
A Compilation of the Full PDDL+ Language into SMT

Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni
Kings College London, London, WC2R 2LS

firstname.lastname@kcl.ac.uk

Abstract

Planning in hybrid systems is important for dealing with real-
world applications. PDDL+ supports this representation of
domains with mixed discrete and continuous dynamics, and
supports events and processes modeling exogenous change.
Motivated by numerous SAT-based planning approaches, we
propose an approach to PDDL+ planning through SMT, de-
scribing an SMT encoding that captures all the features of the
PDDL+ problem as published by Fox and Long (2006). The
encoding can be applied on domains with nonlinear contin-
uous change. We apply this encoding in a simple planning
algorithm, demonstrating excellent results on a set of bench-
mark problems.

1 Introduction
PDDL+ planning is a growing area in the planning com-
munity, mainly motivated by the need to deal with real-
world applications. PDDL+ (Fox and Long 2006) is the
extension of PDDL designed to model hybrid dynamics,
which are featured by a number of applications of inter-
est for planning, and PDDL+ is pushing forward the use of
planning in real-world domains (e.g., (Campion et al. 2013;
Fox, Long, and Magazzeni 2011)). A number of approaches
have been proposed that can handle subsets of PDDL+. No-
toriously, most planners cannot handle events, or are limited
to linear process models, as described later.

In this paper we propose a new approach for PDDL+ plan-
ning that can handle the whole set of PDDL+ features and
respects Fox and Long’s semantics. Our work builds on pre-
vious SAT encodings of planning problems (Kautz and Sel-
man 1996; Rintanen 2010). We propose an SMT encoding
of PDDL+ domains.

Planning through SMT is not new, although the approach
presented here makes important contributions to PDDL+
planning through SMT. A recent approach, dReach, de-
scribed in (Bryce et al. 2015) uses a non-linear SMT solver
for planning in hybrid systems. That approach is promis-
ing, although it suffers some important limitations. Firstly, it
does not use PDDL+, as it relies on the language of dReach,
in which the hybrid problems have to be manually encoded.
Secondly, dReach can only handle a restricted subset of the
language features contained in PDDL+, and, in particular,
they cannot handle events, which are a significant feature of

PDDL+. Thirdly, dReach is tailored to be used only with the
dReal solver (Gao, Avigad, and Clarke 2012).

In this paper, we propose a new encoding for PDDL+
which overcomes these limitations, and gives much bet-
ter results in all the tested domains. In particular, our en-
coding is able to capture all features of PDDL+ (including
events) and works by directly translating standard PDDL+
domain and problem files. Furthermore, we are careful to
correctly capture the must semantics of PDDL+ (which con-
strains how processes and events interact with each other and
with actions). Also, we model the precise semantics of ε-
separation of effects and action preconditions (Fox and Long
2006). The output of the translation is a standard SMT en-
coding that can be used with any SMT solver in the theory
of quantifier-free nonlinear arithmetic (QF NRA). Further-
more, our approach proves to also be efficient in proving
plan-non-existence, along with dramatically improving over
dReach in solvable problems.

In terms of the dynamics our approach can handle, we can
deal with nonlinear polynomial change. Moreover, when an
instantaneous event triggers another, this can cause a cas-
cade of events which all trigger simultaneously. Following
the PDDL+ semantics (Fox and Long 2006), we assume to
have a bound on the length of a causal chain of instantaneous
events.

In the following we first introduce hybrid domains and
PDDL+. We then present the new encoding, and use a work-
ing example to show how PDDL+ features are encoded in
SMT. The overall approach is evaluated on a set of bench-
mark problems, and compared with previous works.

2 Hybrid Systems and PDDL+
A hybrid system is one in which there are both continu-
ous control parameters and discrete logical modes of op-
eration. It represents a powerful model to describe the dy-
namic behaviour of modern engineering artefacts. Hybrid
systems frequently occur in practice, e.g., in robotics or em-
bedded systems. Dealing with hybrid systems is becoming
more and more an important challenge, as many real-world
scenarios feature a mixture of discrete and continuous be-
haviours. Some example applications include coordination
of activities of a planetary lander, oil refinery management,
autonomous vehicles, chemical plant (Della Penna et al.

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence 
Planning for Hybrid Systems: Technical Report WS-16-12

583



2010), smart grid (Campion et al. 2013), and battery man-
agement (Fox, Long, and Magazzeni 2011). Such scenarios
motivate the need to reason with mixed discrete-continuous
domains.

The theory of hybrid automata, introduced by Henzinger
(Henzinger 1996), represents a well-defined formalism for
describing hybrid systems.

2.1 Hybrid Automata
Intuitively, hybrid automata (Henzinger 1996) are finite state
automata extended with continuous variables that evolve
over time. More formally, we have the following:

Definition 1 (Hybrid Automaton). A hybrid automaton is
a tupleH = (Loc,Var , Init ,Flow ,Trans, I ), where
• Loc is a finite set of locations, Var = {x1, . . . , xn} is

a set of real-valued variables, Init(`) ⊆ Rn is the set of
initial values for x1, . . . , xn for all locations `.

