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Abstract

Planning plays a role in achieving long-term behaviour (per-
sistent autonomy) without human intervention. Such be-
haviour engenders plans which are expected to last over many
hours, or even days. Such a problem is too large for cur-
rent planners to solve as a single planning problem, but is
well-suited to decomposition and abstraction planning tech-
niques. We present a novel approach to bottom-up decompo-
sition into a two-layer hierarchical structure, which dynami-
cally constructs planning problems at the abstract layer of the
hierarchy using solution plans from the lower layer.
We evaluate this approach in the context of persistent au-
tonomy in autonomous underwater vehicles, showing that
compared to strictly top-down approaches the bottom-up ap-
proach leads to more robust solution plans of higher quality.

1 Introduction
This paper introduces a novel technique for planning in
the context of persistent autonomous systems within tight
deadlines and energy constraints. Persistent autonomy en-
tails planning long-term behaviour for one or more au-
tonomous vehicles achieving purposeful and directed activ-
ity over hours, days, or even weeks without human interven-
tion. This includes many challenges, including robust exe-
cution, detection of errors and recovery (Faria et al. 2014;
Cashmore et al. 2014). However, there is a challenge that
precedes execution: generating plans for missions that ex-
tend over hundreds or thousands of actions, within hours or
days of activity.

We show in Section 5 that such a problem is too large
for current planners to solve as a single planning problem,
but is well-suited to decomposition and abstraction planning
techniques. Decomposition into a hierarchical structure is
exploited by HTN planners (Erol, Hendler, and Nau 1994;
Nau, Ghallab, and Traverso 2015), which rely on a top-down
approach, exploiting pre-constructed plans to tackle separate
component elements of the hierarchy. In contrast we propose
dynamically decomposing the problem in two layers using a
bottom-up approach. The tactical layer at which task plans
are constructed from the original actions in the domain, and
the strategic layer, which encapsulated actions that represent
the completion of a task. The original problem is decom-
posed into disjunct tasks using a clustering algorithm, each
task is planned for independently at the tactical layer and

forms a pre-constructed plan. Then a problem is composed
at the strategic layer, to find an execution order of the pre-
constructed plans that satisfies the original planning prob-
lem.

We explore this approach in the context of the FP7 project
PANDORA, managing a fleet of Autonomous Underwater
Vehicles (AUVs). These vehicles are tasked with maintain-
ing a seabed facility unsupervised. The structures on the
seabed must be inspected on a regular basis. The AUVs must
interact with control panels within set time windows to man-
age the site within time and resource constraints, refueling
autonomously.

Decomposing a task, in general, is not trivial. Planners
like SGPlan (Chen, Wah, and wei Hsu 2006) and RE-
ALPlan (Srivastava 2000) have explored this in the past with
mixed success. The latter decomposes a plan based on the
number of resources available, e.g. it crease a different plan
for each available robot. In contrast, the decomposition ap-
proach used in the PANDORA project is based on “local-
ity”. The observation we exploit is that many of these long-
term autonomy missions involve located executives interact-
ing with their environment to achieve goals. These goals can
be clustered, geographically and temporally, into a set of dis-
crete tasks. A task can be associated with the area in which
operations will be performed to accomplish its goals.

The key difference in our approach is in the construction
of the strategic model. Similar to an HTN model, the strate-
gic level contains macro actions that encapsulate plans at the
tactical level. However, these plans are not constructed top-
down, but automatically generated by a planner, bottom-up.
A planner is used to construct plans for each task. The ex-
pected time and resource requirements to complete the task
are taken automatically from the plan. These values are used
as costs for the corresponding strategic action encapsulat-
ing this task. The strategic problem can then be constructed
using these abstracted task-actions.

The paper is organized as follows. In Section 2 we give an
overview of the relevant background of persistent autonomy
and planning for long horizons. In Section 3 we describe
our decomposition and abstraction technique in more detail.
Then, in Section 4 we describe how a strategic mission plan
can be executed, and some efficiency that can be gained. Fi-
nally, in Section 5 we describe the evaluation method for
testing our framework and include the results of our evalua-



tion.

