
Situated Planning for Execution Under Temporal Constraints

Michael Cashmore, Andrew Coles
King’s College London

Bence Cserna
University of New Hampshire

Erez Karpas
Technion — Israel Institute of Technology

Daniele Magazzeni
King’s College London

Wheeler Ruml
University of New Hampshire

Abstract

One of the original motivations for domain-independent plan-
ning was to generate plans that would then be executed in the
environment. However, most existing planners ignore the pas-
sage of time during planning. While this can work well when
absolute time does not play a role, this approach can lead to
plans failing when there are external timing constraints, such
as deadlines. In this paper, we describe a new approach for
time-sensitive temporal planning. Our planner is aware of the
fact that plan execution will start only once planning finishes,
and incorporates this information into its decision making, in
order to focus the search on branches that are more likely to
lead to plans that will be feasible when the planner finishes.

Introduction

One of the original motivations for domain-independent
planning was for controlling robots performing complex
tasks (Fikes and Nilsson 1971). The typical approach to con-
trolling robots using a planner is to call the planner to gen-
erate a plan which solves the problem, and then execute that
plan in the environment. This approach works well if the
plan remains applicable regardless of when it is executed.
However, if there are external timing constraints, such as
deadlines which must be met, things become more complex.
This is because we must take into account the planning time.

For example, in the Robocup Logistics League (RCLL)
challenge (Niemueller, Lakemeyer, and Ferrein 2015), a
team of robots must move workpieces between different ma-
chines that perform some operations on them, and fulfill
some order with a deadline. This calls for using temporal
planning, because we would like all robots to work in par-
allel, and actions have different durations. The typical ap-
proach would have the planner come up with a plan which
would work had it been executed at time 0, and then execute
this plan when the planner completes. Obviously, this might
lead to missing the deadline, and thus, plan failure.

One simple approach to handling this problem is to use
some estimate on how long planning will take, and adapt all
the deadlines assuming plan execution would start when the
planner finishes. While using an upper bound on planning
time will eliminate the problem of plans failing, it might lead
to the planner not finding a feasible plan to begin with. On
the other hand, using too low an estimate could still lead to
plans failing, as discussed above.

In this paper, we describe a new approach for situated
temporal planning. Our planner is aware of the fact that plan
execution will start once planning finishes, and incorporates
this information into the internal data structure for temporal
reasoning used by the planner, together with estimates of re-
maining planning time. This helps our planner prune partial
plans which are likely to lead to the planner finishing plan-
ning too late for the plans to be of use, and focus on more
promising branches of the search.

Our empirical evaluation demonstrates that this planner
can handle temporal planning problems with absolute dead-
lines much better than a naive baseline approach, in realis-
tic settings where planning time counts, and the plan can
only start executing once it is completed. To the best of
our knowledge, this is the first temporal planner to explic-
itly consider planning time, within the context of planning
and execution. Thus, our planner is especially applicable to
online planning for robotics, where a robot must find a plan
to execute, but the world does not stop while the robot is
planning.

Preliminaries

We consider propositional temporal planning problems with
Timed Initial Literals (TIL) (Cresswell and Coddington
2003; Edelkamp and Hoffmann 2004). Such a planning
problem Π is specified by a tuple Π = 〈F,A, I, T,G〉,
where:

• F is a set of Boolean propositions, which describe the
state of the world.

• A is a set of durative actions. Each action a ∈ A is de-
scribed by:

– Minimum duration durmin(a) and maximum dura-
tion durmax(a), both in R

0+ with durmin(a) ≤
durmax(a),

– Start condition cond�(a), invariant condition
cond↔(a), and end condition cond�(a), all of
which are subsets of F , and

– Start effect eff �(a) and end effect eff �(a), both of
which specify which propositions in F become true
(add effects), and which become false (delete effects).

• I ⊆ F is the initial state, specifying exactly which propo-
sitions are true at time 0.