• For each location `, Flow(`) is a relation over the vari-
ables in Var and their derivatives of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U ,

where x(t) ∈ Rn, A is a real-valued n × n matrix and
U ⊆ Rn is a closed and bounded convex set.
• Trans is a set of discrete transitions. A discrete transition
t ∈ Trans is defined as a tuple (`, g, ξ, `′) where ` and `′
are the source and the target locations, respectively, g is
the guard of t (given as a linear constraint), and ξ is the
update of t (given by an affine mapping).

• I (`) ⊆ Rn is an invariant for all locations `.

An example is the hybrid automaton for a thermostat de-
picted in Figure 1. Here, the temperature is represented by
the continuous variable x. In the discrete location corre-
sponding to the heater being off, the temperature falls ac-
cording to the flow condition ẋ = −0.1x, while, when the
heater is on, the temperature increases according to the flow
condition ẋ = 5 − 0.1x. The discrete transitions state that
the heater may be switched on when the temperature falls
below 19 degrees, and switched off when the temperature is
greater than 21 degrees. Finally, the invariants state that the
heater can be on (off) only if the temperature is not greater
than 22 degrees (not less than 18 degrees).

Off
ẋ = −0.1x

x ≥ 18

On
ẋ = 5− 0.1x

x ≤ 22
x > 21

x < 19

x = 20

Figure 1: Thermostat hybrid automaton

2.2 PDDL+ Planning
PDDL+ is the extension of PDDL that allows modelling
of mixed discrete-continuous domains, through continuous
processes and events. PDDL+ is based on hybrid automata
semantics, although there are some key difference, such as

the must semantics. Continuous processes are triggered as
soon as their precondition becomes true, and in this sense
they must be triggered. Exogenous events follow the same
semantics. The rationale behind this is that processes and
events are used to model changes that are initiated by chang-
ing in the world, therefore they are not under the control
of the executive and are triggered immediately (see (Bogo-
molov et al. 2014)) for more details).

Various techniques and tools have been proposed to deal
with hybrid domains (Penberthy and Weld 1994; McDer-
mott 2003; Li and Williams 2008; Coles et al. 2012; Shin
and Davis 2005). More recent approaches in this direction
have been proposed by (Bogomolov et al. 2014), where the
close relationship between hybrid planning domains and hy-
brid automata is explored, and (Bryce et al. 2015) where hy-
brid domains are handled using SMT.

Nevertheless, none of these approaches are able to handle
the full set of PDDL+ features, namely nonlinear domains
with processes and events.

On the other hand, many works have been proposed
in the model checking and control communities to han-
dle hybrid systems. Some examples include (Cimatti et
al. 2015; Cavada et al. 2014; Cimatti, Mover, and Tonetta
2012; Tabuada, Pappas, and Lima 2002; Maly et al. 2013),
sampling-based planners (Karaman et al. 2011; Lahijanian,
Kavraki, and Vardi 2014). Another related direction is falsi-
fication of hybrid systems (i.e., guiding the search towards
the error states, that can be easily cast as a planning problem)
(Plaku, Kavraki, and Vardi 2013). However, while all these
works aim to address a similar problem, that cannot be used
to handle PDDL+ models. Some recent works (Bogomolov
et al. 2014; 2015) are trying to define a formal translation be-
tween PDDL+ and standard hybrid automata, but so far only
an over-approximation has been defined, that allows the use
of those tools only for proving plan non-existence.

To date, the only viable approach in this direction
is PDDL+ planning via discretisation. UPMurphi (Della
Penna, Magazzeni, and Mercorio 2012), which implements
the discretise and validate approach, is able to deal with the
full range of PDDL+ features.

3 PDDL+ as SMT
PDDL+ supports the representation of domains with mixed
discrete-continuous dynamics, providing a flexible model
of continuous change. In this section we will describe the
PDDL+ planning model, as an extention of PDDL2.1. Then,
we will describe our encoding of a PDDL+ planning prob-
lem as an SMT formula.

Definition 2 (PDDL2.1 Planning Problem). A PDDL2.1
planning problem is a tuple Π := {P, V,A, I,G}, where
P is a set of propositions; V is a vector of real variables,
called fluents; both are manipulated by A, a set of durative
and instantaneous actions. I(P, V ) is a fuction over P ∪ V
which describes the initial state of the problem. Similarly
G(P, V ) is a function that describes the goal condition.

A durative action a is described as a tuple:

a := {prea, effa, dura}

584



where prea represents the action’s preconditions – condi-
tions that must hold for the action to be applied – effa rep-
resents the action’s effects, and dura is a duration constraint,
a conjunction of numeric constraints corresponding to the
duration of the action a.

A single condition is either a single proposition p ∈ P , or
a numeric constraint over V . A precondition is a conjunction
of zero or more conditions. Each durative action A has three
disjoint subsets of preconditions:

pre`a, pre↔a, preaa ⊆ prea
These represent the conditions that must hold at its start,
throughout its execution, and at the end of the action, re-
spectively.