2 Related Work
Integrating planning systems with robotic systems for on-
board planning in long-term missions is not a new concept,
for example NASA’s EUROPA framework was used for the
EO-1 mission (Sherwood et al. 2006). Related to AUVs
specifically a planning system was developed in cooperation
with MBari to track algae blooms (Fox, Long, and Maga-
zzeni 2012), within T-REX (Teleo-Reactive EXecutive) for
reasoning onboard AUVs (McGann et al. 2008b), and using
ROSPlan to integrate a planner with the COLA2 control ar-
chitecture for AUVs in subsea intervention tasks (Cashmore
et al. 2015; Palomeras et al. 2012).

We take the ideas introduced in these works and ap-
proach the challenge of persistent autonomy: missions that
require robust planning and execution, with horizons of
days, or even weeks. Alternative strategies for long term
autonomy typically focus on execution monitoring or on-
board replanning (eg (Smith, Rajan, and Muscettola 1997;
McGann et al. 2008b; 2008a; Cashmore et al. 2015)). Nev-
ertheless, these approaches are founded on the same ambi-
tion for long term autonomous behaviour and recognise the
role of planning in achieving it. The contribution of this pa-
per is in the formulation of a decomposed planning problem,
through a bottom-up decomposition approach.

3 Bottom-Up Top-Down Strategic Missions
In this section we formalise the planning problem and the
decomposition of it. We use PDDL2.1 (Fox and Long 2003)
to describe our example domain and problems. In general
the approach is not tied to choice of description language.
Definition 1. PDDL2.1 Planning Problem. A PDDL2.1
planning problem is the tuple Π := {P, V,A, Tp, Tv, I, G},
where P is a set of propositions; V is a vector of real vari-
ables, called fluents; both are manipulated by A, a set of du-
rative and instantaneous actions. I(P, V ) is a fuction over
P ∪ V which describes the initial state of the problem. Sim-
ilarly G(P, V ) is a function that describes the goal condi-
tion. Tp is the set of time initial literals (TILs). A TIL (t, p)
describes that proposition p becomes true at time t. Tv is
the set of time initial fluents (TIFs). A TIF (t, v, x) describes
that fluent v is assigned the value x ∈ R at time t.

A durative action a is described as a tuple: a :=
{prea, effa, dura} where prea represents the action’s pre-
conditions – conditions that must hold for the action to be
applied – effa represents the action’s effects, and dura is
a duration constraint, a conjunction of numeric constraints
corresponding to the duration of the action a.

A single condition is either a single proposition p ∈ P ,
or a numeric constraint over V . A precondition is a con-
junction of zero or more conditions. Each durative action A
has three subsets of preconditions: pre`a, pre↔a, preaa ∈
prea. These represent the conditions that must hold at its
start, throughout its execution, and at the end of the action,
respectively.

Action effects are described by eff+
`a, eff

−
`a, effects

which add and remove propositions at the start of the

action, respectively. Similarly eff+
aa, eff

−
aa add and re-

move propositions at the end of the action. Numeric effects
effnum
`a , effnum

aa assign values to fluents at the start and
end of the action. Finally, continuous numeric effects eff↔a

describe continuous change throughout the action’s dura-
tion. (Fox and Long 2003).

A solution to a planning problem is a sequence of ac-
tions and timestamps 〈(a0, t0), (a1, t1) . . . , (an, tn)〉 appli-
cable in I for which the resultant state S′ satisfies the goal:
S′ := G.

A planning problem can contain fluents which are re-
sources (Coles et al. 2014), we define resources as follows:

Definition 2. Resource. Given a planning problem Π a re-
source is defined as a numerical fluent v ∈ V whose value
can be altered by the effect of an action a ∈ A and also ap-
pears in the precondition of an action or is contained by a
goal. A special resource is time as it can be constrained by
TILs in the domain.

