C2v class and sustains one-dimensional (1D) boundary modes except at the topological transition point, where the C4v symmetry allows for the existence of localized (0D) corner states. Our analysis reveals that, while a large set of boundary states have a common well-defined topological phase transition, other edge states reflect a topological nontrivial phase for any finite value of the hopping parameters, are completely localized (compact) due to destructive interference, and evolve into corner states when reaching the higher symmetry point. We consider the robustness of these compact edge states with respect to time-dependent perturbations and indicate ways that these states could be prepared and measured in experiments with ultracold atoms.