Action effects are described by seven subsets:

eff +
`a, eff −`a, eff num

`a ,
eff +
aa, eff −aa, eff num

aa ,
eff↔a

eff↔a is a conjunction of continuous numeric effects eff↔,
which are applied continuously while the action is execut-
ing. The rest are instantaneous effects, adding or removing
propositions, or numeric effects. These are bound to the start
or end of the action. For example, eff +

`a denotes the propo-
sitions added at the start of the action. Semantically, the val-
ues of such instantaneous effects can be exploited to support
actions only after a small of time ε (Fox and Long 2003).

As a special case, instantaneous actions have duration 0,
have only one set of preconditions prea; and three sets of
effects eff +

a , eff −a , and eff num
a .

PDDL+ extends PDDL2.1 to support the modelling of ex-
ogenous events, reflecting changes that are initiated by the
environment. PDDL+ introduces the new constructs of pro-
cesses and events.

As an analogue, events are akin to instantaneous actions:
if an event’s preconditions prea are satisfied, it occurs, yield-
ing the event’s instantaneous effects. Similarly, processes are
akin to durative actions. The critical distinctions between
processes and events, and actions, is that a process/event will
automatically occur as soon as its precondition is satisfied;
whereas an action will only happen if chosen to be executed
in the plan. Furthermore, that the values of events become
available instantaneously. Therefore, if one event e1 is trig-
gered, with effects that satisfy another event e2 and trigger a
process p1, then e1, e2, and the start of p1 all happen at the
same time-point. It is due to this behaviour that we place a
bound on the number of cascading (parallel) events.

Definition 3 (PDDL+ Planning Problem). A PDDL+
planning problem is a tuple Π+ :=

〈
P, V,A, Ps,E, I,G

〉
,

in which P is a set of propositions; V is a vector of real
variables, called fluents; and A is a set of durative and in-
stantaneous actions. Ps is a set of processes, and E a set of
events. I(P, V ) and G(P, V ) represent the initial state and
goal condition respectively.

3.1 Encoding of PDDL+ Domains
In this section we describe how we encode a PDDL+ do-
main. First, we introduce the notion of happening, that is

used to capture the change in the state at a given time point,
due to the effects of actions, processes or events happen-
ing at that time point. Namely, each happening encodes the
causal chain of processes, events and instantaneous actions
which might occur simultaneously at a given time point.
Note that, according to the PDDL+ semantics, effects of ac-
tions apply ε time after they occur, therefore we need to con-
sider the change happening in the time intervals t+ ε.

An example of happening is shown in Figure 2.

t t + ε

P0 ∪ V0 ∪ E0 ∪ Ps0

P1 ∪ V1 ∪ E1 ∪ Ps1

PB ∪VB ∪EB ∪PsB ∪A P+ ∪ V +

Figure 2: A single happening, with a bound of B cascading
events. The happening occurs at time t, at which there are
several sets of state variables. These sets describe a causal
chain of instantaneous events and processes triggers. Ac-
tions are included at the end of this chain.

Formally, we have the following

Definition 4 (Happening). A happening is the tuple x :=

{t, P̂ , V̂ , P̂ s, Ê, Â, P+, V +}, where:

• t is the current time point;

• P̂ = {P0, . . . , PB} represents the causal change in the
propositional state variables P at time t;

• V̂ = {V0, . . . , VB} represents the causal change in the
real state variables V at time t;

• P̂ s = {Ps0, . . . , PsB} represents the chain of active pro-
cesses Ps at time t;

• Ê = {E0, . . . , EB} represents the chain of events trig-
gered at time time t;

• Â is the set of actions applied at time t.
• P+ is the value of propositional state variables at time
t+ ε;
• V + is the value of real state variables at time t+ ε.

For our encoding we split durative actions as two intan-
taneous actions, representing the start and end of the action,
and one process representing the continuous numerical ef-
fects and invariant.

A happening describes a moment of discrete change, cor-
responding to the discrete transition Trans of the Hybrid Au-
tomata. Between happenings there is only continuous nu-
meric change (Flow). The key differences are that: multiple
actions can be performed in a single happening in parallel,
meaning that while the hybrid automata is exponential in the
size of the PDDL+ description, our encoding will be linear;

585



and the continuous change is not limited to first order deriva-
tives.

Having defined happenings, a PDDL+ model can be de-
scribed as a bounded set of happenings X := {x1...xn} en-
coded as an SMT formula, such that any proof for the SMT
formula represents the trace of a valid plan for Π+. The plan
corresponding to that trace is the set of action assignments
(Â)1 ∪ ... ∪ (Â)n.

We first describe the encoding of a single happening, and
then describe the encoding of the formula for Π+.

Encoding of a Happening Following from Definition 4,
we encode a happening x as follows:

x :=

〈
t, P0, ..., PB , V0, ..., VB ,
E0, ..., EB , Ps0, ..., PsB ,
A, P+, V + , f lowV , durPs

〉

We recall that we assume a bound B on the length of the
causal chain of events at each time point. If the causal chain
is longer than this, then a valid plan will not be found.