An example of a resource in a logistical domain might
be fuel, which can altered by consuming it or produced by
refuelling.

Decomposition into Tasks
Given a planning problem Π we search for a decomposition
that separates the goal G into a set of tasks T where each
task task ∈ T is task ⊆ G. For each task we construct
new planning problem Π′ = Π, where Π′G = task. At the
tactical planning stage we do not know how many resources
are available for each task, so we remove any constraints on
these. These constraints are imposed on the planner at the
strategic level.

We define a task’s initial state to be a subset I ′ ⊆ P de-
scribing the requirements for beginning the task. These re-
quirements for beginning each task must be carefully cho-
sen, we need to make sure that these requirements are reach-
able after the execution of any other task. In our work we
rely on a domain expert to assign an initial state to each task.
For example, in the PANDORA domain we identify, for each
task, a location that is close to the area within which that task
will be performed, L(task). We call this the jump off point
for task. The initial state I ′ of each task is that the AUV is
located at the jump off point. These jump off points are lo-
cated above the seabed structures, which makes them easily
reachable. The task’s initial state is used in the generation of
the strategic problem, discussed in the next section.

Each problem Π′ is passed to a planner, and a plan found.
The solution plan plan(Π′) and its resource requirements
are saved.

Whilst in general many decompositions are possible, it is
sensible to decompose a problem such that related goals are
combined in a single task. Decomposition of goals can be
computed using a clustering algorithm or can be hand coded
based on expert information of the domain. In PANDORA
we exploit the fact that the domain is already separated into
multiple seabed structures. While part of the same seabed fa-
cility, the structures are separated spatially, and are a simple
way to split the goals into sets based on location. Moreover,
control panels can be interacted with only within certain



time windows. If we create a task containing a goal with an
associated time window with any other goal, then we might
impose artificial constraints on the strategic level, leading
to an unsolvable strategic problem. For example, consider
the goals g1, g2, and g3 that have non-overlapping time win-
dows, such that g1 needs to be achieved before g2 and g2
needs to be achieved before g3. If we create a task that com-
bines g1 and g3 and another task that contains g2 then we
render the planning problem unsolvable. For this reason we
put those goals that are dependent on deadlines in separate
tasks.

Generating a Strategic Problem
In order to generate the strategic problem, first an estimate
of the resource use for each task must be computed. These
estimates are computed from the tactical plans plan(Π′).
The strategic domain and problem describe the execution
of a task in an abstracted way, similar to HTN planning,
by encapsulating the task plan as a single action. Therefore,
the plan(Π′) is encapsulated in an abstract action atask for
which:
• prea models the bounds on the resources used by

plan(Π′), and the initial state I ′.
• effnum

a describes the change in resource over plan(Π′).
• eff+

a ∪ eff−a describes the change in distinct variables
over plan(Π′).

• dura is the duration of plan(Π′).
The domain and an example problem file from PAN-

DORA are shown in figures 1 and 2 respectively. The com-
plete mission actions correspond to the tactical plans for a
single task. The duration of these actions is determined by
the function mission duration, which is defined in the initial
state. These mission durations (along with any other possi-
ble resource requirements) are set in the initial state to be
equal to the duration of the corresponding task plan. For ex-
ample, in figure 2 the duration of each mission is assigned
in the initial state, eg:
(= (mission duration Mission10) 117.739)

As a precondition of the complete mission action, the exec-
utive vehicle must be at the mission jump-off location L(T )
for the task t, and there must still be enough resource and
time available to achieve the task completely.

4 Efficient Execution of Strategic Missions
There are some improvements we can add in the way that
the strategic plan is executed. It is possible to simply re-
place the strategic complete mission actions with the tactical
plans they represent. However, a more efficient plan can be
found by replanning the tactical problem during execution
of the strategic plan. Example strategic and tactical plans
are shown in figures 3 and 4.

