Network Influence based Classification and
Comparison of Neurological Conditions

Ruaridh Clark!, Niia Nikolova?, Malcolm Macdonald!, and
William J. McGeown?

! Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, UK
ruaridh.clark@strath.ac.uk
2 School of Psychological Sciences and Health, University of Strathclyde, Glasgow,
UK

Abstract. Variations in the influence of brain regions are used to clas-
sify neurological conditions by identifying eigenvector-based communi-
ties in connectivity matrices, generated from resting state functional
magnetic resonance imaging scans. These communities capture the net-
work influence of each brain region, revealing that the subjects with
Alzheimers disease (AD) have a significantly lower degree of variation in
their most influential brain regions when compared with healthy control
(HC) and amnestic mild cognitive impairment (aMCI) subjects. Classifi-
cation of subjects based on their pattern of influential regions is demon-
strated with neural networks identifying HC, aMCI and AD subjects.
The difference between these conditions are investigated by altering brain
region influence so that a neural network changes a subjects classifica-
tion. This conversion is performed on healthy subjects changing to aMCI
or AD, and for aMCI subjects changing to AD. The results highlight po-
tential compensatory mechanisms that increase or maintain functional
connectivity in certain regions for those with aMCI, such as in the right
parahippocampal gyrus and regions in the default mode network, but
these same regions experience significant decline in those that convert
from aMCI to AD.
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1 Introduction

Alzheimers disease (AD) is the most common type of dementia. It is typically
characterised by marked decline in episodic memory, with deficits occurring in
other cognitive domains such as in language, visuospatial and executive func-
tioning. Individuals with amnestic mild cognitive impairment (aMCI) present
with impairments in memory, with other cognitive domains remaining relatively
intact. Although not all individuals with aMCI are in the early stages of AD,
people with this pattern of symptomology are at high risk of conversion to the
disorder [1].

There has been a large body of work documenting the changes in regional
brain volume as the disease progresses, for example atrophy of the hippocampus
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is an indicator that subjects with aMCI will develop AD [2]. Whereas volumetric
analysis does not inform on how brain dynamics are modified by AD, functional
magnetic resonance imaging (fMRI) data may offer information on the regulation
of brain networks and provide additional markers of disease. This is an important
distinction, as the volume of the parahippocampal gyri (PHG) has been found to
remain constant for those with aMCI regardless of whether they declined further
into AD or not, but a greater extent of activation within the PHG was a reliable
marker of future cognitive decline [3].

This paper will focus on functional connectivity analyses to differentiate be-
tween people with AD and aMCI. The approach taken here is to identify and
compare the relative influence of brain regions. This influence is captured from
resting state fMRI data that is converted into a network of brain regions, with
connections weighted by the strength of their signal correlations [4]. A region’s
influence is determined using an eigenvector-based community detection, com-
munities of dynamical influence (CDI), as introduced by Clark, Punzo and Mac-
donald (2019) [5]. For a directed graph, this influence represents the nodes that
can rapidly lead the network to a new state of consensus. For an undirected
graph, used here to represent brain region connectivity, information is lost on
which nodes are leading or following. Therefore, influential nodes are either im-
portant sources or sinks for information in the network. The CDI method relies
on the relationship between eigenvectors to determine the communities, where
the most dominant eigenvectors form a coordinate system with communities dis-
playing as an alignment of nodes from that system’s origin. Eigenvectors have
been used previously with the neuronal network of the C. elegans to identify
brain circuitry [6]. CDI is a progression from normalised cuts [7], and other
spectral bisection methods, as it considers a combination of eigenvectors before
determining community assignment.

By associating each brain region with an influence ranking, based on which
community it belongs to, a subject can be characterised based on the relative in-
fluence of their brain regions. Pattern recognition enables the detection and asso-
ciation of these rankings with different neurological conditions. Machine learning
(ML) is a highly capable and popular method of recognising statistical patterns,
where most of the research on classifying aMCI and AD with ML has focused on
low-level features such as cortical thickness and/or grey matter tissue volumes
from MRI, mean signal intensities from positron emission tomography (PET)
and other common biomarkers [8]. There are also examples of graph theoretical
metrics being used in combination with machine learning, such as [9] & [10] that
employed a support vector machine (SVM) as well as [11] that used a naive Bayes
classifier to perform the classification. Of significant clinical utility, functional
brain connectivity can be combined with machine learning into models capable
of identifying neurological conditions such as AD [12], autism or depression.