Any actions applied at time point t are represented in the
set A. The sets P+ and V + describe the values of the state
variables at time (t+ε), containing the instantaneous effects
of these actions, according to the PDDL+ semantics (Fox
and Long 2006). Actions can only be applied together in the
same happening if they are not mutually exclusive (mutex).
Actions a1 and a2 can be applied simultaneously if:

prea1 ∩ (eff +
a2 ∪ eff −a2 ∪ eff num

a2 ) = ∅
prea2 ∩ (eff +

a1 ∪ eff −a1 ∪ eff num
a1 ) = ∅

eff +
a1 ∩ eff −a2 = eff +

a2 ∩ eff −a1 = ∅
{v1|∀v1 ∈ eff num

a1 } ∩ {v2|∀v2 ∈ eff num
a2 } = ∅

The set flowV := {flowv|∀v ∈ V } is a numerical ex-
pression that represents the change in value of v from this
time point to the next. Finally, durPs := {durps|∀ps ∈ Ps}
represents the remaining duration of each process. durps is
constrained to be positive if and only if the process is cur-
rently executing.

The constraints within a happening are shown in Figure 3.
Proposition and real variable support constraints ensure that
the value of propositions (H1-H2) and real variables (H3) re-
mains consistent from P0 ∪ V0 to PB ∪ VB . Event precondi-
tions and effects constraints enforce that an event is triggered
if and only if its precondition holds (H4) and that if an event
is triggered, its effects are present in the next set (H5).

Action preconditions and effects ensure the same rules
apply for actions in A; their preconditions must hold in
PB ∪ VB (H6) and their effects are enforced in P+ ∪ V +

(H7). Support across epsilon separation ensures that the
value of propositions (H8-H9) and real variables (H10) re-
mains consistent from PB ∪ VB to P+ ∪ V +.

Process triggering constraints enforce that a process is ac-
tive if and only if its preconditions are satisfied in each set
P0 ∪ V0 to PB ∪ VB (H11). It also enforces that the real
variable durps for each process is greater than or equal to
zero (H12), and that if and only if the process is active at the
end of the causal chain of events, then the duration is strictly

greater than zero (H13). These constraints will be used to
ensure that a process cannot finish outside of a happening.

Finally, Action mutexes are included as a collection of bi-
nary constraints, enforcing that no two mutex actions can
be applied simultaneously. For each pair of mutex actions,
denoted a ∦ a′, one must be false (H14).

Encoding of a Planning Problem Π+ The existence of
a plan for a PDDL+ planning problem Π+ with bound n is
proved by building the SMT formula Π+n in the theory of
quantifier-free (nonlinear) real arithmetic with n copies of
the set of variables x (x1...xn) for n ≥ 1. A plan for Π+ is
the assignment to the action variables in any proof of Π+n.
The encoding is illustrated by Figure 4.

The constraints for a happening in Figure 3 are copied for
each happening x0...xn. Additional constraints in the SMT
formula Π+n are shown in Figure 5 and explained below.

The Instance description constraints enforce the initial
state to hold in the first happening (P1), and that the goal is
achieved in the final happening (P2). Also, they constrain the
timing of happenings to enforce epsilon separation (P3-P4).
Proposition support simply ensures that the discrete state
variables P do not change between two happenings (P5-P6).

Invariant constraints ensure that the continuous numeric
change between happenings is valid. This is achieved in
three parts. First (P7) ensures that if a process is active in
the previous happening, its duration is decreased by the time
between happenings. This constraint, in combination with
constraints (P12-P13) of figure 3, ensure that a process can-
not end between happenings. Note that a process can remain
active over intervals spanning multiple happenings.

Constraint (P8) enforces the invariant of the process. If
a process is active, then the precondition of the process is
active over the whole interval between happenings, and if
the process is not active, then the precondition is false over
the whole interval. For constraints over real valued variables,
this is done by checking the value either side of the interval.
For nonlinear change, it is necessary to include the following
additional constraint:

psi →
A∧

a=1

(
(
daf

dta
)i(
daf

dta
)i+1 >= 0

)
where f is the numeric, non-constant part of the invariant,
and where the (A + 1)th derivative of f is identically zero.
This ensures that the derivatives of the function do not cross
zero over the interval, thus a fluctuating value of f cannot
violate the invariant condition between i and i+ 1.

Constraint (P9) similarly ensures that an event is not trig-
gered during an interval. Here ¬(pre↔e) is the condition
that pree does not hold over the whole interval.

Continuous change on real variables is enforced by cal-
culating the change over the interval (P10) and applying it
to each real variable (P11). In order to calculate the change,
the indefinite integral of the process’ effects upon the vari-
able must be computed. This is done automatically using the
computer algebra system (CAS) SymPy (SymPy 2013).

Note that in our approach, the integration and differenti-
ation required for P8, P9, and P10 is performed by SymPy

586



Proposition and real variable support

H1.
∧B−1

i=0

∧
p∈P pi+1 → (pi

∨
e|p∈eff+

e
ei)

H2.
∧B−1

i=0

∧
p∈P ¬pi+1 → (¬pi

∨
e|p∈eff−e

ei)

H3.
∧B−1

i=0

∧
v∈V (

∧
e|v∈eff num

e
¬vi)→ (vi+1 = vi)

Event preconditions and effects

H4.
∧B

i=0

∧
e∈E ei ↔ (pree)i

H5.
∧B−1

i=0

∧
e∈E ei → (eff e)i+1

Action preconditions and effects
H6.