There are several reasons to replan the tactical problem
before its encapsulating complete mission action is executed
in the strategic plan.

1. depending on the execution of previous tactical plans, the
current amount of available resource might differ from
what was expected to be available;

(define (domain strategic)

(:requirements ...)

(:types waypoint mission vehicle)

(:predicates

(connected ?wp1 ?wp2 - waypoint)

(at ?v - vehicle ?wp - waypoint)

(vehicle_free ?v - vehicle)

(in ?m - mission ?wp - waypoint)

(completed ?m - mission)

(active ?m - mission)

...

)

(:functions

(distance ?wp1 ?wp2 - waypoint)

(mission_duration ?m - mission)

(charge ?v - vehicle)

(mission_total)

)

(:durative-action complete_mission

:parameters (?v - vehicle ?m - mission ?wp - waypoint)

:duration ( = ?duration (mission_duration ?m))

:condition (and

(over all (vehicle_free ?v))

(over all (active ?m))

(at start (in ?m ?wp))

(at start (at ?v ?wp))

(at start (>= (charge ?v) (mission_duration ?m)))

)

:effect (and

(at start (not (at ?v ?wp)))

(at end (increase (mission_total) 1))

(at end (decrease (charge ?v) (mission_duration ?m)))

(at end (completed ?m))

(at end (at ?v ?wp))

)

)

(:durative-action do_hover ...

(:durative-action dock_auv ...

(:durative-action recharge ...

(:durative-action undock_auv ...

))

Figure 1: A fragment of a strategic domain. The body of
some domain-specific operators is ommitted for space. The
complete mission operator corresponds to the tactical plan
of a task.

2. similarly, the complete mission (strategic) action might
be dispatched earlier or later than was anticipated, which
might have knock-on effects on deadlines in the tactical
task;

3. depending on the direction of approach from the previous
action of the (strategic) plan, the tactical plan might be
planned differently to exploit better routes between ele-
ments of the task.
The execution of a tactical plan, including any tactical re-

planning, or rescheduling, is handled by an onboard exec-
utive, in our evaluation we use ROSPlan (Cashmore et al.



(define (problem strategic_mission)

(:domain strategic)

(:objects

v - vehicle

mission_site_start_point_0 wp_auv0

... - waypoint

Mission0 Mission1 Mission10 Mission12

Mission13 Mission14 Mission15

... - mission

)

(:init

(vehicle_free v)

(at auv wp_v0)

(= (charge v) 1200)

(= (mission_total) 0)

(recharge_at mission_site_start_point_0)

(active Mission0)

(active Mission1)

(active Mission10)

(active Mission12)

(active Mission13)

(active Mission14)

(active Mission15)

...

(at 4100 (not (active Mission0)))

(at 7100 (not (active Mission1)))

(at 86400 (not (active Mission10)))

(at 86400 (not (active Mission12)))

(at 86400 (not (active Mission13)))

(at 86400 (not (active Mission14)))

(at 86400 (not (active Mission15)))

...

(in Mission0 mission_site_start_point_1)

(in Mission1 mission_site_start_point_1)

(in Mission10 mission_site_start_point_1)

(in Mission12 mission_site_start_point_1)

(in Mission13 mission_site_start_point_1)

(in Mission14 mission_site_start_point_1)

(in Mission15 mission_site_start_point_1)

...

(= (mission_duration Mission0) 261.868)

(= (mission_duration Mission1) 242.065)

(= (mission_duration Mission10) 117.739)

(= (mission_duration Mission12) 154.668)

(= (mission_duration Mission13) 157.892)

(= (mission_duration Mission14) 151.502)

(= (mission_duration Mission15) 135.29)

...

(connected mission_site_start_point_0 wp_v0)

(= (distance mission_site_start_point_0

wp_v0) 56.7891)

...

)

(:metric maximize (mission_total))

(:goal (> (mission_total) 0))

)

Figure 2: A fragment of an example strategic problem.