In this paper, we describe a novel method of determining the influence of
brain regions in neurological conditions, by identifying communities of dynami-
cal influence in healthy controls, individuals with aMCI and patients with AD.
We also determine how influence may change during conversion between these
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conditions, by developing a new technique to classify individuals based on the
influence of their brain regions.

2 Methods

In order to classify and compare influential communities between the AD, aMCI
and control groups, a connectivity matrix is first generated for a region-of-interest
(ROI) set for each subject from their resting state fMRI data. This all-to-all con-
nectivity matrix is reduced to only include significant connections by applying a
threshold on the minimum weight for edges included in the network. This new
topology undergoes eigenvector-based community designation, where the com-
munities are ranked by their influence over the network. This ranking of nodes
based on their community’s influence is used to train neural networks to recognise
whether a subject is healthy or has amnestic mild cognitive impairment (aMCI)
or Alzheimer’s disease (AD). To understand the changes required to convert a
subject from one condition to another, the influence of their nodes are altered so
that the neural network would change their classification to an alternative state.
This alteration, to achieve this change in classification, captures the difference in
the influence of ROIs when comparing between different neurological conditions.

2.1 Dataset

The data used here was from the 'Resting-state fMRI in Dementia Patients’
dataset [13], obtained from the Harvard Dataverse database. The MRI data
was obtained using a Siemens 3T MRI system (Magnetom Allegra, Siemens,
Erlangen, Germany) for ten patients with a probable AD diagnosis (by NINCDS-
ADRDA consensus criteria [14]), 10 aMCI patients [15] and 10 healthy elderly
subjects (HC).

The subjects underwent a resting state EPI fMRI scan (TR = 2080 ms, TE
= 30ms, 32 axial slices parallel to AC-PC plane, matrix 64 x 64, in plane reso-
lution 323 mm?, slice thickness = 2.5 mm, 50% skip, flip angle 70 degrees). The
duration of the scan was 7minutes and 20 seconds, yielding 220 volumes. Sub-
jects were instructed to keep their eyes closed throughout, refrain from thinking
of anything in particular and to avoid falling asleep. An anatomical T'1-weighted
three dimensional MDEFT (modified driven equilibrium Fourier transform) scan
was also acquired for each subject (TR = 1338 ms, TE = 2.4ms, TI = 9101ms,
flip angle = 15 degrees, matrix = 256 x 224 x 176, FOV = 2562224 mm?, slice
thickness = 1 mm, total scan time = 12 min).

2.2 Preprocessing

The functional data was preprocessed using the CONN toolbox (CONN: func-
tional connectivity toolbox, [16]) for SPM12 (www.fil.ion.ucl.ac.uk/spm) and
MATLAB version 2018a.
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Spatial Preprocessing The first four volumes of the functional scans were
removed in order to eliminate saturation effects and to allow the signal to sta-
bilise. Functional data were slice-time adjusted and corrected for motion. The
high resolution T'1 weighted anatomical images were coregistered with the mean
EPT image. They were segmented into grey matter (GM), white matter (WM)
and cerebrospinal fluid (CSF) masks and were spatially normalised to the Mon-
treal Neurological Institute (MNI) space [17]. The obtained transformation pa-
rameters were applied to the motion corrected functional data, and an 8mm
FWHM Gaussian kernel was applied for spatial smoothing. It should be noted
that the use of spatial smoothing on fMRI data can affect the properties of func-
tional brain networks, including a possible overemphasis of strong, shortrange
links, changes in the identities of hubs of the network, and decreased intersubject
variation [18].

Temporal Filtering In order to mitigate physiological and movement-related
noise, the aCompCor technique was used. aCompCor identifies and removes
the first five principal components of the signal from the CSF and WM masks
(eigenvectors of the PCA decomposition of the EPI timecourse averaged over
the CSF and WM), as well as the motion parameters, their first-order temporal
derivatives and a linear detrending term [19]. One subject’s scan was excluded
from the analysis due to excessive motion. Scrubbing and motion regression were
also performed. The preprocessed functional data were then bandpass filtered
(0.008Hz < f < 0.09Hz) using a fast Fourier transform (FFT).