∧
a∈A a→ (prea)B

H7.
∧

a∈A a→ (eff a)+

Support across epsilon separation
H8.

∧
p∈P p

+ → (pB
∨

a|p∈eff +
a
a)

H9.
∧

p∈P ¬p+ → (¬pB
∨

a|p∈eff−a
a)

H10.
∧

v∈V (
∧

a|v∈eff num
a
¬a)→ (v+ = vB)

Process triggering

H11.
∧B

i=0

∧
ps∈Ps psi ↔ (preps)i

H12.
∧

ps∈Ps durps >= 0

H13.
∧

ps∈Ps psB ↔ (durps > 0)

Action mutexes
H14.

∧
a∈A

∧
a′∈A|a∦a′(¬a ∨ ¬a′)

Figure 3: Reduction of a PDDL+ happening to SMT.

I

G

x1
t1 (t1 + ε)

x2
t2 (t2 + ε)

x3
t3 (t3 + ε)

xn

tn (tn + ε)

Figure 4: A plan is found by building a formula with n copies of the set of variables x: x1...xn. Each Happening models
discrete change. Between happenings there is only continuous numerical change. The initial state is modelled in x1, and the
goal constraints are added to xn.

Instance description
P1. I((P0)1 ∪ (V0)1)

P2. G((P+)n ∪ (V +)n)

P3. t1 = 0

P4.
∧n

i=2 ti ≥ ti−1 + ε

Proposition support
P5.

∧n
i=2

∧
p∈P (p0)i → (p+)i−1

P6.
∧n

i=2

∧
p∈P ¬(p0)i → ¬(p+)i−1

Invariants
P7.

∧n
i=2

∧
ps∈Ps(psB)i−1 → ((durps)i = (durps)i−1 + ti − ti+1)

P8.
∧n−1

i=1

∧
ps∈Ps(psB)i ↔ (pre↔ps)i

P9.
∧n−1

i=1

∧
e∈E ¬(pre↔e)i

Continuous change on real variables

P10.
∧n−1

i=1

∧
v∈V (flowv)i =

∫ ti+1

ti
∪ps∈Ps(eff num

↔ps [v])idt

P11.
∧n

i=2

∧
v∈V ((v0)i = (v+)i−1 + (flowv)i−1)

Figure 5: Reduction of PDDL+ planning problem Π+ to SMT.

outside the solver, during the encoding. Hence the integra-
tion is done only once for each domain.

4 Example: Simple Generator
We will walk through the encoding of a simple PDDL+
problem, the simple generator problem. The domain is
shown in Figure 6. The initial state asserts that there is
one generator; the generator’s capacity C; and initial fuel
level F . The goal state is that the generator has been run:
(generator-ran).

We will show the encoding of three happenings x1 and x2
– the minimum number of steps required to solve this prob-
lem. As there are no events in the domain, we will impose a

bound B = 0 on the number of cascading events. Therefore
each happening is the set:

xi :=

〈 gen ran0, refueling0 : Bool
fuelLevel0, capacity0 : Real
gen ran+, refueling+ : Bool
fuelLevel+, capacity+ : Real
gen start, gen end, gen process : Bool
dur gen process : Real
flow fuelLevel, f low capacity : Real

〉

Additionally, we include the variables: t1, t2 : Real,
which describe the time point of each happening. The re-
sultant plan is shown by assignment to variables in Table 1.

587



(define (domain simple_generator)

(:requirements

:fluents :durative-actions

:duration-inequalities :adl

:typing)

(:types generator)

(:predicates

(generator-ran)

(refueling ?g - generator)

(:functions

(fuelLevel ?g - generator)

(capacity ?g - generator))

(:durative-action generate

:parameters (?g - generator)

:duration (= ?duration 1000)

:condition (over all (>= (fuelLevel ?g) 0))

:effect (and

(decrease (fuelLevel ?g) (* #t 1))

(at end (generator-ran)))))

Figure 6: Simplified PDDL+ generator domain

x1 x2

t1 := 0 t2 := 1000

fuelLevel0 = 1020.0
fuelLevel+ = 1020.0
capacity0 = 1060.0
capacity+ = 1060.0

fuelLevel0 = 20.0
fuelLevel+ = 20.0
capacity0 = 1060.0
capacity+ = 1060.0

gen start
gen process
refueling+

refueling0
gen end
gen ran+

dur gen process = 1000.0
flow fuelLevel = −1000.0
flow capacity = 0

dur gen process = 0.0
flow fuelLevel = 0.0
flow capacity = 0

Table 1: A plan for the simple generator domain, as assign-
ment to the variables. Boolean variables are shown in the
table if and only if they are assigned true.

The formula for Π+ consists of the following constraints
in conjunctive normal form (CNF): the instance description
enforces the initial state, the goal condition, and that that the
second happening is at least ε later than the first.

(0 = t1)
¬(gen ran0)1
¬(refueling0)1
(F = (fuelLevel0)1)
(C = (capacity0)1)
(gen ran+)2
(t2 >= (t1 + ε))

Proposition support constraints (between happenings) en-
sure that discrete state stays constant during the interval1:

(gen ran+)1 = (gen ran0)2
(refueling+)1 = (refueling0)2

1All the formulae in the following are represented in conjunc-
tive normal form (CNF).