2015). In our tactical domain, we use a conservative model
of action duration and cost, so we expect that most tasks will

0.000: (do_hover auv wp_auv0 wp0) [291.548]

291.548: (complete_mission auv mission9 wp0) [194.639]

486.188: (complete_mission auv mission8 wp0) [236.909]

723.098: (do_hover auv wp0 wp1) [270.416]

993.516: (dock_auv auv wp1) [20.000]

1013.516: (recharge auv wp1) [1800.000]

2813.517: (undock_auv auv wp1) [10.000]

2823.517: (do_hover auv wp1 wp0) [270.416]

3093.934: (complete_mission auv mission11 wp0) [284.545]

3378.481: (complete_mission auv mission10 wp0) [293.488]

3671.970: (do_hover auv wp0 wp1) [270.416]

3942.387: (dock_auv auv wp1) [20.000]

3962.387: (recharge auv wp1) [1800.000]

5762.388: (undock_auv auv wp1) [10.000]

5772.388: (do_hover auv wp1 wp0) [270.417]

6042.806: (complete_mission auv mission1 wp0) [342.707]

6385.514: (do_hover auv wp0 wp1) [270.417]

6655.931: (dock_auv auv wp1) [20.000]

6675.931: (recharge auv wp1) [1800.000]

8475.932: (undock_auv auv wp1) [10.000]

8485.932: (do_hover auv wp1 wp0) [270.416]

8756.350: (complete_mission auv mission0 wp0) [381.766]

9138.117: (do_hover auv wp0 wp1) [270.416]

9408.534: (dock_auv auv wp1) [20.000]

9428.534: (recharge auv wp1) [1800.000]

11228.535: (undock_auv auv wp1) [10.000]

Figure 3: A strategic plan for the abstract level. The com-
plete mission action corresponds to the tactical plan of a
task.

% 0.000: (do_hover auv wp0 wp1) [34.547]

% 34.548: (check_panel auv wp1 ip0) [10.000]

% 44.549: (correct_position auv wp1) [10.000]

% 55.208: (valve_state auv wp1 p0) [10.000]

% 70.000: (do_hover auv wp0 wp2) [9.921]

% 79.922: (turn_valve auv wp2 p0 v0) [30.000]

% 109.923: (correct_position auv wp2) [10.000]

% 149.924: (turn_valve auv wp2 p0 v1) [30.000]

% 179.925: (correct_position auv wp2) [10.000]

Figure 4: A tactical plan for a single task. This plan is gener-
ated to provide resource estimates in the construction of an
abstract strategic problem, and encapsulated at that level in
a complete mission action.

be completed within the estimated time. However, when ex-
ecuting plans onboard a physical platform there is always
the chance that actions might fail, take longer than expected,
or be accomplished more quickly.

To take advantage of extra or diminished resource (1), or
alteration in deadline (2), we replan a tactical task before
it is executed. This process takes 10 seconds, and can be
performed in parallel with other strategic actions.

When planning tactical tasks in the construction of the
strategic problem, the task jump-off point L(t) is used as the
intial position of the executive. After the strategic plan has
been generated, the initial position of the executive can be
improved by considering the previous actions in the strategic
plan. Thus, the executive no longer needs to visit the jump
off point, but can move directly to the most convenient first



location in the execution of the task.
To ensure efficient linkage to the next task, the latest desti-

nation in the strategic plan can be used as the initial location
for the executive in the task to be replanned. L(t) will be ig-
nored and replaced with the necessary connecting navigation
actions to get between the latest destination in the strategic
plan and the best entry point in the next task.

Finally, it is necessary to revalidate the strategic plan af-
ter the replanning or completion of any tactical task. It is
possible that a tactical plan takes longer to complete than
expected, and from the current time the strategic plan no
longer respects the task deadlines. Similarly, a tactical plan
might take more resource than accounted for by our conser-
vative action model, and there is no longer enough resource
to complete subsequent actions in the strategic plan.