2.3 Connectivity Matrix Generation

One hundred and thirty-two (132) ROIs were defined by the default CONN atlas
which combines the FSL Harvard-Oxford cortical and subcortical areas and the
AAL atlas cerebellar areas. Connectivity between the 132 ROIs was assessed for
the 7-minute resting state scan for each subject. We constructed 132 x 132 ROI-
to-ROI correlation (RRC) matrices of Fisher z-transformed bivariate correlation
coefficients (Pearsons r) using the ROIs described above. For each subject, a
graph adjacency matrix A(i,j) was computed by thresholding the RRC matrix
r(i,j) using a Cluster-Span Threshold (CST [20]).

2.4 Cluster-Span Threshold

An unbiased Cluster-Span threshold (CST) [20] was used in generating the ad-
jacency matrix. CST is especially suitable as it performs well in distinguishing
functional connectivity between HC and AD subjects [21]. The threshold gener-
ates a topology that excludes edges with weights smaller than the chosen value.
CST is selected so that the topology generated contains the same number of
clustered triples and spanning triples.
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2.5 Communities of Dynamical Influence

The network is assigned into Communities of Dynamical Influence (CDI) based
on the connections and influence of nodes in the network. CDI are defined in
[5] where community designation is achieved by using multiple (often three)
eigenvectors to define a coordinate system. The nodes, which are further from
the origin of this system than any of their connections, are defined as leaders of
separate communities. Each of these communities is populated with other nodes
that lie on a path that connects to the leader node of that community. Each
node is assigned to only one community, the community is chosen by assessing
which leader is most closely aligned to that node. This alignment is assessed by
comparing the position vector, from the origin of the coordinate system, for the
leader nodes and the node to be assigned. The dot product of these position
vectors determines the leader that is best aligned to the node.

Once community designation is complete, the order of influence is determined
by evaluating the largest entry of the most dominant eigenvector for each com-
munity. The dominant eigenvector of the connectivity matrix is known to be a
nonnegative vector. The community that contains the node with the largest v
value is ranked as the most influential community, with the other communities
ranked in descending order according to their largest vi. For each subject, a
vector is produced that denotes the ranking of the community each node is in.
This vector shall be referred to as the Influence Vector with values assigned to
ROIs between 0 and 1, where these extremes mark the least and most influential
community respectively.

In this paper, CDI is determined from the three most dominant eigenvectors
of the undirected connectivity matrix after applying the CST. These are the
eigenvectors associated with the largest eigenvalues in magnitude and are shown
in [5] to identify the nodes that are most effective at driving the network to
consensus.

2.6 Pattern Recognition

A neural network (NN) is employed to recognise patterns in the influence vector
and associate these patterns with the subject status of healthy control (HC)
or aMCI or AD. A two-layer, feed-forward, neural network was used since this
simple architecture was shown to be capable of capturing sufficient information
from the influence vector to produce accurate classifications. The NN employed
sigmoid output neurons, scaled conjugate gradient backpropagation and 10 hid-
den neurons [22]. Each input vector, x, is scaled to fit in the range [—1, 1] and
the performance is evaluated using cross-entropy [23], with the cost function, c,
a mean of the individual values,

c= —%Zy In(a) (1)

where n is the total number of items of data in a set of inputs x, with the network
output a and the desired output y.
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To identify and reduce variance when using a small data set, five separate
neural networks were trained with different compositions of training and valida-
tion sets. No test set was used due to the small size of the data set and the fact
that the risk of over-fitting is not a major concern in the intended application.
For a neural network to be trained successfully the cross-entropy cost function
had to be below ¢ = 0.1 with all networks reporting 100% accuracy from their
confusion matrices. The five neural networks were trained on 29 subjects with
the training sets varied between 21 and 25 subjects, where the validation set
contained the remaining subjects and was subjects from all three of the classi-
fications. Below 21 there was insufficient training data to effectively train the
network. The mean of the five NN outputs was assessed and in Fig. 1 the variance
between different NNs is also reported.

2.7 Optimisation of the Influence Vector

The neural network outputs a three element vector, a, with non-negative entries
that represents the three possible subject conditions, where Z?Zl a; = 1 and the
largest element indicates the condition selected by the network. An optimiser,
using a sequential quadratic programming method [24], is employed to alter
the input vector so that the neural network identifies it as having a different
condition. The optimiser aims to maximise a; where j represents the target
condition. The alteration to the input vector is recorded to identify the ROIs
that were altered to change a subject from their current condition to another
state.