Invariant constraints ensure that the durative action’s over-
all condition holds over an interval in which its associated
process is active, and that the durative action’s duration is
properly updated across the interval:

(gen process)1 → ((fuelLevel+)1 >= 0)
(gen process)1 → ((fuelLevel0)2 >= 0)
(gen process)1 →

((dur gen process)2 =
((dur gen process)1 + t1 − t2))

The continuous change over real variables is defined and en-
forced by the flow variables:

(gen process)1 → (flow fuelLevel)1 =
∫ t2

t1
(−1.0)dt

¬(gen process)1 → (flow fuelLevel)1 = 0
(flow capacity)1 = 0
(fuelLevel0)2 = (fuelLevel+)1 + (flow fuelLevel)1
(capacity0)2 = (capacity+)1 + (flow capacity)1

Proposition support constraints (within happenings) and ac-
tion preconditions and effects, describe the discrete changes
that occurs within a happening, for i = {1, 2}:

(gen ran+)i → (gen ran0)i ∨ (gen end)i
¬(gen ran+)i → ¬(gen ran0)i
(refueling0)i = (refueling+)i
(fuelLevel0)i = (fuelLevel+)i
(capacity0)i = (capacity+)i
(gen start)i → (gen process)i
(gen end)i → (gen ran+)i
(gen end)1 ↔ (gen process)1 ∧ ¬(gen process)2

Process triggering constraints work together to ensure that
the duration of the durative action is within the constraints
of the durative action, and that it begins and ends within the
happenings:

(dur gen process)1 >= 0
¬(gen process)1 ↔ ((dur gen process)1 = 0)
(gen start)1 ← ((dur gen process)1 = 1000.0)
¬(gen start)1 ← ((dur gen process)1 = 0.0)

Finally, action mutexes are included. In our encoding, we
make the starts and ends of durative actions mutually exclu-
sive, eg. for i = {1, 2}:

¬(gen start)i ∨ ¬(gen end)i

5 Results
We use our encoding to solve PDDL+ planning problems
with a parallel iterative deepening technique, widely used
in SAT-based planning approaches (Nabeshima, Iwanuma,
and Inoue 2002; Rintanen, Heljanko, and Niemel 2006). The
top-level algorithm encodes and solves n SMT encodings
simultaneously, solving the planning problem for horizon
lengths 1, 2, 3, 4, ..., n. In this case, horizon length corre-
sponds to number of happenings. If a formula is found satis-
fiable, then a plan has been found and the planner terminates.
If a formula is found unsatisfiable, then an encoding is made
for the next shortest horizon length, so that there are always

588



Domain Tool 1 2 3 4 5 6 7 8

Generator lin-
ear

SMTPlan+ 0.02 0.03 0.02 0.01 0.02 0.02 0.02 0.02
dReach 2.87 - - - - - - -
UPMurphi 0.2 18.2 402.34 - - - - -

Generator
nonlinear

SMTPlan+ 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
dReach 5.16 - - - - - - -
UPMurphi - - - - - - - -

Generator
nonlin. events

SMTPlan+ 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05
dReach x x x x x x x x
UPMurphi 658.18 - - - - - - -

Generator Tor-
ricelli

SMTPlan+ 0.03 0.03 0.15 0.92 0.04 0.05 0.09 0.50
dReach x x x x x x x x
UPMurphi - - - - - - - -

Car
SMTPlan+ 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02
dReach 1.30 1.41 1.48 1.53 1.47 1.54 1.40 1.53
UPMurphi 28.44 386.5 - - - - - -

Table 2: Results in seconds for solvable instances. Instance numbers correspond to number of tanks (generator) and number of
acceleration steps (car). Abbrev.: -: tool still running after 30 minutes, ’.’: tool ran out or memory, x: tool cannot handle the
problem.

n SMT instances being solved. The SMT solver we use is
z3 (De Moura and Bjørner 2008).

We compare our approach (called SMTPlan+) against
existing PDDL+ planner UPMurphi (Della Penna, Mag-
azzeni, and Mercorio 2012), and with dReach (Bryce et
al. 2015), using the SMT solver dReal (Gao, Avigad, and
Clarke 2012), on domains without events. We use the gen-
erator and car domains (Bogomolov et al. 2014). The ex-
periments were run using 8GB of RAM and a 30 minute
timeout. All test domains, problems and plans are available
at: [Website omitted for author anonymity].

Generator The generator domain is a PDDL+ benchmark
problem that revolves around refueling a diesel-powered
generator which has to run for a given duration without over-
flowing or running dry. To test scalability, the number of
tanks is increased while decreasing the initial generator fuel
level.

We consider four versions of this domain: linear,
simplified-nonlinear (the same used in (Bryce et al. 2015)),
nonlinear with events, and the Torricelli nonlinear (Howey
and Long 2003). Note that the latter version uses the Torri-
celli’s Law (which is too complex for dReach), and hence
the fuel level in a refueling tank (Vfuel) is calculated by:

Vfuel = (−ktr +
√
Vinit)

2 tr ∈
[
0,

√
Vinit
k

]
(1)

where Vinit is the initial volume of fuel in the tank, k is
the fuel flow constant (which depends on gravity, size of the
drain hole, and the cross-section of the tank), and tr is the
time of refueling (bounded by the fuel level and the flow
constant).