The 2018 AAAI Spring Symposium Series

490



• T is a set of timed initial literals (TIL). Each TIL l ∈
T consists of a time time(l) and a literal lit(l), which
specifies which proposition in F becomes true (or false)
at time time(l).

• G ⊆ F specifies the goal, that is, which propositions we
want to be true at the end of plan execution.

A solution to a temporal planning problem is a schedule
σ, which is a sequence of triples 〈a, t, d〉, where a ∈ A is
an action, t ∈ R

0+ is the time when action a is started, and
d ∈ [durmin(a), durmax(a)] is the duration chosen for a. A
schedule can be seen as a set of instantaneous happenings
(Fox and Long 2003), which occur when an action starts,
when an action ends, and when a timed initial literal is trig-
gered. Specifically, for each triple 〈a, t, d〉 in the schedule,
we have action a starting at time t (requiring cond�(a) to
hold a small amount of time ε before time t, and applying
the effects eff �(a) right at t), and ending at time t + d (re-
quiring cond�(a) to hold ε before t + d, and applying the
effects eff �(a) at time t+ d). For a TIL l we have the effect
specified by lit(l) triggered at time time(l). Finally, in or-
der for a schedule to be valid, we also require the invariant
condition cond↔(a) to hold over the open interval between
t and t+d, and that the goal G holds at the state which holds
after all happenings have occurred.

Related Work

Temporal planners have of course been used in on-line ap-
plications before. For example, researchers at PARC built
a special-purpose temporal planner for on-line manufactur-
ing (Ruml et al. 2011). As in many temporal planners, each
search node contains a Simple Temporal Network (STN)
(Dechter, Meiri, and Pearl 1991) to represent the time points
of events in the plan and constraints on when they can occur.
To reflect the fact that actions cannot occur until planning
has completed, the PARC planner includes a hard-coded es-
timate of the required planning time, and every time point in
the STN is constrained to occur at least that far after the time
that planning started (Ruml et al. 2011, Figure 11). While
this is a reasonable solution in a domain where the expected
planning problems are all of similar difficulty, this approach
can perform poorly in domains that include a wide variety
of problems, as we will see below.

There has also been work on time-aware planning in
the search community. Dionne, Thayer and Ruml (2011)
present a so-called ‘contract algorithm’ called Deadline-
Aware Search (DAS) that, given a deadline, attempts to re-
turn the cheapest complete plan that it can find within that
deadline. The main part of the algorithm works by estimat-
ing the time that will be required to find a solution beneath
each node in the open list, and pruning those for which this
estimate exceeds the remaining search time. The estimate is
the product of three quantities that are determined on-line:
the time required to expand a node, expressed in seconds,
an estimate on the number of search nodes remaining on the
path to a goal beneath the given node, notated d(n), and the
average number of expansions required before a generated
node is selected for expansion, called the expansion delay.
Although DAS was shown to surpass anytime algorithms on

combinatorial benchmarks, its ideas have never been imple-
mented in a domain-independent planner.

Bugsy (Burns, Ruml, and Do 2013) is a search algorithm
that attempts to minimize the user’s utility, which is repre-
sented as a linear combination of planning time and plan
cost. If plan cost is makespan, then the utility measures the
‘goal achievement time’, or the time from when the goal
is presented to the planner, and planning starts, to when
the plan finishes executing, and the goal is achieved by the
agent. Bugsy is a best-first search algorithm, and relies on an
estimate of remaining planning time similar to that of DAS
in order to estimate the utility of each node it expands. While
Bugsy is sensitive to its own planning time, it is not cog-
nizant of external timed events such as deadlines, and does
not prune nodes based on temporal information.