3 Results

A large variability between subjects is observed, even when they are represented
by their ROI community influence. For example, Table 1 shows that for each
classification most of the ROIs are, for at least one of the subjects, placed in
both the most and the least influential communities (top and bottom CDI re-
spectively). Despite this variability, trends emerge when comparing the different
classification in Table 1 with the percentage of ROIs displaying either an upward
or downward trend from HC, through aMCI to AD in each row. One of the most
notable results is that, for AD, 43% of the ROIs present in the top CDI, for
at least one subject, were not in the bottom CDI for any other subject. Whilst
only 53% of the 132 ROIs were present in the top CDI for at least a single AD
subject. This means that around 81% of the ROIs, in the most influential com-
munity for at least one AD subject, are not in the least influential community
for any other AD subject. This is a far greater consistency than seen from the
aMCI (~ 29%) and HC (~ 15%) subjects. To a less significant extent the HC
subjects present the inverse pattern, whereby they have the highest number of
ROIs that are present in the bottom CDI and not included in the top CDI for
any other HC subject (38%), compared to aMCI (24%) and AD (14%).
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Table 1: The number of ROIs that are included in the most (top) and least (bot-
tom) influential communities of dynamical influence (CDI) are shown alongside
the number of ROIs that are in the top community for at least one subject but
not the bottom for any others and vice versa.

% of ROIs
HC aMCI AD
Present in bottom CDI 71 79 84
Present in bottom CDI & not in top CDI 27 19 12
Present in top CDI 85 77 53
Present in top CDI & not in bottom CDI 13 22 43

3.1 Altering Influence in Healthy Control Subjects

A mean alteration was produced from alterations generated using five separate
neural networks, as described in the Methods section. Three different conversions
are detailed here; Ten HC subjects were converted to the classification of aMCI,
ten HC subjects were also converted to AD, and finally ten aMCI subjects were
converted to the classification of AD. The results of these conversions highlight
the ROIs that undergo the greatest changes in connectivity and influence when
a person is affected by MCI and/or AD, see Fig. 1 (a), (b) & (c). These three
conversions were also investigated in the other direction, eg. converting from AD
to HC, with the results producing similar findings to those detailed herein and
so not reported separately.

Parahippocampal Gyri. The hippocampus and parahippocampal regions are
well known to have a significant role in memory formation [3], which is an area
that notably declines in those with aMCI and AD. In [25] the parahippocampal
gyri were noted to decrease in functional connectivity in AD subjects when
compared with aMCI subjects. Our results support these findings for the right
PHG, where it loses significant influence in the conversion from HC to AD and
from aMCI to AD, in Fig. 1 (d). The anterior and posterior divisions of the
right PHG reporting some of the largest alterations in these conversion (see
Fig. 1 (a) and Fig. 1 (c) respectively). Interestingly in [3], subjects with greater
clinical impairment were found to rely more on their right parahippocampal
gyrus (PHG). Those with a reliance on the right PHG were also those whom
declined the most over 2.5 years of clinical follow-up. It was hypothesised that
this extra reliance on the right PHG could be a marker for impending clinical
decline. This compensatory mechanism appears to be visible in the results of
Fig. 1 (d) where the anterior division of the right PHG gains influence when
converting HC subjects to aMCI with a mean alteration z-score of 0.83.

The behaviour of the hippocampus mirrors that of the parahippocampal re-
gions in the HC to AD conversions. The right hippocampus loses a significant
amount of influence (z-score of -1.18) while the left side gains some influence
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Fig. 1: The largest alterations of ROI influence (+1.5 z-score) required to change
the classification of (a) 10 HC subjects to AD, (b) 10 HC subjects to aMCI,
and (c) 10 aMCI subjects to AD. In (d) the alterations to the parahippocampal
regions are reported for each conversion. A positive alteration indicates that a
ROTI’s influence has increased. The mean alteration is assessed from five conver-
sions using different neural networks. The median, 25" and 75" percentile are
detailed with the whiskers extending to the most extreme data points. Outliers
lie more than three scaled median absolute deviations away from the median
and are excluded.

(z-score of 0.41). This finding is supported by [26] where disrupted connectiv-
ity between the right hippocampus and several brain regions was seen for AD
subjects, whilst connectivity between the left hippocampus and the prefrontal
cortex was relatively increased. In [27] a more extensive connectivity disruption
was found in both sides of the hippocampus, where the contrast in results to
[26] was attributed to greater severity of AD in subjects studied in [27] with
hippocampal connectivity thought to decline progressively during the disease.