Here is an example of plan found by SMTPlan+ for the
Torricelli nonlinear generator (Fuel level 960, Generator ca-
pacity 990):

0.0: generate [1000.0]
959.0: refuel_tank1 [10.0]
959.0: refuel_tank2 [10.0]

Car The car domain is another PDDL+ benchmark (Fox
and Long 2006) where a vehicle has to cover a given dis-
tance and have a zero velocity at the end, and the ac-
tions available are accelerate and decelerate that incre-
ments or decrements by 1 the current velocity, respec-
tively. To test scalability, the bound on maximum acceler-
ation/deceleration is increased.

Our results for solvable instances are reported in table 2.
On both linear and nonlinear domains, SMTPlan+ outper-
forms all other planners in time to solve and in number of in-
stances solved. In all domains, SMTPlan+ scales very well.
For these domains, the number of happenings required is
small, thus the minimal SMT encoding required to solve the
problem is also small. The iterative deepening algorithm is
able to reach a satisfiable encoding, and produce a plan very
quickly.

dReach also performs iterative deepening, but performs
more poorly. This is due to the semantics of dReach; in the
dReach domain and problem description, each mode of con-
tinuous change must be explicitly defined, and the number
of modes increases exponentially with the number of pro-
cesses and durative actions (eg. the files for 1, 2, 3 and 4
tanks problems are respectively 91, 328, 1350, 5762 lines
long). Furthermore, the bound is not on the number of hap-
penings, but on the number of mode changes, which does
not allow for parallel execution of actions.

Moreover, dReach does not perform integration and dif-
ferentiation outside of the solver, during encoding. Instead
it relies upon the more expressive logic of the internal SMT
solver, dReal, at the cost of extra computation time. In addi-
tion, they are unable to use SMT solvers other than dReal.

589



Domain Tool 1 2 3 4 5 6 7 8

Generator lin-
ear

SMTPlan+ 0.01 0.02 0.16 2.84 390.86 - - -
dReach 2.57 189.94 - - - - - -
UPMurphi 0.90 29.42 - - - - - -

Generator
nonlinear

SMTPlan+ 0.01 1.95 33.48 - - - - -
dReach 2.43 212.43 - - - - - -
UPMurphi - - - - - - - -

Generator
nonlin. events

SMTPlan+ 0.02 18.58 21.83 - - - - -
dReach x x x x x x x x
UPMurphi 658.18 - - - - - - -

Generator
Toricelli

SMTPlan+ 0.03 2.06 19.57 - - - - -
dReach x x x x x x x x
UPMurphi - - - - - - - -

Car
SMTPlan+ 0.68 0.02 0.00 0.00 0.00 0.00 0.00 0.01
dReach 0.67 0.50 0.62 0.45 0.58 0.57 0.49 0.65
UPMurphi 36.01 445.23 - - - - - -

Table 3: Results in seconds for unsolvable instances. Instance numbers correspond to number of tanks (generator) and number
of acceleration steps (car). Abbrev.: -: tool still running after 30 minutes, x: tool cannot handle the problem.

Domain Tool 1 2 3 4 5 6 7 8
Generator lin-
ear

SMTPlan+ 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02
dReach 2.73 13.47 104.61 695.70 - - - -

Generator
nonlinear

SMTPlan+ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dReach 10.42 1685.35 - - - - - -

Car
SMTPlan+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dReach 0.77 0.76 0.76 0.76 0.76 0.76 0.77 0.76

Table 4: Results in seconds for minimal step encoding required to solve each instance.

We also compare our encoding directly against dReach as
reported in prior work (Bryce et al. 2015): reporting times
to solve only the encoding of a minimal step plan for each
instance. These are not the times required to solve a PDDL+
instance, but a direct comparison of encodings on satisfi-
able problems. We find the encodings exhibit similar perfor-
mance in the car domain. However, we find the SMTPlan+
encoding scales far better on the generator problem, as dis-
cussed above. Moreover, the SMTPlan+ encoding does not
require the advanced features of dReal, and can be solved
more quickly using z3.

Our results for unsolvable instances are shown in table 3.
SMTPlan+ and dReach can only prove unsolvability up to an
upper bound on the number of happenings. Here we prove
plan non-existence for domains which have a tight deadline,
and where each ground action can only be applied a finite
number of times. . We also include SpaceEx that can be
used to prove plan-non existence for the generator linear do-
main (Bogomolov et al. 2014). We observe that both totally
ordered planning approaches perform well proving unsolv-
ability in the car domain. There are few choices of symbolic
plan in this domain, leaving only the timing of the happen-
ings and numeric constraints to be solved. Both SMTPlan+
and dReach solve these constraints very quickly. However,
for PDDL+ problems in general, without deadlines and with

repeatable actions, proving unsolvability is difficult through
totally ordered planning with iterative deepening.