Related concepts in the search community include real-
time search and anytime search. In the real-time search
setting, the planner must return within a prespecified time
bound the next action for the agent to take. This differs from
our setting, in which the planner must return a complete plan
and the temporal constraints are fine-grained and can relate
individual domain propositions to absolute times. In anytime
search, a planner quickly finds a complete plan, and then
uses additional computation time to improve it until either it
is terminated by an external signal or an optimal solution is
found. In our setting, the planner may not run indefinitely,
but rather is expected to minimize the agent’s goal achieve-
ment time. And while doing so, we demand that the planner
recognize that time is passing and that it be responsive to
timed events in the external world.

Encoding Planning and Execution Time
Many temporal planners (e.g., (Coles et al. 2009; 2012;
2010; Benton, Coles, and Coles 2012; Fernández-González,
Karpas, and Williams 2015; 2017)) rely on an internal Sim-
ple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991) (or possibly a linear program or a convex optimiza-
tion problem — but we will abuse terminology and call all of
these the STN) to represent the temporal constraints between
the set of the time points where actions start or end. Specif-
ically, planners that support required concurrency (Cushing
et al. 2007) tend to use this representation to support concur-
rent execution of actions.

When planning is done offline, the STN contains some
time point tES , which is the start of plan execution, and is
assigned the value of 0. For convenience, we split each oc-
currence of action a in the plan into two snap-actions: a� and
a�, corresponding to the start and end of the action, respec-
tively. For each of these we have a corresponding time point
in the STN: t(a�) when a starts, and t(a�) when a ends. Ac-
tions which have started but not yet finished will only have
the start time point, since this is a partial plan (as noted ear-
lier, all starts eventually need to be paired with an end, but
this is not a requirement of plans that are still under con-
struction). Temporal constraints between the time points are
either action duration constraints (between the time points
of the same action occurrence), or sequencing constraints
due to causal relations between actions. For example, if the
end of action a achieves the start conditions of action b, then

491



we would have t(a�) − t(b�) ≥ ε, where ε is the mini-
mum separation between two events that depend on each
other (Fox and Long 2003). Or, if the start of c threatens
the preconditions of d, then t(c�) − t(d�) ≥ ε. Addition-
ally, timed initial literals (TIL) (Edelkamp and Hoffmann
2004) are encoded into the STN by adding a time point t(f)
for the occurrence of TIL f , with the temporal constraint
t(f)− tES = time(f), where time(f) is the time at which
f occurs, as specified in the problem definition. These are
then ordered with respect to the other steps in the plan by,
again, adding sequencing constraints due to the causal rela-
tions between lit(f) and the other steps in the plan.

In this paper, we focus on online planning. We want to
account for the fact that time passes during the planning
process, and that, in fact, planning time and execution time
are both the same. In order to do so, we modify the STN
described above by adding two additional time points: tPS

which is the time when planning started, and tnow which
is the current time. We add the temporal constraint that
tnow − tPS equals the currently elapsed time in planning.
The expression tES − tnow corresponds to the remaining
planning time, which is, of course, unknown. We will dis-
cuss this expression, and how to treat it, in the next sec-
tion. Now, tPS = 0, while tES is unknown. Finally, be-
cause TILs describe absolute time, we must modify the tem-
poral constraints corresponding to TILs to use tPS instead
of tES , i.e., the temporal constraint for TIL l would be
t(l) − tPS = time(l), where time(l) is the time at which
l must occur.

Time-Aware Planning

We have described a technique for encoding an STN which
captures the fact that execution only starts after planning
ends, and planning takes time. We now describe the impact
this has on search within a temporal planner.

Forward Planning Search Space

We take as our basis the forward-search approach of the
planner OPTIC (Benton, Coles, and Coles 2012). Here, each
search state comprises the plan π (of snap actions) that
reaches that state; the propositions p ⊆ F that hold after
π was executed from the initial state; and the Simple Tem-
poral Network STN (π) encoding the temporal constraints
over π.