To account for these points, we use the ROSPlan exec-
utive for dispatch of the strategic, as well as tactical plan.
More generally, execution monitoring techniques developed
for tactical plans can be used for the execution of plans at
both levels in the hierarchy.

5 Results
We tested this approach in the context of the FP7 project
PANDORA, managing a fleet of Autonomous Underwater
Vehicles (AUVs). In order to do this, we have built an under-
water environment simulation. The simulator possesses an
in-built editor used to model missions with very long hori-
zons, allowing us to experiment with multi-hour and multi-
day missions, combining multiple tasks, such as inspection
of a complex site (figure 5) and valve turning, under dead-
lines and resource constraints. The simulation provides un-
certainty about action durations, creates unpredictable fea-
tures such as marine life, simulates currents, and allows the
AUV to discover new features in the environment.

We compare against a selection of top-down decompo-
sitions to show that the tactical information gathered by
the bottom-up top-down (BUTD) approach leads to heigher
quality, and more robust solutions. We compare against a
purely tactical approach to demonstrate that the scenario is
too large to solve as a single planning problem, and some
heirarchical decomposition is a possible solution.

We used the BUTD decomposition approach to separate
a set of missions into tasks, with results between 10 and
30 tasks. We then found strategic solutions to these prob-
lems. To compare, we used the same set of tasks in a top-
down decomposition, in which the tactical missions had not
been planned, and their estimated resource usage computed.
As the top-down approach has not yet planned on the tac-
tical level, another estimate of each task’s resource require-
ments is required. We expect that some prior knowledge of
resource use would be known, and so use the estimated re-
source usage computed from the BUTD decomposition as
this a priori knowledge, and used it in four different esti-
mates of task resource usage:

• mean: a naive strategy that takes the mean resource use
over all tasks, and assigns this to all tasks;

• conservative a conservative strategy that assigns to all
tasks the 80th percentile of resource use over all tasks;

• bucket-mean: the tasks were divided into sets of similar
type – inspection, valve-turning, etc. – and size. Then, the
mean resource use from each set was assigned as the esti-
mated resource use for each task in that set;

• bucket-conservative: the tasks were divided in the same
was as bucket-mean, but the 80th percentile from each set
was used instead of the mean.

We used the planner POPF (Coles et al. 2010). POPF is a
temporal and metric planner, which allows us to model the
synchronisation aspects of our problems (including dead-
lines for interaction with valves), the constraints on energy
over long missions, and optimise plans based on a metric
function. The metric to be optimised was the number of
tasks completed. POPF was given 1800 seconds and 8GB
of RAM to find the best possible solution. In the BUTD ap-
proach POPF was given 10 seconds per tasks to perform tac-
tical planning for each task. This reduced the amount of time
given to solving the BUTD strategic problem.

Due to the extra information from the tactical level, we ex-
pected that the strategic solutions generated using the BUTD
approach would plan more efficient solutions in terms of
number of tasks completed. Moreover, as the tasks had al-
ready been tactically planned, the resource usages of fewer
tasks would have been underestimated, and the solutions are
expected to be more robust.

Table 1 compares the number of tasks solved by BUTD
and the various top-down strategies. As can be seen from
the table, BUTD solves more tasks than any of the top-down
strategies. Table 2 shows the number of tasks for which the
resource usage is underestimated. In the strategic problems
generated by the top-down strategies, these tasks have as-
signed resource estimates lower than that derived from plan-
ning a tactical solution. As a result, these tasks are very
likely to run out of time and resource before successfully
completing.

In the top-down approaches, the conservative approach
performs the poorest, which is to be expected – the large
uniform estimates for the resource usage of every task leads
to a solution with many unnecessary refueling actions and
missed deadlines. Both mean and bucket-mean strategies
lead to higher quality solutions, but are not robust, under-
estimating the resource use of 32% and 27% of tasks re-
spectively. The bucket-conservative approach performs best
of the top-down appraches. The approach is the most robust,
underestimating the resource requirements of only 14% of
tasks, and generating the highest quality strategic solutions
amongst all top-down approaches.