Default Mode Network. Two prominent regions in the default mode network
(DMN), the posterior cingulate cortex and the precuneus cortex, have frequently
been identified as early markers in AD [28]. Compared to controls, AD patients
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have been shown to exhibit lower connectivity in the precuneus and posterior
cingulate cortex within the DMN [29].

Our findings support [29] where the posterior cingulate cortex loses influence
in the HC to AD case with a z-score of —0.96, while in the HC to aMCI case it
gains some influence with a z-score of 0.49. It is therefore not surprising that this
region loses significant influence in the aMCI to AD conversion in Fig. 1 (¢) with
a z-score of —1.53. In the conversions from HC to AD and from HC to aMCI, the
precuneus cortex becomes notably less influential, indicated by a negative mean
alteration with a z score of -1.14 and -1.00, respectively. These results indicate
that both ROIs are clear indicators of AD, but this analysis suggests their decline
appears to occur at different stages of the disease with results suggesting that
the precuneus cortex declines earlier as depicted in Fig. 2.

Furthermore, a network comparison in [30] between controls and AD high-
lighted a decrease in functional connectivity between the DMN and posterior
cingulate gyrus, precuneal cortex, and lateral occipital cortex (LOC). Our re-
sults support this finding where, in Fig. 1 (a), the left inferior division of the
LOC loses significant influence in the HC to AD conversion (z-score of —1.53)
while the right side only changes slightly (z-score of —0.16). An even more signif-
icant swing in influence is seen, in Fig. 1 (b), for the LOC’s left inferior division
in the aMCI to AD conversion (z-score of —2.28). This ROI presents a similar
pattern to the posterior cingulate cortex by gaining influence in the HC to aMCI
conversion (z-score of 0.99), but losing influence in both conversions to AD. It is
also worth noting that the superior divisions of the LOC presents the opposite
changes in influence but to a less significant degree than the left inferior division.

Other key DMN ROIs are seen to lose influence in the conversions, with the
left Angular gyrus and middle frontal gyri displaying prominently in Fig. 1 (a)
and (b).

3.2 Calcarine.

The calcarine, sensorimotor and anterior cingulate regions have been shown to
be spared significant damage until the late stages of AD [31]. Our results indi-
cate that by avoiding significant damage the intracalcarine and supracalcarine
regions gain greater influence. The right supracalcarine cortex tops the positive
alterations in Fig. 1 (a) and both sides of the intracalcarine cortex top the pos-
itive alterations in Fig. 1 (c). However, the bi-lateral intracalcarine cortex and
the left supracalcarine cortex lose influence when converting from HC to MCI,
so avoiding damage might not provide the whole picture for why these calcarine
regions become more influential in the HC to AD conversion.

4 Conclusions

This paper presents a new approach to understanding the impact of changes in
brain region connectivity, which are brought about by neurological conditions.
Brain region assignment to influence ranked communities reveals that those with
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Fig.2: Superior view of mean alterations to influence of default mode network
and lateral occipital cortex (LOC). Circle size proportional to z-score for (a) HC
to AD and (b) aMCI to AD conversion. ROIs shown: posterior cingulate (pC),
Precuneus (Precun), inferior and superior LOC (iLOC & sLOC) with L and R
indicating left and right respectively.

AD have a significantly higher degree of commonality in their most influentially
connected regions, when compared with HC and aMCI subjects. The communi-
ties identifies as influential therefore appear to be shared to a greater extent in
AD subjects, compared to the aMCI and HC.

The detection of brain region influence enables the classification of conditions
and captures the patterns of functional changes that lead to aMCI and AD. The
right parahippocampal gyrus (PHG) is confirmed as playing a key role in the
decline to AD. In particular, the results supported findings of compensatory ac-
tivity in this region, where it was seen to maintain, if not gain, some influence in
the conversion from HC to aMCI. The right PHG then experienced a significant
decline for the conversion to an AD classification. The results supported previous
findings on the importance of the default mode network (DMN) in the devel-
opment of aMCI and AD. Additionally, the posterior cingulate gyrus and the
lateral occipital cortex are noted as promising indicators of future conversions
from aMCI to AD. Finally, the calcarine is confirmed as a region that defies
decline in those with AD. Interestingly, the intra- and supracalcarine regions
are seen to decline for those with aMCI but their influence then increases for
subjects with AD.
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