When expanding a state in OPTIC, successors were gener-
ated in one of three ways:

• By applying a start snap-action that is logically appli-
cable: any a� where p � cond�(a); eff �(a) would not
break the invariant condition of an action that has started
in π but not yet ended; and cond↔ would be satisfied once
a� has been applied. In this case, in the successor state,
π′ = π + [a�], p is updated according to eff �(a) to yield
p′, and a variable t(a�) added to STN (π′). Sequence con-
straints are imposed on this such that it follows any step
in π that met one of cond�(a); or whose effects refer to
the same propositions as eff �(a); or whose preconditions
(including invariant conditions) would be threatened by

eff �(a)
1.

• By applying an end snap-action that is logically applica-
ble – any a� where a has started in π but not yet ended;
p � cond�(a); and whose effects eff �(a) would not
break the invariant of any other action that has started in
π but not yet ended. In this case, the successor state is up-
dated in a way analogous to starting an action, with the
additional STN constraint durmin(a) ≤ t(a�) − ta� ≤
durmax(a).

• By applying a Timed Initial Literal l that has not already
occurred in π. In this case, π′ = π + [l], p is updated ac-
cording to lit(l) to yield p′, and a variable t(l) is added
to STN (π′). For the purposes of sequence constraints,
this can be thought of as being a snap-action with no pre-
conditions – it suffices to order it after steps in π whose
preconditions or effects refer to lit(l). To fix the time at
which l occurs, an additional STN constraint is added:
t(l) − tPS = time(l) – while snap-actions are ordered
only relative to other points in the plan, TILs must also
occur a specific amount of time after time zero.
State expansion in this way generates candidate succes-

sors that are logically feasible; to ensure they are also tem-
porally feasible, only those whose STNs are consistent are
kept. Using an all-pairs shortest path algorithm in the STN
will both check consistency (with negative cycles corre-
sponding to an inconsistent STN), and give us the earliest
and latest possible time at which each snap-action could be
applied. We denote these tmin(x) and tmax(x) for each STN
variable t(x). Typically, only the former of these is used –
to map π to a schedule σ, each start–end snap-action pair
a�, a� gives a triple 〈a, tmin(a�), (tmin(a�) − tmin(a�))〉.
In other words, apply each action as soon as possible, with
the shortest possible duration, thereby minimizing execution
time.

Extending this approach to planning while aware of plan-
ning and execution time requires a number of modifications,
which we now step through.

No action can start before plan execution starts – be-
cause execution cannot start until a plan has been produced.
That is, for each a� in the plan π, we add a constraint
tES ≤ t(a�) to the STN, where tES is the time at which
execution will start. We do not know this a priori, but can at
least say tnow ≤ tES is the time since the planner started ex-
ecuting. An STN for a plan produced during successor gen-
eration will then be consistent iff it is not already too late to
start executing the plan.

These additional constraints can be thought of as pushing
the earliest actions in the plan to start after now; the effects
of which are then propagated through the STN to appropri-
ately delay the later actions, according to the sequence and
duration constraints. If an otherwise-consistent STN is made
inconsistent by these, then necessarily there must be a snap-
action x where tmax(x) < tnow – i.e. we are past the latest
point at which x could have been applied.

1As search progresses in a strictly forward direction, all threats
are dealt with by demotion – ordering the new step after existing
steps.

492



Planning time particularly matters in the presence of TILs
– in the absence of these, we can start executing a plan when-
ever we like by simply delaying the start of the first action.
If TILs are present, though, these anchor the plan to having
to fit around absolute time: with reference to state expan-
sion, when a TIL is added to the plan, this fixes it to come
after any earlier steps with which it would interfere, thereby
constraining their maximum time.

Automatically applying past TILs – if we are now past
the time at which a TIL has occurred, it is added to π before
expanding the state.