BUTD outperforms all top-down approaches, confriming
our expectations. The variance in the resource usage be-
tween tasks of similar type and size is due to constraints that
are only visible at the tactical level of the original domain,
and as such are not available prior to planning the task itself.
With this information, the BUTD strategic solutions are the
most robust – none of the tasks are guaranteed to fail – and
of the highest quality.

Table 3 shows the results for attempting to plan missions
without decomposing into a tactical/strategic heirarchy. The
number of tactical goals achieved by the best plan. It is clear



Figure 5: The simulation (left) and current plan (right) of a tactical mission for an inspection task.

that a purely tactical approach is insuffiecient for these sizes
of problem.

6 Conclusion
We have presented an novel approach to the heirarchical de-
composition a planning problem in the context of persistent
autonomy. Our approach constructs an abstracted “strategic”
layer of the heirarchy from solutions to the tactical tasks
planned at the level of the original domain. The resulting
problems can be solved and dispatched using a breadth of
execution frameworks already available for executing plans
onboard a robotic platform.

We briefly described the decomposition of a mission into
a set of tasks, based on geographical and temporal cluster-
ing. This simple solution enables us to generate the problem
heirarchy, but is not necessarily the best approach. In fact,
any decomposition sacrifices the possibility or more optimal
solutions that are formed from the interweaving of action in
multiple tasks. Moreover, our spatial and temporal decom-
position is specific to our domain. We propose to investigate
the use of more general decompositions in future work.

In generating an strategic layer there is a trade-off when
estimating the resource constraints of abstracted actions that
encapsulate collections of lower-level behaviour. A more
conservative approach is more robust, but over-estimation
of resource use leads to less efficient plans that do not utilise
all of the time and resource actually available. We show that
it is possible to precompute much of this information in the
automatic generation of the strategic layer, creating tighter
bounds on resource use that remain robust.

We demonstrate these benefits, simulating long-term mis-
sions by autonomous underwater vehicles in a dynamic en-
vironment.



Tasks Completed
number of Top-down

tasks BUTD conservative bucket-mean mean bucket-conservative
10 10 6 10 10 10
10 10 6 10 10 10
10 10 6 10 10 10
15 15 4 15 15 15
15 15 5 15 15 15
15 15 5 15 15 15
20 20 4 20 20 14
20 20 4 20 20 14
20 20 4 20 20 20
25 24 4 16 13 18
25 23 4 16 13 18
25 25 4 14 10 24
30 25 3 11 10 22
30 15 3 11 10 22
30 25 3 11 10 23

Table 1: Comparing BUTD and Top-down performance over long missions. The number of tasks completed in strategic missions
of varying size.

Tasks Underestimated
number conser bucket bucket con
of tasks -vative mean mean -servative

10 1 5 4 2
10 0 3 2 1
10 2 3 2 3
15 1 7 6 2
15 0 3 3 1
15 4 5 4 5
20 1 9 8 2
20 0 5 4 1
20 4 5 4 5
25 1 11 10 2
25 0 6 5 1
25 6 7 6 7
30 1 13 12 2
30 0 7 6 1
30 6 7 6 7

Table 2: The quality of the different top-down representa-
tions, in terms of number of tasks given a duration that is
shorter than the actual estimate of time required to complete
the task. These tasks are likely to run out of time during ex-
ecution.

Goals achieved
goals BUTD Separate tasks
106 106 9
106 106 9
106 106 9
150 150 9
150 150 9
150 150 9
212 212 14
212 212 9
212 212 9
265 258 11
265 250 9
265 265 9
310 270 8
310 190 9
310 270 10

Table 3: Comparing the BUTD decomposition against plan-
ning for each goal separately. The number of goals achieved
by the best plan.
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