6 Conclusion
In this paper we presented a new approach for PDDL+ plan-
ning that can handle the whole set of PDDL+ features and
respects Fox and Longs semantics. We proposed an SMT en-
coding of PDDL+ domains that correctly captures the must
semantics of PDDL+ which constrains how processes and
events interact with each other and with actions. The encod-
ing is general and can be used with any SMT solver in the
theory of quantifier-free nonlinear arithmetic.

Experimental results show that the approach dramati-
cally outperforms existing work in finding plans for solv-
able problems, and it is efficient also in proving plan-non-
existence.

References
Bogomolov, S.; Magazzeni, D.; Podelski, A.; and Wehrle,
M. 2014. Planning as model checking in hybrid domains.
In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2228–2234.
Bogomolov, S.; Magazzeni, D.; Minopoli, S.; and Wehrle,
M. 2015. PDDL+ planning with hybrid automata: Foun-
dations of translating must behavior. In Proceedings of the

590



Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling, ICAPS, 42–46.
Bryce, D.; Gao, S.; Musliner, D. J.; and Goldman, R. P.
2015. SMT-based nonlinear PDDL+ planning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence, 3247–3253.
Campion, J.; Dent, C.; Fox, M.; Long, D.; and Magazzeni,
D. 2013. Challenge: Modelling unit commitment as a plan-
ning problem. In Proceedings of the Twenty-Third Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mari-
otti, A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta,
S. 2014. The nuXmv symbolic model checker. In Com-
puter Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, 334–
342.
Cimatti, A.; Griggio, A.; Mover, S.; and Tonetta, S. 2015.
HyComp: An SMT-based model checker for hybrid sys-
tems. In Proceedings of Tools and Algorithms for the Con-
struction and Analysis of Systems, ETAPS, 52–67.
Cimatti, A.; Mover, S.; and Tonetta, S. 2012. SMT-based
verification of hybrid systems. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient
SMT solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 337–
340.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2010. A PDDL+ benchmark problem: The batch chemical
plant. In Proceedings of the 20th International Conference
on Automated Planning and Scheduling, ICAPS, 222–225.
Della Penna, G.; Magazzeni, D.; and Mercorio, F. 2012.
A universal planning system for hybrid domains. Applied
Intelligence 36(4):932–959.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Res. (JAIR) 20:61–124.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Jorunal of Artificial Intel-
ligence Research (JAIR) 27:235–297.
Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
construction of efficient multiple battery usage policies. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, IJCAI, 2620–2625.
Gao, S.; Avigad, J.; and Clarke, E. M. 2012. Delta-complete
decision procedures for satisfiability over the reals. CoRR.
Henzinger, T. A. 1996. The theory of hybrid automata. In
Proceedings of the 11th Annual IEEE Symposium on Logic
in Computer Science, 278–292.

Howey, R., and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2.1 used in the international
planning competition. In Proc. of ICAPS Workshop on the
IPC.
Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; and
Teller, S. J. 2011. Anytime motion planning using the RRT.
In IEEE International Conference on Robotics and Automa-
tion, ICRA 2011, Shanghai, China, 9-13 May 2011, 1478–
1483.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic and stochastic search. In Pro-
ceedings of the 13th National Conference on Artificial Intel-
ligence (AAAI’96), 1194–1201.
Lahijanian, M.; Kavraki, L. E.; and Vardi, M. Y. 2014. A
sampling-based strategy planner for nondeterministic hybrid
systems. In IEEE International Conference on Robotics and
Automation, ICRA, 3005–3012.
Li, H. X., and Williams, B. C. 2008. Generative planning
for hybrid systems based on flow tubes. In ICAPS, 206–213.
Maly, M. R.; Lahijanian, M.; Kavraki, L. E.; Kress-Gazit,
H.; and Vardi, M. Y. 2013. Iterative temporal motion plan-
ning for hybrid systems in partially unknown environments.
In Proceedings of the 16th international conference on Hy-
brid systems: computation and control, HSCC, 353–362.
McDermott, D. V. 2003. Reasoning about autonomous pro-
cesses in an estimated-regression planner. In ICAPS, 143–
152.
Nabeshima, H.; Iwanuma, K.; and Inoue, K. 2002. Effec-
tive sat planning by speculative computation. In AI 2002:
Advances in Artificial Intelligence, volume 2557 of Lecture
Notes in Computer Science. 726–726.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning
with continuous change. In AAAI, 1010–1015.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2013. Falsi-
fication of LTL safety properties in hybrid systems. STTT
15(4):305–320.
Rintanen, J.; Heljanko, K.; and Niemel, I. 2006. Planning as
satisfiability: parallel plans and algorithms for plan search.
Artificial Intelligence 170:1031–1080.
Rintanen, J. 2010. Madagascar: Efficient planning with
SAT. In The 7th International Planning Competition, 61–
64.
Shin, J.-A., and Davis, E. 2005. Processes and continuous
change in a sat-based planner. Artif. Intell. 166(1-2).
SymPy. 2013. Website. http://www.sympy.org/.
Tabuada, P.; Pappas, G. J.; and Lima, P. U. 2002. Composing
abstractions of hybrid systems. In Hybrid Systems: Com-
putation and Control, 5th International Workshop, HSCC,
436–450.

591