More formally, immediately before expanding a state S =
〈π, p,STN (π)〉, the following TILs are applied:

{l ∈ T | t(now) ≥ time(l) ∧ l 	∈ π}
If there are several such TILs, they are applied in as-

cending order of time(l). The mechanism for applying these
TILs is identical to that in OPTIC: each is applied, to yield a
successor state S′; and then S′ replaces S. By doing this be-
fore expanding the state, we account for time having passed
since S having been placed on the open list, and it being
expanded – if in this time a TIL will have happened, S is
updated accordingly, before expansion.

If this modification was not made, search would be free to
branch over what step should next be added to π. In the case
where a TIL l represents a deadline – by deleting a precon-
dition on actions that must occur by a given time – search
would be free to apply these actions, even though in real-
ity it is too late. By forcing the application of past TILs, we
avoid this behavior: all such actions would then become in-
applicable.

Pruning states where it is too late to start their plan
From the STN for a plan π, we can note the latest point at
which that plan can start executing; and prune any states for
which this time has already passed.

As noted earlier, to check if the STN for a state is con-
sistent, we use an all-pairs shortest path algorithm. This in-
cidentally yields the minimum and maximum time-stamps
for each snap-action. For snap-actions that are ordered be-
fore a TIL – which are fixed in time – these maximum
time-stamps are finite. Moreover, because the plan is ex-
panded in a strictly forward direction, the maximum times-
tamps are monotonically decreasing: it is not possible to
somehow order a new action before a plan step, in a way
that reduces its maximum time-stamp. Thus, for each state
S = 〈π, p,STN (π)〉 we identify the start snap-action in π
that has the earliest possible maximum time-stamp – this is
the latest time at which π could feasibly be executed:

latest start(π) = min{tmax(a�) | a� ∈ π}
Then, when S is about to be expanded – after it was gener-

ated, placed on the open list, and then removed – it is pruned
if tnow > latest start(π).

Experiments

To gain a concrete sense of the practical import of our tech-
nique, we experimentally compared it to the baseline method

Figure 1: Screenshot of the underwater simulator, in which
the AUV is inspecting the structure.

of prespecified planning times. We performed experiments
in two types of domains: a realistic AUV simulation, and a
set of IPC domains.

As a baseline against which to compare our time-aware
planner, we used OPTIC in optimization mode, searching for
the best plan within a varying fixed planning time of T sec-
onds. Time windows were considered to be T seconds ear-
lier, to adjust the initial state to the start of execution time.
Therefore, a TIL l occurring at time time(l) seconds, using a
planning time of T seconds, will occur at time (time(l)−T )
(at least 0) in the plan.

AUVs

We demonstrate the approach in simulation with au-
tonomous underwater vehicles (AUVs). We embed OPTIC
and our planner into ROS, using ROSPlan (Cashmore et
al. 2015), to control the AUV. The AUV is equipped with
a manipulator and placed in an underwater structure, with
the task to inspect certain areas and to ensure that valves
are turned to correct angles. The valves can only be turned
within certain time windows, outside of which the valve is
blocked. If the valve cannot be turned to the correct angle
within an early time window, then a later window can be
used. We generated 41 missions with varying time windows.
A screenshot of the simulation is shown in Figure 1

These missions normally form part of a larger, strategic
mission, spread out over a number of seabed manifolds. The
AUV moves between these manifolds in order to complete
the missions. Due to the uncertainty in the environment, it
is not known beforehand precisely what time the AUV will
arrive at the manifold. Before beginning the task, the AUV
must construct a new plan. Plans with shorter durations are
considered to be of higher quality, as this eases the time con-
straints on the remainder of the missions. We use this sce-
nario to show that our approach allows the AUV to make use
of earlier time windows, generating plans of higher quality.

The results are summarized in Table 1. The table shows
the number of problems solved for each planner, out of a
possible 41. Using our approach every problem was solved.
Using a fixed planning time, some problems were unsolv-
able due to a planning time that was too short. The table

493



Time
Aware

OPTIC50 OPTIC100 OPTIC200

best quality 34 13 20 19

IPC quality 40.19 25.55 26.19 26.47

problems
solved

41 26 34 40

Table 1: Table comparing the number of problems solved,
the number of plans of highest quality, and the IPC quality
for each approach.

Figure 2: Plan durations per problem for each approach. The
time-aware approach solves many problems using an earlier
time window. OPTIC using a long planning time solves al-
most every problem, but only using the later time windows.
Other planning time bounds are less reliable.

also shows the number of best plans for each approach. This
is the number of problems for which that approach produced
the plan of highest quality between the four approaches (pos-
sibly jointly). There it can be seen that although increasing
the planning time allows for all problems to be solved, the
quality is much poorer. The higher absolute number of best
plans for the 200 second planning time is due to the greater
number of problems solved. Finally, the table shows the IPC
quality, calculated for all problems. These results demon-
strate the choice between acting quickly, utilizing early time-
windows, or producing plans reliably. Using the time-aware
approach does both.

This can be seen more clearly in Figure 2. This figure
compares the plan duration from each approach per prob-
lem. Using OPTIC200 almost every problem is solved, at the
longest possible plan duration – assuming planning takes
200 seconds forces the planner to have to use the later time
windows. Other approaches may generate shorter plan dura-
tions, but fail to solve many of the problems.

IPC Domains

In our IPC experiments, we tested all IPC-4 and IPC-5 do-
mains that contain TILs: airport, pipesworld, satellite, truck,
and UMTS. The UMTS domains and half of the airport
instances were omitted as none of the planners completed

Time Aware OPTIC0.1 OPTIC1 OPTIC10

best quality 38 1 0 1

IPC quality 38 9.99 29.74 19.89

problems solved 38 10 30 21

Table 2: Table comparing the number of problems solved,
the number of plans of highest quality, and the IPC quality
for each approach

these. The planners were given a maximum of 200s of CPU
time and 4GB of memory.

Table 2 presents results on the modified IPC domains. The
fixed planning time planners were outperformed by the time-
aware methods in every domain. Several instances were un-
solvable by the former due to the fixed planning time con-
straints. Table 3 shows the planners detailed performance in
each relevant domain tested.

In addition to the fixed planning times that are showed in
Table 2 and Table 3 we have tested 50s, 100s, and 200s. The
performance of the baseline approach with these planning
times were lower than the time-aware method and the best
presented baseline, thus these results were omitted.

Conclusions and Future Work

We have presented a domain-independent temporal planner
that takes the interaction between the time spent on plan-
ning and execution time into consideration. We have demon-
strated empirically that this planner achieves much better re-
sults in domains with absolute deadlines than our baseline
approach. However, our work is merely the first step in ad-
dressing this important topic. There remain many exciting
avenues for future work.

For example, our planner only looks at the current par-
tial plan, and uses a heuristic to “look” into the future. This
heuristic is used to estimate the remaining search depth, but
not to obtain more information about future actions and their
effects on deadlines. In order to get a more informed view
of future actions, and their effect on deadlines, we will ex-
plore using temporal landmarks (Karpas et al. 2015). These
landmarks could be encoded into the same STN of the par-
tial plan, and thus we believe we will be able to achieve even
better pruning of branches of the search tree which will not
lead to a solution in time.

More broadly, the problem we are addressing here could
benefit from more explicit metareasoning (Russell and We-
fald 1991). For example, suppose we had a planning prob-
lem with two possible solutions, each of which must be
explored on a separate branch of the search tree. Further
suppose that each of these solutions has a deadline which
leaves just enough time to explore one of the branches, but
not both of them. Clearly, a planner with perfect knowledge
would choose one of these branches and explore it. On the
other hand, the approach we present here will explore both
branches until it realizes there is not enough time left, and
will then prune both branches — without solving the prob-
lem. In future work, we will explore ways of addressing this
type of problem by incorporating explicit metareasoning on

494



group planner solved time GAT

airport-1 Time Aware 14 6.62 193.54
OPTIC0.1 2 0.06 89.61
OPTIC1 10 0.24 167.72
OPTIC10 10 0.20 176.72

pipesworld Time Aware 3 0.72 16.06
OPTIC0.1 1 0.05 12.11
OPTIC1 4 0.51 15.51
OPTIC10 0

satellite-1 Time Aware 1 0.03 190.23
OPTIC0.1 1 0.04 190.31
OPTIC10 1 0.02 200.21
OPTIC1 1 0.02 191.21

satellite-2 Time Aware 5 0.71 181.89
OPTIC0.1 1 0.03 190.31
OPTIC1 4 0.39 182.87
OPTIC10 1 0.56 129.16

satellite-3 Time Aware 5 0.80 181.88
OPTIC0.1 1 0.03 190.31
OPTIC1 4 0.36 182.87
OPTIC10 1 0.56 129.16

satellite-4 Time Aware 4 2.20 165.20
OPTIC0.1 0
OPTIC1 2 0.15 155.00
OPTIC10 2 1.38 147.38

truck Time Aware 6 0.21 1840.98
OPTIC0.1 4 0.05 1673.95
OPTIC1 5 0.06 1674.20
OPTIC10 6 0.20 1855.97

Table 3: Table comparing the number of problems solved,
the planning time, and the goal achievement time (GAT)
grouped by IPC instance type. The planning time, and the
GAT is the mean of all instances in the group solved by the
planner.

planning time allocation into the search strategy.
One possible approach for this would be to treat the ex-

pression tES − tnow as a variable, which we will denote
by slack. We can then treat the STN as a mathematical op-
timization problem, and maximize the slack. The slack for
node n can serve as a proxy for the probability of finding
a solution in time in the subtree rooted at n. Our metarea-
soning algorithm could then choose the next node to expand
based on both heuristic estimates and the slack.

Acknowledgements

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement No. 730086 (ERGO).

References

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous

costs. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS).
Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search
when time matters. Journal of Artificial Intelligence Re-
search 47:697–740.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings of the 25th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 333–341.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning us-
ing planner-scheduler interaction. Artificial Intelligence
173(1):1–44.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (ICAPS), 42–49.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
planning with continuous linear numeric change. Journal of
Artificial Intelligence Research (JAIR) 44:1–96.
Cresswell, S., and Coddington, A. 2003. Planning with
timed literals and deadlines. In Proceedings of 22nd Work-
shop of the UK Planning and Scheduling Special Interest
Group, 23–35.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In Pro-
ceedings of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI), 1852–1859.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
aware search using on-line measures of behavior. In Pro-
ceedings of the Symposium on Combinatorial Search (SoCS-
11).
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, University of Freiburg.
Fernández-González, E.; Karpas, E.; and Williams, B. C.
2015. Mixed discrete-continuous heuristic generative plan-
ning based on flow tubes. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
1565–1572.
Fernández-González, E.; Karpas, E.; and Williams, B. C.
2017. Mixed discrete-continuous planning with convex op-
timization. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence, 4574–4580.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. In Proceedings of the 2nd International Joint Con-
ference on Artificial Intelligence (IJCAI), 608–620.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research (JAIR) 20:61–124.
Karpas, E.; Wang, D.; Williams, B. C.; and Haslum, P. 2015.
Temporal landmarks: What must happen, and when. In Pro-

495



ceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS), 138–146.
Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In WS on Planning and Robotics (PlanRob) at Int.
Conf. on Aut. Planning and Scheduling (ICAPS).
Ruml, W.; Do, M. B.; Zhou, R.; and Fromherz, M. P. J. 2011.
On-line planning and scheduling: An application to control-
ling modular printers. Journal of Artificial Intelligence Re-
search 40:415–468.
Russell, S. J., and Wefald, E. 1991. Principles of metarea-
soning. Artificial Intelligence 49(1-3):361–395.

496




